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Introduction

“Computer Algebra” is an interdisciplinary field of mathematics and computer science. It mainly
concerns algebraic computations over the integer ring, the rational field, finite fields, polynomial
rings and so on. Computational aspects of Computer Algebra give us variants of application for
pure mathematics and applied mathematics by its symbolic computations. Also, it has developed
new areas in mathematics, for example, Gröbner basis, which is a fundamental tool of aspects in
computational commutative algebra and algebraic geometry nowadays.

This thesis is mainly dedicated to devise efficient methods for operations in polynomial rings,
especially effective localization of ideals (at a prime ideal), which also means direct computation
(extraction) of primary component here. It is well-known that such localization can be computed
through “primary decomposition”, which is some generalization of factorization of a polynomial.
Algorithms of primary decomposition have been much studied, for example, in [10, 12, 19, 26].
However, primary decomposition computes unnecessary primary components for the localization.
Thus, we provide new algorithms which obtain the particular primary components directly by using
Double Ideal Quotient (DIQ) and its variants. We call such algorithms “Local Primary Algorithms
(LPAs)”, which is introduced in Chapter 4. To make LPAs more efficiently, we apply modular
techniques to computations of ideal quotients in Chapter 5.

Here, we give some details of our approaches. We can consider hull(I +Pm) as a candidate of a
P -primary component of a given ideal I, where P is a prime divisor of I, m is some positive integer,
and hull(I + Pm) is the equidimensional hull of I + Pm. If m is sufficiently large, hull(I + Pm) is
a P -primary component of I with respect to P . However, we have to check whether m is enough
large or not. We invent criteria for primary components by using DIQ and its variants. DIQ of
ideals I and J is (I : (I : J)) and its variants are (I : (I : J∞)), (I : (I : J∞)∞) and (I : (I : J)∞).
By (I : (I : J)∞), we can check whether hull(I +Pm) is a primary component of I or not. Also, we
can use DIQ to compute the equidimensional hull. Based on these criteria, we compose LPAs, by
which we can compute the particular primary component without full primary decomposition. In
more details, we explain some key points of LPA in the following.

• LPAs are based on several generating tools and criteria for primary components with different
procedures for two cases; isolated and embedded.

• LPAs use DIQ and its variants as tools for generating and checking primary components.

• DIQ has already appeared in [28] to check associated primes or compute equidimensional
hulls, and in [10], to compute equidimensional radicals. We investigate DIQ and its variants
more deeply.

• There are other important properties of DIQ and its variants toward effective localization.
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For instance, for ideals I, J and a primary decomposition Q of I, (I : (I : J)∞) (a variant of
DIQ) coincides with

∩
Q∈Q,J⊂IK[X]√Q∩K[X]Q.

For practical implementations we devise several efficient techniques for improving our LPAs as
follows (see [13, 28] for efficient computation of ideal quotient and saturation).

• (P
[m]
G -products) Use P

[m]
G = ⟨fm

1 , . . . , fm
r ⟩ for some generator G = {f1, . . . , fr} of P and the

equidimensional hull (see Definition 1.1.25) hull(I+P
[m]
G ) to compute a P -primary component,

instead of using hull(I + Pm) (see Lemma 4.2.3).

• (MIS-hull) Use a maximal independent set (MIS) of P for computing hull(Q) where Q is a P -
hull-primary ideal (see Definition 1.1.29 for MIS and Definition 1.3.1 for hull-primary). Since
an MIS U of P is also an MIS of I+Pm, we obtain that hull(I+Pm) = (I+Pm)K[X]K[U ]× ∩
K[X] (see Lemma 4.2.7).

• (MIS-localization) Use an MIS U of P at the first step of LPA to replace I for IK[X]K[U ]× ∩
K[X] (see Theorem 3.2.7).

Thanks to efficient techniques above, our experiment shows clearly the practicality of our direct
localization method. From our experiments, we conclude that MIS-localization is the most efficient
among techniques for LPAs. However, there are some cases for which it is not efficient. Our main
observation is the following;

• LPAs have strong effectiveness by its speciality.

• MIS-localization is much effective for many examples (see Table 6.1 in Chapter 6). However,
its computational behavior is unstable (see Figures 6.2, 6.3 in Chapter 6).

• Effectiveness of LPAs depends on ideals. At present, it is not predicable and thus it would be
better to apply them in parallel.

Next, we explain modular techniques for (double) ideal quotient and saturation. LPAs com-
pute the specific primary component from given a prime ideal without full primary decomposition.
However, they tend to be very time-consuming for their computations of Gröbner bases and ideal
quotients in some cases. Also, there is another problem; we have to find candidates of prime di-
visors. To solve these problems, we provide a new method for computing DIQ in the n variables
polynomial ring with rational coefficients Q[X] = Q[x1, . . . , xn] by using “modular techniques”. It
is well-known that modular techniques are useful to avoid intermediate coefficient growth and have
a good relationship with parallel computing (see [2, 7, 14, 23]). We apply modular techniques as
follows.

(1) Apply modular techniques to DIQ. (Theorem 5.2.8 and Theorem 5.2.9)

(2) Extend criteria about prime divisor and primary component presented in Chapter 3. (Theorem
5.1.3 and Theorem 5.1.6)

(3) Devise a new method for certain intermediate decomposition in some special cases. (Corollary
5.3.2 and Proposition 5.3.4)
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By the effectiveness of modular techniques, we can compute ideal quotients and saturations
much faster in our computer experiments. Here, we describe details of modular techniques. For a
prime number p, let Z(p) = {a/b ∈ Q | a, b ∈ Z and p ∤ b} be the localized ring by p and Fp[X]
the polynomial ring over the finite field of order p. We denote by ϕp the canonical projection
Z(p)[X] → Fp[X]. As an example, we see modular techniques for DIQ. Given ideals I and J in
the polynomial ring with rational coefficients Q[X], we first compute DIQ of the image ϕp((I : (I :
J)) ∩ Z(p)[X]) in Fp[X] for “lucky” primes p (we will discuss such luckiness in Definition 5.2.1).
Next, we lift them up to Gcan, a candidate of Gröbner basis, from the computed Gröbner basis Ḡ of
ϕp((I : (I : J))∩Z(p)[X]) by using Chinese Remainder Theorem (CRT) and rational reconstruction
(see [7]). Avoiding intermediate coefficient growth, this method is efficient for several examples.

For finding prime divisors, we provide certain “intermediate decomposition” of ideals by extend-
ing the criterion presented in Chapter 3 about prime divisors. For an ideal I and a prime ideal P , it
follows that P is a prime divisor of I if and only if P ⊃ (I : (I : P )) (see Theorem 3.3.1). However,
the projected image of a prime ideal may not be a prime ideal but an intersection of prime ideals
in Fp[X]. Thus, we generalize the criterion to a radical ideal J ⊃ I; it follows that every prime
divisor P of J is associated with I if and only if J ⊃ (I : (I : J)). For such a radical ideal J , if J is
unmixed, we can compute the intersection of primary components Q of I whose associated prime
is a prime divisor of J by modular techniques. This ideal may be considered as an “intermediate
component” of I. By gathering these intermediate components, we may obtain an “intermediate
primary decomposition” (see Definition 5.3.1). For this computation, we can utilize MISs.

This thesis is organized as follows. Throughout the thesis, we omit proofs of well-known theorems
and lemmas but include proofs of results appearing in the author’s papers ([15, 17, 18]). In Chapter
1, we provide mathematical basis for our criteria and algorithms. In Chapter 2, we introduce notions
and properties of DIQ and its variants. In Chapter 3, we describe criteria for prime divisors and
primary components by using DIQ and its variants. In Chapter 4, we explain LPAs to compute the
particular primary component without primary decomposition, after isolated and embedded prime
divisor checks. Also, we generalize propositions in Chapter 3 and devise another algorithm using
the splitting tool and MIS instead of DIQ to compare it and LPAs. In Chapter 5, we invent modular
techniques for (double) ideal quotient and saturation. In Chapter 6, we tested for many examples as
experiments and discuss the behavior of each algorithm. Finally, we give some concluding remarks
and the future works. The work of LPAs is based on [17] and [18], and that of modular techniques
for localization is based on [15].
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Chapter 1

Mathematical Basis

Throughout this thesis, we let K be a computable field (e.g. the rational field Q or a finite field Fp)
of order p, X = {x1, . . . , xn} a set of variables and K[X] = K[x1, . . . , xn] the polynomial ring over
K. We write ⟨f1, . . . , ft⟩K[X] for the ideal generated by elements f1, . . . , ft in K[X] and we simply
use ⟨f1, . . . , ft⟩ if the ring is obvious. When we simply say that I is an ideal, it means the I is a
proper ideal of K[X]. Moreover, we denote the radical {f ∈ K[X] | fm ∈ I for some m ∈ Z≥0} of
I by

√
I.

1.1 Fundamental Definitions

First, we introduce a definition of Gröbner basis, which is a basic tool in Computer Algebra. Gröbner
basis is defined with respect to each monomial ordering. Here, we write Xα = xα1

1 · · ·xαn
n for

α = (α1, . . . , αn) ∈ Zn
≥0.

Definition 1.1.1 (Monomial Ordering; [13], Definition 1.2.1 and Definition 1.2.4). A monomial
ordering (a global ordering) ≺ on K[x1, . . . , xn] is a relation on the set of monomials Xα, α ∈ Zn

≥0,
satisfying:

(1) ≺ is a total ordering on {Xα | α ∈ Zn
≥0}.

(2) If Xα ≺ Xβ and γ ∈ Zn
≥0, then Xα+γ ≺ Xβ+γ.

(3) 1 ≺ Xα for all α ∈ Zn
≥0.

To compute Gröbner basis efficiently, we often use the graded reverse lexicographic ordering as
follows.

Example 1.1.2 (Graded Reverse Lexicographic Ordering (Degree Reverse Lexicographic Ordering);
[8], Chapter 2, Section 2, Definition 6). Let α = (α1, . . . , αn), β = (β1, . . . , βn) ∈ Zn

≥0. We say that

Xα ≻grevlex Xβ if

|α| > |β| or |α| = |β| and the rightmost nonzero entry of α− β is negative,

where |α| = α1 + · · ·+ αn and |β| = β1 + · · ·+ βn.
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Remark 1.1.3 (Block Ordering; [13], p.14). Let ≺1 and ≺2 be monomial orderings on K[X] =
K[x1, . . . , xn] and K[Y ] = K[y1, . . . , ym] respectively. Then the product ordering or block ordering
≺= (≺1,≺2) on K[X,Y ] = K[x1, . . . , xn, y1, . . . , ym] is defined as

XαY β ≻ Xα′
Y β′ ⇐⇒ Xα ≻1 X

α′
or (Xα = Xα′

and Y β ≻2 Y
β′
).

Here, if ≺1 and ≺2 are irrelevant, we write just X ≻≻ Y .

We consider the leading term of a polynomial with respect to each monomial ordering. Here,
we also consider an ordering on Zn

≥0 coming from ≺ and write α ≺ β if Xα ≺ Xβ .

Definition 1.1.4 (Initial Terms; [8], Chapter 2, Section 2, Definition 7). Let f =
∑

α aαX
α be a

nonzero polynomial in K[X] = K[x1, . . . xn] and let ≺ be a monomial ordering.

(1) The multidegree of f is multideg(f) = max≺{α ∈ Zn
≥0 | aα ̸= 0}.

(2) The initial coefficient of f is lc≺(f) = amultideg(f) ∈ K.

(3) The initial monomial (or power product) of f is lp≺(f) = Xmultideg(f).

(4) The initial term of f is lt≺(f) = lc≺(f)lp≺(f).

Letting lt≺(I) = {lt≺(f) | 0 ̸= f ∈ I}, we call ⟨lt≺(I)⟩ the initial ideal of I. If ≺ is obvious, we
simply write lc(f), lp(f) and lt(f).

Example 1.1.5. Let ≺ be the graded reverse lexicographic ordering (or the degree reverse lexico-
graphic ordering) with x ≻ y ≻ z and f = 3xy2z + 2x2yz + z3. Then,

multideg(f) = (2, 1, 1),

lc≺(f) = 2,

lp≺(f) = x2yz,

lt≺(f) = 2x2yz.

Here, we define a Gröbner basis of an ideal to compute various ideal operations. It was introduced
by Bruno Buchberger in his Ph.D thesis ([6]).

Definition 1.1.6 (Gröbner basis; [8], Chapter 2, Section 5, Definition 5 and Chapter 2, Section
7, Definition 4). Let ≺ be a monomial ordering and I an ideal in K[X]. A finite subset G =
{g1, . . . gr} ̸= {0} of I is called a Gröbner basis of I with respect to ≺ if

⟨lt≺(g1), . . . , lt≺(gr)⟩ = ⟨lt≺(I)⟩.

Moreover, G is called the reduced Gröbner basis of I with respect to ≺ if G is a Gröbner basis of
I with respect to ≺ and

(1) lc≺(gi) = 1 for all i.

(2) For all i, no monomial of gi lies in ⟨lt≺(G \ {gi})⟩.

Example 1.1.7. Let I = ⟨x2 + xy + z2, xz + yz + z2⟩ ⊂ Q[x, y, z]. Then, G = {x2 + xy + z2, xz +
yz + z2, yz2 + 2z3} is the reduced Gröbner basis of I with respect to ≻grevlex with x ≻ y ≻ z.
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We introduce the notions of S-polynomial and a remainder on division for a criterion of Gröbner
basis.

Definition 1.1.8 ([8], Chapter 2, Section 6, Definition 4). Let f, g ∈ K[X] be nonzero polynomials
with multideg(f) = α and multideg(g) = β. Let γ = (γ1, . . . , γn), where γi = max{αi, βi} for each
i (i.e. Xγ = lcm(Xα, Xβ)). Then, the S-polynomial of f and g is the combination

S(f, g) =
Xγ

lt(f)
f − Xγ

lt(g)
g.

Definition 1.1.9 (Division Algorithm; [8], Chapter 2, Section 3, Theorem 3). Let ≺ be a monomial
ordering and F = (f1, . . . , fs) be an ordered s-tuple of polynomials in K[X]. Then, every f ∈ K[X]
can be written as

f = q1f1 + · · ·+ qsfs + r,

where qi, r ∈ K[X], and either r = 0 or r is a linear combination, with coefficients in K, of
monomials, none of which is divisible by any lt(f1), . . . , lt(fs). Furthermore, if qifi ̸= 0, then
multideg(f) ≥ multideg(qifi). We call r a remainder of f on division F and denote it by remF (f).

We can check if a given generating set is Gröbner basis or not by the following famous criterion.

Theorem 1.1.10 (Buchberger’s Criterion; [8], Chapter 2, Section 6, Theorem 6). Let I be an ideal.
Then a generating set G = {g1, . . . , gr} of I is a Gröbner basis of I if and only if for all pairs i ̸= j,
the remainder on division of S(gi, gj) by G (listed in some order) is zero.

Also, we can compute a Gröbner basis of a given ideal by using Buchberger’s Criterion.

Buchberger’s algorithm; [8], Chapter 2, Section 7, Theorem 2� �
Input: F = {f1, . . . , fr}: a generating set of an ideal I in Q[X] and ≺: a monomial ordering.
Output: a Gröbner basis G of I with respect to ≺.

G← F .
G′ ← {}
WHILE G′ ̸= G

G′ ← G
FOR each pair (p, q) ∈ G×G with p ̸= q,

r(p,q) ← remG′(S(p, q))
IF r(p,q) ̸= 0, THEN G← G ∪ {r(p,q)}

RETURN G� �
Next, we introduce the ideal quotient and the saturation of a pair of two ideals (see Section 1.4

for computations). These computations are very important for our LPAs.

Definition 1.1.11 (Ideal Quotient, Saturation; [8], Chapter 4, Section 4, Definitions 5 and 8). Let
I and J be ideals in K[X]. Then the ideal

{f ∈ K[X] | fg ∈ I for all g ∈ J}

7



is called the ideal quotient of I by J and denoted by (I : J). Also, the ideal

{f ∈ K[X] | for all g ∈ J, there is m ≥ 0 s.t. fgm ∈ I}

is called saturation of I with respect to J and denoted by (I : J∞).

Example 1.1.12. Let I = ⟨x3, xy⟩ = ⟨x⟩ ∩ ⟨x3, y⟩ and J = ⟨x, y⟩ in Q[x, y]. Then, (I : J) =
⟨x2, xy⟩ = ⟨x⟩ ∩ ⟨x2, y⟩ and (I : J∞) = ⟨x⟩.

Remark 1.1.13. For ideals I, J , and H, (I ∩ J : H) = (I : H)∩ (J : H) (see Exercise 1.12 in [1])

Here we refer the definitions of prime ideal, (P -)primary ideal and primary decomposition to
several books [1, 13, 28].

Definition 1.1.14 (Primary Decomposition; [26], Definition 2.1). For an ideal I of K[X], a set
Q of primary ideals is called a general primary decomposition of I if I =

∩
Q∈QQ. A general

primary decomposition Q = {Q1, . . . , Qr} is a primary decomposition (or irredundant) if the
√
Qi

are all distinct and Qi ̸⊃
∩

j ̸=iQj. For a primary decomposition of I, each primary ideal is called
a primary component of I. The prime ideal associated with a primary component of I is called a
prime divisor of I. The set of prime divisors is determined independently from the choice of primary
decompositions. A primary component Q is called a P -primary component for P =

√
Q. Among

all prime divisors of I, minimal prime ideals are called isolated prime divisors of I and others are
called embedded prime divisors of I. A primary component of I is called isolated if its prime divisor
is isolated and embedded if its prime divisor is embedded. We denote by Ass(I) and Assiso(I) the
set of all prime divisors of I and the set of all isolated prime divisors respectively.

It is well-known that an isolated primary component does not depend on primary decomposi-
tions, while an embedded primary component does. From an algorithmic point of view, computation
of embedded primary components tends to be more difficult than that of isolated primary compo-
nents.

We also give fundamental notions and properties related to localization that can extract the
particular primary components.

Definition 1.1.15 (Multiplicatively Closed Set; [13], Definition 1.4.4). A subset S of K[X] is called
a multiplicatively closed set if

(1) 1 ∈ S,

(2) ab ∈ S for all a, b ∈ S.

Definition 1.1.16 (Localization; [26], Definition 2.2). Let I be an ideal and S a multiplicatively
closed set in K[X]. Here, we assume that a multiplicatively closed set always does not contain 0.
We call {f/s | f ∈ I, s ∈ S} ⊂ K(X) the localized ideal with respect to S and denote it by IK[X]S.
Also, we call IK[X]S ∩K[X] the contraction of the localized ideal. For simplicity, we call the latter
the localization of I with respect to S (see Definition 2.2 in [26]). For a multiplicatively closed
set K[X] \ P , where P is a prime ideal, we denote it simply by IK[X]P ∩ K[X] and call it the
localization of I at P . Also, we write IP = IK[X]P ∩K[X] when there is no confusion.

Example 1.1.17. In Q[X] = Q[x, y], let P = ⟨x⟩ be a prime ideal. For S = Q[X] \ P and
I = ⟨x2, xy⟩, the localization of I with respect to S is IQ[X]S ∩ Q[X] = ⟨x⟩. For P = ⟨x, y⟩ and
J = ⟨x⟩ ∩ ⟨x+ 1⟩ ∩ (x+ 2, y2), the localization of J at P is JQ[X]P ∩Q[X] = ⟨x⟩.
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We remark a relationship between primary decomposition and localization.

Remark 1.1.18 (Localization from Primary Decomposition). Given a primary decomposition Q
of an ideal I, the localization of I with respect to S can be expressed as

∩
Q∈Q,Q∩S=∅Q. Moreover,

it is also equal to (I : (
∩

P∈Ass(I),P∩S ̸=∅ P )∞). Here, we are thinking mainly about computable
multiplicatively closed set s.t. finitely generated one or the complement of a prime ideal. In these
cases, we can decide efficiently whether Q and S intersect or not, by using Gröbner basis. Thus
if we know all primary components or all associated primes, then we can compute localizations of
I for any computable multiplicatively closed sets S. However, this method is not a direct method
since it computes unnecessary primary components or associated primes.

Next we introduce the notion of pseudo-primary ideal, which is an extension of that of primary
ideal.

Definition 1.1.19 ([26], Definition 2.3). Let Q be an ideal. We say that Q is pseudo-primary if√
Q is a prime ideal. In this case, we also say that Q is

√
Q-pseudo-primary.

Example 1.1.20. Since
√
⟨x2, xy⟩ = ⟨x⟩ is a prime ideal, it follows that ⟨x2, xy⟩ is an ⟨x⟩-pseudo-

primary ideal. Every P -primary ideal is P -pseudo-primary.

With the notion of pseudo-primary ideal, we can define some special localization P -pseudo-
primary component with respect to its isolated prime divisor P . The minimal P -pseudo-primary
component is equal to the intersection of all primary components whose radicals contain P but
do not contain other isolated prime divisors. Here, for a finite set S, we denote by ⟨⟨S⟩⟩ the
multiplicatively closed set generated by S.

Definition 1.1.21 (Pseudo-primary component; [26], Definition 2.5). Let I be an ideal, which is
not a pseudo-primary ideal, P1, . . . , Pr all isolated prime divisors of I, and S1, . . . , Sr are finite
subsets in K[X]. Each Si is called a separator of I with respect to Pi if they satisfy the following
conditions;

Si ∩ Pi = ∅, and Si ∩ Pj ̸= ∅ for i ̸= j.

A set of separators {S1, . . . , Sr} is called a system of separators of I. For a separator Si of I with
respect to Pi, IK[X]⟨⟨Si⟩⟩ ∩K[X] is called a P -pseudo-primary component of I.

We can consider the minimal pseudo-primary component of I as follows.

Proposition 1.1.22. Let I be an ideal and P an isolated prime divisor of I. For a set of prime
divisors

A(P ) = {P ′ ∈ Ass(I) | P ′contains P but not any other isolated prime divisors of I}

and the multiplicatively closed set S = K[X] \
∪

P ′∈A(P ) P
′, it follows that Q = IK[X]S ∩K[X] is

a pseudo-primary component of I with respect to P . Moreover, Q is minimal among all P -pseudo-
primary components with respect to any systems of separators of I.

Proof. First, we show that Q = IK[X]S∩K[X] is a pseudo-primary component of I with respect to
P . Let Assiso(I) = {P1, . . . , Pr} with P1 = P . Since Pj \

∪
P ′∈A(Pi)

P ′ is not empty for i ̸= j from the

Prime Avoidance Lemma (see Lemma 1.2.9), there is sij ∈ Pj \
∪

P ′∈A(Pi)
P ′. Then Si = {sij | j ̸= i}

is a separator of I with respect to Pi. Indeed, Si satisfies Si∩Pi = ∅ and sij ∈ Si∩Pj ̸= ∅ for i ̸= j.
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For P ′ ∈ Ass(I), if P ′ ∩S1 = ∅, then P ′ ∈ A(P1); otherwise, s1j ∈ P ′ ∩S1 for some j. Conversely, if
P ′ ∈ A(P1) then P ′ ∩ S1 = ∅ by the definition of S1. Thus, for P

′ ∈ Ass(I), P ′ ∩ S1 = ∅ if and only
if P ′ ∈ A(P1). Hence, IK[X]S ∩K[X] = IK[X]⟨⟨S1⟩⟩ ∩K[X] and it is a pseudo-primary component
of I with respect to P .

Next, we prove the minimality of IK[X]S ∩ K[X]. Let {S′
1, . . . , S

′
r} be another system of

separators of I, where S′
i is a separator with respect to Pi. Also, let Q be a primary decomposition

of I. It is enough to show that IK[X]S ∩K[X] =
∩

Q′∈Q,
√
Q′∈A(P )Q

′ ⊂ IK[X]⟨⟨S′
1⟩⟩ ∩K[X]. Let

Q′ ∈ Q such that Q′∩⟨⟨S′
1⟩⟩ = ∅ (i.e.

√
Q′∩⟨⟨S′

1⟩⟩ = ∅). Here, we consider an isolated prime divisor
P ′′ contained in

√
Q′. Then P ′′∩S′

1 = ∅ from
√
Q′∩⟨⟨S′

1⟩⟩ = ∅. Since Pj∩S′
1 ̸= ∅ for j ̸= 1, we obtain

that P ′′ = P1. Thus
√
Q′ contains P1 but not any other isolated prime divisors i.e.

√
Q′ ∈ A(P1).

Hence, IK[X]S ∩K[X] =
∩

Q′∈Q,
√
Q′∈A(P1)

Q′ ⊂
∩

Q′∈Q,Q′∩⟨⟨S′
1⟩⟩=∅Q

′ = IK[X]⟨⟨S′
1⟩⟩ ∩K[X]. 2

Remark 1.1.23. Every P -pseudo-primary component of I is a P -pseudo-primary ideal. Let QP

be the minimal P -pseudo-primary component of I. Then I =
∩

P∈Assiso(I)
QP ∩I ′ for some I ′ s.t.

Assiso(I
′) ∩ Assiso(I) = ∅. This decomposition is called a pseudo-primary decomposition in [26],

where it is computed by separators from given Assiso(I). Meanwhile, we introduce another method
to compute the minimal P -pseudo-primary components directly by using DIQ in Lemma 3.3.3. We
note that the minimal P -pseudo-primary component is determined uniquely and has the P -isolated
primary component of I as its component (see Lemma 1.2.3).

Example 1.1.24. For I = ⟨x2(x + 1), x(x + 1)y⟩ = ⟨x⟩ ∩ ⟨x + 1⟩ ∩ ⟨x2, y⟩ ⊂ Q[x, y], ⟨x2, xy⟩ is
the minimal ⟨x⟩-pseudo-primary component of I and ⟨x+1⟩ is the minimal ⟨x+1⟩-pseudo-primary
component of I.

We may regard a P -pseudo-primary component as a “column localization” since it has different
dimensional primary components in general. Conversely, we may consider a “row localization”,
that contains equidimensional primary components, that is, primary components with the same
dimension. For a definition of the dimension of an ideal, see Definition 3.3.1 in [13].

Definition 1.1.25 ([10], Section 1). Let I be an ideal and Q a primary decomposition of I. We
call hull(I) =

∩
Q∈Q,dim(Q)=dim(I)Q the equidimensional hull of I. Since every primary component

Q satisfying dim(Q) = dim(I) is isolated, hull(I) is determined independently from the choice of
primary decompositions.

Example 1.1.26. For I = ⟨x4 − x2, x2y + xy⟩ = ⟨x⟩ ∩ ⟨x + 1⟩ ∩ ⟨x2, y⟩ ∩ ⟨x − 1, y⟩ ⊂ Q[x, y], it
follows that hull(I) = ⟨x⟩ ∩ ⟨x+ 1⟩.

Here, we define a regular sequence in I. Using a regular sequence in I, we can compute the
“equidimensional hull” hull(I) of I (see Proposition 1.4.6). For computation of regular sequence,
see Proposition 1.4.7.

Definition 1.1.27 (Regular sequence; [13], Definition 7.6.1). A sequence a1, . . . , ar ∈ K[X] is called
a regular sequence if

(1) ai is not a zerodivisor for K[X]/⟨a1, . . . , ai−1⟩ for i = 1, . . . , r,

(2) ⟨a1, . . . , ar⟩ ̸= K[X].

Example 1.1.28 ([13], Remark 7.6.2). A sequence a1 = x(y−1), a2 = y, a3 = z(y−1) is a regular
sequence in K[x, y, z]. On the other hand, a sequence a1, a3, a2 is not regular.
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We define another special localization by MIS.

Definition 1.1.29 ([13], Definition 3.5.3). For a subset U of variables X and an ideal I, we call
U a maximal independent set (MIS) of I if K[U ]∩ I = {0} and the cardinality of U is equal to the
dimension of I.

Remark 1.1.30. For an MIS U of I, IK[X]K[U ]× is a 0-dimensional ideal and IK[X]K[U ]×∩K[X]
is the intersection of its primary components which have U as their MIS (see Proposition 1.4.9).
Once we have a Gröbner basis of I, its MIS can be computed from one of ⟨lp(G)⟩. For finding an
MIS, see Exercise 3.52 in [13]. In particular, if I is a prime ideal, then it is easier to compute a
MIS of I (see [5]).

Example 1.1.31. Let I = ⟨x2, xy⟩. Then U = {y} is an MIS of I and IQ[X]Q[U ]× ∩Q[X] = ⟨x⟩.

We define a special subset of Ass(I), which has a good relationship to localization. The localiza-
tion with respect to an isolated set can be expressed as intersection of primary components whose
prime divisors are in the isolated set. We note that A(P ), in Proposition 1.1.22, is an isolated set.

Definition 1.1.32 ([1], Chapter 4). Let I be an ideal. A subset PP of Ass(I) is said to be isolated
if it satisfies the following condition: for a prime divisor P ′ ∈ Ass(I), if P ′ ⊂ P for some P ∈ PP,
then P ′ ∈ PP.

1.2 Fundamental Lemmas

Here, we introduce fundamental lemmas for DIQ and our LPAs. The following lemma is an easy
but fundamental criterion for primary component using localization.

Lemma 1.2.1 ([17], Lemma 4). Let I be an ideal and P its prime divisor. If S is a multiplicatively
closed set with P ∩ S = ∅ and Q is a P -primary ideal, then the following conditions are equivalent.

(A) Q is a primary component of I.
(B) Q is a primary component of IK[X]S ∩K[X].

Proof. First, (A) implies (B) from Proposition 4.9 in [1]. For primary decompositions Q of I and
Q′ of IK[X]S ∩K[X] with Q ∈ Q′, we obtain that {Q′ ∈ Q | Q′ ∩ S ̸= ∅} ∪ Q′ is also a primary
decomposition of I. Hence, (B) implies (A). 2

In particular, one or more isolated primary components of I are isolated in IK[X]S ∩K[X] if
the localization is not trivial.

Example 1.2.2. For I = ⟨x2, xy⟩ ⊂ K[X] = K[x, y], we obtain that ⟨x⟩ is the isolated primary
component of both I and IK[X]⟨x⟩ ∩K[X] = ⟨x⟩.

The following lemma tells us a relationship between a localization and an isolated set (see
Definition 1.1.32).

Lemma 1.2.3 ([1], Theorem 4.10). Let I be an ideal and PP an isolated set contained in Ass(I).
For a multiplicatively closed set S = K[X]\

∪
P∈PP P and a primary decomposition Q of I, IK[X]S∩

K[X] =
∩

Q∈Q,
√
Q∈PP Q.
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Example 1.2.4. For I = ⟨x2(x + 1), x(x + 1)y⟩ = ⟨x⟩ ∩ ⟨x + 1⟩ ∩ ⟨x2, y⟩ ⊂ K[X] = K[x, y],
PP = {⟨x⟩, ⟨x, y⟩} is an isolated subset of Ass(I) = {⟨x⟩, ⟨x+1⟩, ⟨x, y⟩}. Let S = K[X]\

∪
P∈PP P .

Then, IK[X]S ∩K[X] = ⟨x2, xy⟩ = ⟨x⟩ ∩ ⟨x2, y⟩.

The following lemma tells that primary ideals have a property similar to one of prime ideals.

Lemma 1.2.5 ([17], Lemma 16). Let I and J be ideals. Let Q be a primary ideal. If IJ ⊂ Q and
J ̸⊂
√
Q, then I ⊂ Q. In particular, if I ∩ J ⊂ Q and J ̸⊂

√
Q, then I ⊂ Q.

Proof. Let f ∈ I and g ∈ J \
√
Q. Since Q is

√
Q-primary, fg ∈ IJ ⊂ Q implies f ∈ Q. 2

Example 1.2.6. Let I = ⟨x⟩, J = ⟨x+1⟩ and Q = ⟨x, y2⟩. Then, I ∩J ⊂ ⟨x(x+1)⟩ ⊂ ⟨x, y2⟩ = Q
and J = ⟨x+ 1⟩ ̸⊂

√
Q = ⟨x, y⟩. Thus, I = ⟨x⟩ ⊂ Q = ⟨x, y2⟩.

Next, we remark the “splitting tool”, one of the most important tool for primary decomposition.

Lemma 1.2.7 ([28], Proposition 3.53). Let I and J be ideals. Then, for a sufficiently large integer
m,

I = (I : J∞) ∩ (I + Jm).

where Jm = ⟨f1 · · · fm | f1, . . . , fm ∈ J⟩ (if J is generated by F , then Jm = ⟨f1 · · · fm | f1, . . . , fm ∈
F ⟩).

Example 1.2.8. For I = ⟨x2, xy⟩ = ⟨x⟩ ∩ ⟨x2, y⟩ and J = ⟨x, y⟩, it follows that J2 = ⟨x2, xy, y2⟩
and

I = (I : J∞) ∩ (I + J2) = ⟨x⟩ ∩ ⟨x2, xy, y2⟩.

Also, we recall the famous Prime Avoidance Lemma.

Lemma 1.2.9 ([1], Proposition 1.11). (i) Let P1, . . . , Pm be prime ideals and let I be an ideal
contained in

∪m
i=1 Pi. Then, I ⊂ Pi for some i.

(ii) Let I1, . . . , Im be ideals and let P be a prime ideal containing
∩m

i=1 Ii. Then P ⊃ Ii for some i.
If P =

∩m
i=1 Ii, then P = Ii for some i.

Finally, we introduce fundamental properties of ideal quotient. The first two statements in
Lemma 1.2.10 can be seen in several papers and books ([1], Lemma 4.4. [13], Lemma 4.1.3. [28],
the remark before Proposition 3.56).

Lemma 1.2.10 ([17], Lemma 19). Let I and J be ideals, Q a primary ideal and Q a primary
decomposition of I. Then,

(Q : J) =


Q (J ̸⊂

√
Q),

K[X] (J ⊂ Q),√
Q-primary ideal properly containing Q (J ̸⊂ Q, J ⊂

√
Q),

(1.1)

(Q : J∞) =

{
Q (J ̸⊂

√
Q),

K[X] (J ⊂
√
Q),

(1.2)

(I : J) =
∩

Q∈Q,J ̸⊂
√
Q

Q ∩
∩

Q∈Q,J ̸⊂Q,J⊂
√
Q

(Q : J), (1.3)

(I : J∞) = (I :
√
J
∞
) =

∩
Q∈Q,J ̸⊂

√
Q

Q. (1.4)
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Proof. We omit proofs of (1.1) and (1.2). First, we prove (1.3). From I =
∩

Q∈QQ and (1.1), we
obtain that

(I : J) = (
∩
Q∈Q

Q : J) =
∩
Q∈Q

(Q : J)

=
∩

Q∈Q,J ̸⊂
√
Q

(Q : J) ∩
∩

Q∈Q,J ̸⊂Q,J⊂
√
Q

(Q : J) ∩
∩

Q∈Q,J⊂Q

(Q : J)

=
∩

Q∈Q,J ̸⊂
√
Q

Q ∩
∩

Q∈Q,J ̸⊂Q,J⊂
√
Q

(Q : J) ∩K[X]

=
∩

Q∈Q,J ̸⊂
√
Q

Q ∩
∩

Q∈Q,J ̸⊂Q,J⊂
√
Q

(Q : J).

Second, we show (1.4). From I =
∩

Q∈QQ and (1.2), we obtain that

(I : J∞) =
∩

Q∈Q,J ̸⊂
√
Q

(Q : J∞) ∩
∩

Q∈Q,J⊂
√
Q

(Q : J∞)

=
∩

Q∈Q,J ̸⊂
√
Q

Q ∩K[X] =
∩

Q∈Q,J ̸⊂
√
Q

Q.

Since J ⊂
√
Q is equivalent to

√
J ⊂
√
Q, we obtain that (I : J∞) = (I :

√
J
∞
). 2

1.3 Additional Definitions and Lemmas

Next, we introduce the notion of hull-primary ideal, which is an extension of the definition of
pseudo-primary ideal. We use hull-primary ideal in Section 4.2.1 to devise practical techniques for
LPAs.

Definition 1.3.1 ([17], Definition 13). Let I be an ideal. We say that I is hull-primary if hull(I)
is a primary ideal. For a prime ideal P , we say that a hull-primary ideal I is P -hull-primary if
P = hull(

√
I).

Example 1.3.2. Let I = ⟨x3 − x2y, x2y2 + x2y⟩ = ⟨x2⟩ ∩ ⟨x3, y⟩ ∩ ⟨x + 1, y + 1⟩ ⊂ Q[x, y]. Since
hull(I) = ⟨x2⟩ is ⟨x⟩-primary, I is ⟨x⟩-hull primary.

As a pseudo-primary ideal has the unique isolated component, we remark following.

Remark 1.3.3. Every pseudo-primary ideal is hull-primary.

Example 1.3.4. I = ⟨x2, xy⟩ = ⟨x⟩ ∩ ⟨x2, y⟩ is ⟨x⟩-pseudo-primary and thus ⟨x⟩-hull-primary.

Using the following lemma and a variant of DIQ, we can compute the isolated P -primary com-
ponent of I in Chapter 4.

Lemma 1.3.5 ([17], Lemma 15). Let P be an isolated prime divisor of I and QP the minimal
P -pseudo-primary component of I. Then, QP is P -hull-primary and hull(QP ) is the isolated P -
primary component of I.
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Proof. By Remarks 1.1.23 and 1.3.3, it follows that QP is P -hull-primary and hull(QP ) is the
isolated P -primary component. By the definition of QP and Lemma 1.2.1, we obtain that hull(QP )
is the isolated P -primary component of I. 2

Example 1.3.6. Let I = ⟨x2, xy2 + xy⟩ = ⟨x⟩ ∩ ⟨x2, y⟩ ∩ ⟨x2, y + 1⟩ ⊂ Q[x, y]. For P = ⟨x⟩,
QP = ⟨x⟩ ∩ ⟨x2, y⟩ is the minimal P -pseudo primary component of I and hull(QP ) = ⟨x⟩ is the
P -isolated primary component of I.

The following lemma tells us when primary component intersects a multiplicatively closed set.
It is used to prove Lemma 3.1.3, a criterion for localization.

Lemma 1.3.7 ([17], Lemma 7). Let Q be a primary decomposition of I and Q ∈ Q. For a
multiplicatively closed set S, the following conditions are equivalent.

(A) IK[X]S ∩K[X] ⊂ IK[X]√Q ∩K[X].
(B) Q ∩ S = ∅.

Proof. Show that (A) implies (B). As IK[X]√Q∩K[X] ⊂ Q, IK[X]S∩K[X] =
∩

Q′∈Q,Q′∩S=∅Q
′ ⊂

Q. Since Q is irredundant, IK[X]S ∩K[X] has
√
Q-primary component. Thus, Q ∩ S = ∅. Now,

we show that (B) implies (A). Then,
√
Q ∩ S = ∅ and Q′ ∩ S = ∅ for any Q′ ∈ Q s.t. Q′ ⊂

√
Q.

Thus, IK[X]√Q ∩K[X] =
∩

Q′⊂
√
QQ′ implies IK[X]S ∩K[X] ⊂ IK[X]√Q ∩K[X]. 2

Example 1.3.8. For I = ⟨x3 + x2, x2y + xy⟩ = ⟨x⟩ ∩ ⟨x + 1⟩ ∩ ⟨x2, y⟩ ⊂ Q[X] = Q[x, y], let
S = Q[X]\ ⟨x, y⟩. Then, IQ[X]S ∩Q[X] = ⟨x⟩∩ ⟨x2, y⟩ ⊂ IQ[X]√⟨x⟩∩Q[X] = ⟨x⟩ and ⟨x⟩∩S = ∅.
On the other hand, IQ[X]S∩Q[X] = ⟨x⟩∩⟨x2, y⟩ ̸⊂ IQ[X]√⟨x+1⟩∩Q[X] = ⟨x+1⟩ and ⟨x+1⟩∩S ̸= ∅.

Hull-primary ideals have a similar property to one of primary ideals as follows.

Lemma 1.3.9 ([17], Lemma 17). Let I be a P -hull-primary and Q a P -primary ideal. If I ⊂ Q,
then hull(I) ⊂ Q.

Proof. If I = hull(I), then hull(I) = I ⊂ Q. Thus, we assume I ̸= hull(I). Let Q be a primary
decomposition of I and J =

∩
Q′∈Q,Q′ ̸=hull(I)Q

′. Then I = hull(I) ∩ J ⊂ Q and J ̸⊂ P . Since Q is
P -primary, we obtain that hull(I) ⊂ Q by Lemma 1.2.5. 2

Example 1.3.10. Let I = ⟨x3 − x2y, x2y2 + x2y⟩ = ⟨x2⟩ ∩ ⟨x3, y⟩ ∩ ⟨x + 1, y + 1⟩ and Q = ⟨x⟩.
Then, I ⊂ Q and hull(Q) = ⟨x2⟩ ⊂ Q.

1.4 Computations of Basic Ideal Operations

In the rest of this section, we see some computations of basic ideal operations such as intersection
of ideal, ideal quotient, saturation, radical of ideal and primary decomposition.

Proposition 1.4.1 ([13], Lemma 1.8.10). For ideals I = ⟨f1, . . . , fr⟩, J = ⟨g1, . . . , gs⟩ and a new
variable t,

I ∩ J = (⟨t⟩I + ⟨1− t⟩J) ∩K[X]

where ⟨t⟩I + ⟨1− t⟩J is the ideal generated by {tf1, . . . , tfr, (1− t)g1, . . . , (1− t)gs} in K[X, t]. For
a Gröbner basis G of ⟨t⟩I + ⟨1 − t⟩J with respect to a (block) monomial ordering with {t} ≻≻ X,
G ∩K[X] is a Gröbner basis of I ∩ J . Thus, the intersection of ideals is computable.
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Next, ideal quotient can be computed by the following ways.

Proposition 1.4.2 ([13], Lemma 1.8.12 (Solution 1)). For an ideal I and a polynomial f ,

(I : ⟨f⟩) = (I ∩ ⟨f⟩) · f−1 = {gf−1 | g ∈ I ∩ ⟨f⟩}.

Then, (I : ⟨f⟩) can be computed by Gröbner bases computations. Moreover, for an ideal J =
⟨f1, . . . , fr⟩

(I : J) =
r∩

i=1

(I : ⟨fi⟩)

and thus the ideal quotient of ideals is computable.

We can obtain a generating set of the ideal quotient in another manner as follows.

Proposition 1.4.3 ([28], Proposition 2.10). For ideals I and J = ⟨f1, . . . , fr⟩, a new variable t and
f = f1 + f2t+ · · ·+ frt

r−1,
(I : J) = (IK[X, t] : ⟨f⟩) ∩K[X].

By using ideal quotient, we obtain a generating set of saturation as the following proposition.

Remark 1.4.4. Let I and J be ideals. Then, by the Noetherian property of K[X], for a sufficiently
large integer m,

(I : J∞) = (I : Jm) = (I : Jm+1) = · · · .

Thus, the saturation is computable.

We can also compute saturation in the following manner.

Proposition 1.4.5 ([28], Proposition 2.12). For ideals I and J = ⟨f1, . . . , fr⟩, a new variable t and
f = f1 + f2t+ · · ·+ frt

r−1,

(I : J∞) = ((I + ⟨t− f⟩) : ⟨t⟩∞) ∩K[X].

For a given I, hull(I) can be computed in several manners. For instance, it can be computed
by Ext functors ExtK[X](K[X]/I,K[X]) (see [10]), or a regular sequence (see Definition 1.1.27)
contained in I (see [28]) as follows. In general, the computation of Ext functors tends to be time-
consuming, compared with ideal computations. Thus, in this thesis, we use a regular sequence or
an MIS to compute equidimensional hull.

Proposition 1.4.6 ([28], Proposition 3.41). Let I be an ideal in K[x1, . . . , xn] and u ⊂ I a regular
sequence of length c, where c is the codimension of I i.e. c = n − dim(I). Then hull(I) = (⟨u⟩ :
(⟨u⟩ : I)).

For a computation of a regular sequence in I, we can use the following criterion. For a modified
computation of a regular sequence in a pseudo-primary ideal, see Lemma 4.2.5.

Lemma 1.4.7 ([28], Proposition 2.9). Let I be an ideal. For f ∈ K[X], f is not a zero-divisor for
K[X]/I if and only if (I : ⟨f⟩) = I. Consequently, a1, . . . , ar is a regular sequence in K[X] if and
only if

(1) (⟨a1, . . . , ai−1⟩ : ⟨ai⟩) = ⟨a1, . . . , ai−1⟩ for each i,
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(2) ⟨a1, . . . , ar⟩ ̸= K[X].

If I is 0-dimensional and K is a perfect field, then we can compute the radical of I by the
following.

Proposition 1.4.8 ([28], Theorem 4.16). Let I be a 0-dimensional ideal in K[X], where K is a
perfect field. There is a univariate polynomial fi(xi) such that I ∩ K[xi] = ⟨fi⟩ for i = 1, . . . , n
and let gi be the squarefree part of fi i.e. gi = hi1 · · ·hiri where fi = he1i1 · · ·h

eri
iri

is an irreducible
factorization of fi over K. Then √

I = I + ⟨g1, . . . , gn⟩.

Since each fi can be computed from the reduced Gröbner basis of I, the radical is computable.

In case that I is not 0-dimensional, we may reduce it to 0-dimensional case by localization using
MIS. If the characteristic of K is positive, then we can use the preimage of Frobenius map.

Proposition 1.4.9 ([13], Proposition 4.3.1). Let I be an ideal and U ⊂ X an MIS of I. Then,

(1) IK(U)[X \ U ] is a 0-dimensional ideal of K(U)[X \ U ].

(2) For a Gröbner basis G = {f1, . . . , fs} of IK(U)[X\U ] with G ⊂ I and h = lcm(lc(f1), . . . , lc(fs)) ∈
K(U),

IK(U)[X \ U ] ∩K[X] = (I : ⟨h⟩∞).

(3) If Q′ is a primary decomposition of IK(U)[X \ U ], then {Q′ ∩K[X] | Q′ ∈ Q′} is a primary
decomposition of IK(U)[X \ U ] ∩K[X].

If a given ideal is 0-dimensional, we can compute its primary decomposition from the factoriza-
tion of a polynomial in I. For a definition of general position, see Definition 4.2.1 in [13].

Proposition 1.4.10 ([13], Proposition 4.2.3). Let I be a 0-dimensional ideal in Q[X]. Then, for
f ∈ I ∩K[xn] and an irreducible factorization f = f e1

1 · · · f es
s ,

I = (I + ⟨f e1
1 ⟩) ∩ (I + ⟨f e2

2 ⟩) ∩ · · · ∩ (I + ⟨f es
s ⟩).

If I is in general position with respect to the lexicographic ordering with x1 ≻ · · · ≻ xn, it gives a
primary decomposition.

Finally, we recall some algorithms of primary decomposition. First, we provide the sketch of a
generalized version of Gianni-Trager-Zacharias algorithm ([5, 12, 13]) as follows.
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Generalized version of Gianni-Trager-Zacharias algorithm (GTZ)� �
Input: F : a generating set of an ideal I in Q[X]
Output: Q: a primary decomposition of I

Q ← {}
Find an MIS U of I
Compute h ∈ K[X] and a positive integer m s.t. IK(U)[X\U ]∩K[X] = (I : ⟨h⟩∞) = (I : ⟨hm⟩)
Compute a general primary decomposition Q′ of IK(U)[X \ U ] as a 0-dimensional ideal by
Proposition 1.4.9 and Proposition 1.4.10
Q′

c ← {Q ∩K[X] | Q ∈ Q′}
Q ← Q∪Q′

c

IF (I : h∞) ̸⊂ I + ⟨hm⟩ THEN
Q ← Q∪GTZ(I + ⟨hm⟩)

Delete unnecessary components in Q
RETURN Q� �
Second, we introduce Shimoyama-Yokoyama algorithm [26], which uses the prime decomposition

of the radical of the ideal.

Shimoyama-Yokoyama algorithm (SY)� �
Input: F : a generating set of an ideal I in Q[X]
Output: Q: a primary decomposition of I

Q ← {}
Compute the prime decomposition PP of

√
I by some efficient methods

Compute a pseudo-primary decomposition I = Q1 ∩ · · · ∩Qr ∩ I ′ from PP
Compute the isolated primary component Qi of Qi and Q ← Q∪ {Qi}
IF Q1 ∩ · · · ∩Qr ̸⊂ I ′ THEN

Q ← Q∪ SY (I ′)
Delete unnecessary components in Q
RETURN Q� �

Remark 1.4.11. Effective localization was first introduced in [26]. As mentioned in Remark 1.1.23,
it uses separators to compute a pseudo-primary decomposition. Effective localization can compute
necessary primary components for the localization of I by some prime ideal. Also, we can avoid
generating unnecessary primary ideals by Kawazoe-Noro Algorithm [19].

Remark 1.4.12. If an ideal is zero-dimensional, we can apply so-called FGLM-algorithm as an
efficient algorithm (see [11]). In case that the coefficient field has a valuation (e.g. the p-adic field),
we can define tropical Gröbner basis (see [16]).
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Chapter 2

Double Ideal Quotient

In this chapter, we introduce notions and properties of DIQ and its variants. DIQ has already
appeared in [28] to check associated primes or compute equidimensional hulls (see Proposition
1.4.6). In Chapter 3, we investigate DIQ and its variants more deeply and provide new criteria for
prime divisors and primary components by using DIQ and its variants.

2.1 Fundamental Properties of Double Ideal Quotient

Double Ideal Quotient (DIQ) is an ideal of shape (I : (I : J)) where I and J are ideals. For an ideal
I and its primary decomposition Q, we divide Q into three parts:

Q1(J) = {Q ∈ Q | J ̸⊂
√
Q},

Q2(J) = {Q ∈ Q | J ⊂ Q},

Q3(J) = {Q ∈ Q | J ̸⊂ Q, J ⊂
√
Q}.

Example 2.1.1. Let I = ⟨x3y, x2y2⟩ = ⟨x2⟩ ∩ ⟨x3, y2⟩ ∩ ⟨y⟩, J = ⟨x2⟩ and Q = {⟨x2⟩, ⟨x3, y2⟩, ⟨y⟩}
a primary decomposition of I. It follows that Q1(J) = {⟨y⟩}, Q2(J) = {⟨x2⟩}, and Q3(J) =
{⟨x3, y2⟩}.

Then, our DIQ is expressed precisely by components of them. The following proposition can be
proved directly from Lemma 1.2.10.

Proposition 2.1.2 ([17], Proposition 20). Let I and J be ideals. Then,

(I : (I : J)) =
∩

Q∈Q2(J)

Q : (
∩

Q′∈Q1(J)

Q′ ∩
∩

Q′∈Q3(J)

(Q′ : J))

 (2.1)

∩
∩

Q∈Q3(J)

Q : (
∩

Q′∈Q1(J)

Q′ ∩
∩

Q′∈Q3(J)

(Q′ : J))

 ,

√
(I : (I : J)) =

∩
P∈Ass(I),J⊂P

P . (2.2)
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Proof. First, we show (2.1). We divide I into three parts:

I =
∩

Q∈Q1(J)

Q ∩
∩

Q∈Q2(J)

Q ∩
∩

Q∈Q3(J)

Q.

Then,

(I : (I : J)) =

[
∩

Q∈Q1(J)

Q ∩
∩

Q∈Q2(J)

Q ∩
∩

Q∈Q3(J)

Q] : (I : J)


= (

∩
Q∈Q1(J)

Q : (I : J)) ∩ (
∩

Q∈Q2(J)

Q : (I : J)) ∩ (
∩

Q∈Q3(J)

Q : (I : J)).

Since
(I : J) =

∩
Q′∈Q1(J)

Q′ ∩
∩

Q′∈Q3(J)

(Q′ : J),

we obtain that

• (
∩

Q∈Q1(J)

Q : (I : J)) = (
∩

Q∈Q1(J)

Q : (
∩

Q′∈Q1(J)

Q′ ∩
∩

Q′∈Q3(J)

(Q′ : J)))

= K[X]

• (
∩

Q∈Q2(J)

Q : (I : J)) = (
∩

Q∈Q2(J)

Q : (
∩

Q′∈Q1(J)

Q′ ∩
∩

Q′∈Q3(J)

(Q′ : J)))

=
∩

Q∈Q2(J)

(Q : (
∩

Q′∈Q1(J)

Q′ ∩
∩

Q′∈Q3(J)

(Q′ : J)))

• (
∩

Q∈Q3(J)

Q : (I : J)) = (
∩

Q∈Q3(J)

Q : (
∩

Q′∈Q1(J)

Q′ ∩
∩

Q′∈Q3(J)

(Q′ : J)))

=
∩

Q∈Q3(J)

(Q : (
∩

Q′∈Q1(J)

Q′ ∩
∩

Q′∈Q3(J)

(Q′ : J))).

The second property (2.2) can be proved directly from the property (2.1) and the irredundance
of the primary decomposition Q. 2

This proposition can be used to prove the following known criterion for prime divisors. We note
that P ⊃ (I : (I : P )) is equivalent to P = (I : (I : P )) (see Remark 5.1.1).

Corollary 2.1.3 ([28], Corollary 3.4). Let I be an ideal and P a prime ideal. Then, P belongs to
Ass(I) if and only if P ⊃ (I : (I : P )).

Proof. We note P ⊃ (I : (I : P )) if and only if P ⊃
√
(I : (I : P )). By Proposition 2.1.2,√

(I : (I : P )) =
∩

P ′∈Ass(I),P⊂P ′ P ′. If P ∈ Ass(I), then
√

(I : (I : P )) =
∩

P ′∈Ass(I),P⊂P ′ P ′ ⊂ P .

On the other hand, if P ⊃
√
(I : (I : P )), then there is P ′ ∈ Ass(I) s.t. P ′ ⊂ P and P ′ ⊃ P by the

Prime Avoidance Lemma (see Lemma 1.2.9). Thus P = P ′ ∈ Ass(I). 2

Example 2.1.4. Let I = ⟨x2, xy⟩ = ⟨x⟩ ∩ ⟨x2, y⟩ in Q[x, y]. Then, P = ⟨x⟩ is a prime divisor of I
and (I : (I : P )) = (I : ⟨x, y⟩) = ⟨x⟩ ⊂ P .
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2.2 Variants of Double Ideal Quotient

Replacing ideal quotient with saturation in DIQ, we have the following variants.

Definition 2.2.1 (Variants of DIQ; [18], Definition 22). We call (I : (I : J)∞) the first saturated
quotient, (I : (I : J∞)∞) the second saturated quotient, and (I : (I : J∞)) the third saturated
quotient respectively.

In the following proposition, we can see that variants of DIQ have useful information about
localization.

Proposition 2.2.2 ([17], Proposition 22). Let Q be a primary decomposition of I. Then,

(I : (I : J)∞) =
∩

Q∈Q,J⊂IK[X]√Q∩K[X]

Q, (2.3)

(I : (I : J∞)∞) =
∩

Q∈Q,J⊂
√

IK[X]√Q∩K[X]

Q, (2.4)

(I : (I : J∞)) =
∩

Q∈Q2(J)

(Q :
∩

Q′∈Q1(J)

Q′) ∩
∩

Q∈Q3(J)

(Q :
∩

Q′∈Q1(J)

Q′). (2.5)

Proof. Here, we give an outline of the proof. The formula (2.3) can be proved by combining the
equation

(I : (I : J)∞) = (I :
√
(I : J)

∞
) =

∩
Q∈Q,

∩
Q′∈Q1(J)

√
Q′∩

∩
Q′∈Q3(J)

√
Q′ ̸⊂

√
Q

Q

by Lemma 1.2.10 and the following equivalence

(1-a) J ⊂ IK[X]√Q ∩K[X].

(1-b)
∩

Q′∈Q1(J)

√
Q′ ∩

∩
Q′∈Q3(J)

√
Q′ ̸⊂

√
Q.

for each Q ∈ Q. The second formula (2.4) can be proved by combining the equation (I : (I :
J∞)∞) = (I : (I : Jm)∞) =

∩
Q∈Q,Jm⊂IK[X]√Q∩K[X]Q for a sufficiently large integer m from the

first formula (2.3), and the following equivalence

(2-a) Jm ⊂ IK[X]√Q ∩K[X] for a sufficiently large integer m.

(2-b) J ⊂
√
IK[X]√Q ∩K[X].

for each Q ∈ Q. The third formula (2.5) can be proved directly from Lemma 1.2.10.
Now, we explain some details. We show that (1-a) implies (1-b). If∩

Q′∈Q1(J)

√
Q′ ∩

∩
Q′∈Q3(J)

√
Q′ ⊂

√
Q,

then by Lemma 1.2.9,
√
Q′ ⊂

√
Q for some Q′ ∈ Q1(J) ∪Q3(J). Since Q′ ⊂

√
Q′ ⊂

√
Q, we obtain

that IK[X]√Q ∩ K[X] =
∩

Q′′∈Q,Q′′⊂
√
QQ′′ ⊂ Q′. However, since Q′ ∈ Q1(J) ∪ Q3(J), we obtain

that J ̸⊂ Q′ and this contradicts J ⊂ IK[X]√Q ∩K[X] ⊂ Q′.

20



Show that (1-b) implies (1-a). Let Q′ ∈ Q contained
√
Q. Since

∩
Q′′∈Q1(J)

√
Q′′∩

∩
Q′′∈Q3(J)

√
Q′′ ̸⊂√

Q, we obtain that Q′ ̸∈ Q1(J) ∪ Q3(J) and Q′ ∈ Q2(J). Hence, J ⊂ Q′ and J ⊂
∩

Q′⊂
√
QQ′ =

IK[X]√Q ∩K[X].

Trivially, (2-a) implies (2-b) since J ⊂
√
Jm ⊂

√
IK[X]√Q ∩K[X]. Show that (2-b) implies (2-

a). For Q ∈ Q2(J) ∪Q3(J), let mQ = min{m | Jm ⊂ Q} and m = max{mQ | Q ∈ Q2(J) ∪Q3(J)}.
Then, (I : J∞) = (I : Jm). Since IK[X]√Q ∩ K[X] =

∩
Q′∈Q,Q′⊂

√
QQ′, we obtain that Q′ ∈

Q2(J) ∪Q3(J) for any Q′ ∈ Q contained in
√
Q. Thus, we obtain that Jm ⊂ IK[X]√Q ∩K[X].

Finally, we show (2.5). Since (I : J∞) =
∩

Q′∈Q1(J)
Q′ (see Lemma 1.2.10 (1.4)), we obtain that

(I : (I : J∞)) = (I :
∩

Q′∈Q1(J)

Q′)

= (
∩

Q∈Q1(J)

Q ∩
∩

Q∈Q2(J)

Q ∩
∩

Q∈Q3(J)

Q :
∩

Q′∈Q1(J)

Q′)

=
∩

Q∈Q2(J)

(Q :
∩

Q′∈Q1(J)

Q′) ∩
∩

Q∈Q3(J)

(Q :
∩

Q′∈Q1(J)

Q′).

2

Example 2.2.3. For I = ⟨x2y3z, x2y2z2, x4z, x3z2⟩ = ⟨x2⟩ ∩ ⟨x3, y2⟩ ∩ ⟨x4, y3, z2⟩ ∩ ⟨z⟩ in K[x, y, z]
and J = ⟨x2⟩, we have (I : J) = ⟨x, y2⟩ ∩ ⟨x2, y3, z2⟩ ∩ ⟨z⟩ and (I : J∞) = ⟨z⟩. Then

(I : (I : J)∞) =
∩

Q∈Q,J⊂IK[X]√Q∩K[X]

Q = ⟨x2⟩,

(I : (I : J∞)∞) =
∩

Q∈Q,J⊂
√

IK[X]√Q∩K[X]

Q = ⟨x2⟩ ∩ ⟨x3, y2⟩,

(I : (I : J∞)) =
∩

Q∈Q2(J)

(Q :
∩

Q′∈Q1(J)

Q′) ∩
∩

Q∈Q3(J)

(Q :
∩

Q′∈Q1(J)

Q′) = ⟨x2⟩ ∩ ⟨x3, y2⟩ ∩ ⟨x4, y3, z⟩.

Here, the first and second saturated quotients are intersections of primary components of I, on
the other hand, the third saturated quotient has a primary component which cannot be one of I.

Using the first saturated quotient, we devise criteria for primary components in Chapter 3. The
second saturated quotient can be used to an isolated prime divisors check and generate an isolated
primary component in Chapter 4. The third saturated quotient gives another prime divisor criterion
(Criterion 5 in Chapter 3) by the following proposition.

Proposition 2.2.4 ([17], Proposition 23). Let I and J be ideals. Then√
(I : (I : J∞)) =

∩
P∈Ass(I),J⊂P

P.

In particular,
√

(I : (I : J)) =
√
(I : (I : J∞)).

Proof. Let Q be a primary decomposition of I. By Proposition 2.2.2 (2.5),√
(I : (I : J∞)) =

∩
Q∈Q2(J)

√
(Q :

∩
Q′∈Q1(J)

Q′) ∩
∩

Q∈Q3(J)

√
(Q :

∩
Q′∈Q1(J)

Q′).
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Since Q is minimal, we obtain that Q ̸⊃
∩

Q′∈Q1(J)
Q′ for any Q ∈ Q2(J) and Q ̸⊃

∩
Q′∈Q1(J)

Q′ for
any Q ∈ Q3(J). Thus, by Lemma 1.2.10,√

(I : (I : J∞)) =
∩

Q∈Q2(J)

√
(Q :

∩
Q′∈Q1(J)

Q′) ∩
∩

Q∈Q3(J)

√
(Q :

∩
Q′∈Q1(J)

Q′)

=
∩

Q∈Q2(J)

√
Q ∩

∩
Q∈Q3(J)

√
Q

=
∩

P∈Ass(I),J⊂P

P.

From (2.2) in Proposition 2.1.2, we obtain that
√

(I : (I : J)) =
√
(I : (I : J∞)). 2

Example 2.2.5. For I = ⟨x3y, x2y2⟩ = ⟨x2⟩ ∩ ⟨x3, y2⟩ ∩ ⟨y⟩ and J = ⟨x2⟩,
√

(I : (I : J∞)) =∩
P∈Ass(I),J⊂P P = ⟨x⟩.
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Chapter 3

Criteria for Primary Component and
Prime Divisor

In this chapter, we present several criteria for primary component which check whether a P -primary
ideal Q is a primary component of I or not without computing a primary decomposition of I, based
on the first saturated quotient. We first propose a general criterion applicable to any primary ideals.
Then, we propose some specialized criteria aiming for isolated primary components and maximal
ones. Finally, we add criteria for prime divisors. We remark that (I : P∞) is very useful for those
criteria when P is a prime divisor of I.

3.1 General Primary Component Criterion

We use the first saturated quotient to check whether a given primary ideal is a component or not.
We introduce a key notion saturated quotient invariant.

Definition 3.1.1 ([17], Definition 24). Let I and J be ideals. We say that J is saturated quotient
invariant with respect to I if (I : (I : J)∞) = J.

Example 3.1.2. Let I = ⟨x2, xy⟩ = ⟨x⟩ ∩ ⟨x2, y⟩ and J = ⟨x⟩. Then J is saturated quotient
invariant with respect to I since (I : (I : J)∞) = (I : ⟨x, y⟩∞) = ⟨x⟩.

Here, we show that any localization of ideal is saturated quotient invariant with respect to the
ideal. Conversely, any proper saturated quotient invariant ideal of I is some localization of I.

Lemma 3.1.3 ([17], Lemma 25). Let I be an ideal and J a proper ideal of K[X]. Then, the
following conditions are equivalent.

(A) J = IK[X]S ∩K[X] for some multiplicatively closed set S.
(B) J is saturated quotient invariant with respect to I.

Proof. Let Q be a primary decomposition. Show that (A) implies (B). From Proposition 2.2.2
(2.3),

(I : (I : IK[X]S ∩K[X])∞) =
∩

Q∈Q,IK[X]S∩K[X]⊂IK[X]√Q∩K[X]

Q. (3.1)
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By Lemma 1.3.7, IK[X]S ∩K[X] ⊂ IK[X]√Q ∩K[X] if and only if Q ∩ S = ∅. Thus,∩
Q∈Q,IK[X]S∩K[X]⊂IK[X]√Q∩K[X]

Q =
∩

Q∈Q,Q∩S=∅

Q, (3.2)

Combining (3.1), (3.2) and IK[X]S ∩K[X] =
∩

Q∈Q,Q∩S=∅Q by Remark 1.1.18, we obtain that
(I : (I : IK[X]S ∩K[X])∞) = IK[X]S ∩K[X].

Next, show that (B) implies (A). From Proposition 2.2.2 (2.3),

(I : (I : J)∞) =
∩

J⊂IK[X]√Q∩K[X]

Q = J. (3.3)

Let PP = {
√
Q | Q ∈ Q, J ⊂ IK[X]√Q ∩ K[X]}. We may assume that PP ̸= ∅, otherwise

PP = ∅ and J = K[X]. Then PP is an isolated set (see Definition 1.1.32) since if P ′ ∈ Ass(I)
and P ′ ⊂ P for some P ∈ PP , then J ⊂ IK[X]P ∩K[X] ⊂ IK[X]P ′ ∩K[X] and P ′ ∈ PP . Let
S = K[X] \

∪
P∈PP P . By Lemma 1.2.3, IK[X]S ∩K[X] =

∩
Q∈Q,

√
Q∈PP Q =

∩
J⊂IK[X]√Q∩K[X]Q.

By (3.3), we obtain that IK[X]S ∩K[X] = J . 2

Example 3.1.4. Let I = ⟨x2, xy⟩ = ⟨x⟩ ∩ ⟨x2, y⟩ and J = ⟨x⟩. Then J is saturated quotient
invariant with respect to I and J = IK[X]⟨x⟩ ∩K[X].

Based on Lemma 3.1.3, we have the following criterion for primary component.

Theorem 3.1.5 (Criterion 1; [17], Theorem 26). Let I be an ideal and P a prime divisor of I. For
a P -primary ideal Q, if Q ̸⊃ (I : P∞), then the following conditions are equivalent.

(A) Q is a P -primary component for some primary decomposition of I.
(B) (I : P∞) ∩Q is saturated quotient invariant with respect to I.

Proof. Show that (A) implies (B). Let Q be a primary decomposition with Q ∈ Q. Let PP =
{P ′ ∈ Ass(I) | P ̸⊂ P ′ or P ′ = P} and S = K[X] \

∪
P ′∈PP P ′. Then S is a multiplicatively

closed set and (I : P∞) ∩ Q ⊂ IK[X]S ∩ K[X] since (I : P∞) ∩ Q =
∩

Q′∈Q,P ̸⊂
√
Q′ Q′ ∩ Q.

For each Q′ ∈ Q with Q′ ∩ S = ∅, there is P ′ ∈ PP such that
√
Q′ ⊂ P ′, i.e.

√
Q′ ∈ PP . Thus,

(I : P∞)∩Q ⊃ IK[X]S∩K[X] and (I : P∞)∩Q = IK[X]S∩K[X]. By Lemma 3.1.3, IK[X]S∩K[X]
is saturated quotient invariant with respect to I.

Show that (B) implies (A). By Lemma 3.1.3, there is a multiplicatively closed set S such that
(I : P∞)∩Q = IK[X]S∩K[X]. Let Q be a primary decomposition of I. We know IK[X]S∩K[X] =∩

Q′∈Q,Q′∩S=∅Q
′. By the assumption, Q ̸⊃ (I : P∞) and thus (I : P∞) ∩ Q has a P -primary

component. Then neither
∩

Q′∈Q,Q′∩S ̸=∅Q
′ nor (I : P∞) has a P -primary component. Hence,

I = (I : P∞) ∩Q ∩
∩

Q′∈Q,Q′∩S ̸=∅Q
′ =

∩
Q′∈Q,P ̸⊂

√
Q′ Q′ ∩Q ∩

∩
Q′∈Q,Q′∩S ̸=∅Q

′

is a primary decomposition and Q is its P -primary component. 2

Example 3.1.6. Let I = ⟨x4y+x3y, x2y3+xy3, x2yz, xy2z⟩ = ⟨x⟩∩⟨x2, y2⟩∩⟨x3, y3, z⟩∩⟨y⟩∩⟨x+1, z⟩
and P = ⟨x, y⟩ in Q[x, y, z]. Then, (I : P∞) = ⟨x⟩ ∩ ⟨y⟩ ∩ ⟨x + 1, z⟩. We think the following two
P -primary ideals.

• Q1 = ⟨x2, y2⟩. Since Q1 ̸⊃ (I : P∞) and (I : (I : ((I : P∞) ∩ Q1))
∞) = (I : ⟨x3, y3, z⟩∞) =

⟨x⟩∩⟨y⟩∩⟨x+1, z⟩∩⟨x2, y2⟩ = (I : P∞)∩Q1, we obtain that ⟨x2, y2⟩ is a P -primary component
of I.
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• Q2 = ⟨x2, x + y⟩. Since (I : (I : ((I : P∞) ∩ Q2))
∞) = (I : (⟨y2, x − y⟩ ∩ ⟨x3, y3, z⟩)∞) =

⟨x⟩∩ ⟨y⟩∩ ⟨x+1, z⟩ ̸= (I : P∞)∩Q2, we obtain that ⟨x2, x+y⟩ is not a P -primary component
of I.

3.2 Other Criteria for Primary Component

Next, we propose criteria for primary components having special properties which can be applied
for particular prime divisors. These criteria may be computed more easily than the general one.

3.2.1 Criterion for Isolated Primary Component

If Q is a primary ideal whose radical is an isolated divisor P of an ideal I, then we can use
the following criterion and avoid computing (I : P∞) since the P -primary component of I is the
localization of I at P .

Theorem 3.2.1 (Criterion 2; [17], Theorem 27). Let I be an ideal and P an isolated prime divisor
of I. For a P -primary ideal Q, the following conditions are equivalent.

(A) Q is the isolated P -primary component of I.
(B) (I : (I : Q)∞) = Q.

Proof. Show that (A) implies (B). Let S = K[X] \ P . By Lemma 3.1.3, Q = IK[X]S ∩K[X] is
saturated quotient invariant with respect to I and thus (I : (I : Q)∞) = Q. Next, we show that
(B) implies (A). By Lemma 3.1.3, there is a multiplicatively closed set S s.t. IK[X]S ∩K[X] = Q.
Since Q is primary, IK[X]S ∩K[X] is the isolated P -primary component. 2

Example 3.2.2. For I = ⟨x3y, x2y2⟩ = ⟨x2⟩ ∩ ⟨x3, y2⟩ ∩ ⟨y⟩, a primary component Q = ⟨x2⟩ is
isolated and (I : (I : Q)∞) = (I : (⟨x, y2⟩ ∩ ⟨y⟩)∞) = ⟨x2⟩ = Q.

3.2.2 Criterion for Maximal Primary Component

Each isolated prime divisor is minimal in Ass(I). On the contrary, we consider “maximal prime
divisor” defined below and propose the following criterion for it.

Definition 3.2.3 ([15], Definition 28). Let P be a prime divisor of I. We say that P is maximal
if there is no prime divisor P ′ of I containing P properly.

Example 3.2.4. For I = ⟨x2z2, xy2z2⟩ = ⟨x⟩∩⟨x2, y2⟩∩⟨z2⟩ in Q[x, y, z], prime divisors P1 = ⟨x, y⟩
and P2 = ⟨z⟩ are maximal in Ass(I) = {⟨x⟩, ⟨x, y⟩, ⟨z⟩}.

Theorem 3.2.5 (Criterion 3; [17], Theorem 29). Let I be an ideal and P a maximal prime divisor
of I. For a P -primary ideal Q, the following conditions are equivalent.

(A) Q is a P -primary component of I.
(B) (I : P∞) ∩Q = I.

Proof. Show that (A) implies (B). Let Q be a primary decomposition of I with Q ∈ Q. Since
P is maximal in Ass(I), (I : P∞) =

∩
Q′∈Q,

√
Q′ ̸⊃P Q′ =

∩
Q′∈Q,Q′ ̸=QQ′. Thus, (I : P∞) ∩ Q =∩

Q′∈Q,Q′ ̸=QQ′ ∩Q = I. Next, we show that (B) implies (A). Let Q′ be a primary decomposition
of (I : P∞). Since Q′ does not have P -primary component, Q′ ∪ {Q} is a primary decomposition
of I.

2
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Example 3.2.6. Let I = ⟨x2z2, xy2z2⟩ = ⟨x⟩ ∩ ⟨x2, y2⟩ ∩ ⟨z2⟩ and P = ⟨x, y⟩ in Q[x, y, z]. Then
P is maximal in Ass(I) and Q = ⟨x2, y2⟩ is a P -primary component of I since (I : P∞) ∩ Q =
⟨x⟩ ∩ ⟨z2⟩ ∩ ⟨x2, y2⟩ = I.

3.2.3 Criterion for Another General Primary Component

The general case can be reduced to “maximal case” via localization with respect to MIS. We recall
that a subset U of X is called an MIS of I if K[U ]∩ I = {0} and the cardinality of U is equal to the
dimension of I (see Definition 1.1.29). Letting S = K[U ]× = K[U ] \ {0}, we obtain the following
as a special case of Lemma 1.2.1.

Theorem 3.2.7 (Criterion 4; [17], Theorem 30). Let I be an ideal and P a prime divisor of I. If
U is an MIS of P and Q is a P -primary ideal , then the following conditions are equivalent.

(A) Q is a primary component of I.
(B) Q is a primary component of IK[X]K[U ]× ∩K[X].

Example 3.2.8. For I = ⟨x3, xy2, x2z, xyz⟩ = ⟨x⟩ ∩ ⟨x2, y⟩ ∩ ⟨x3, y2, z⟩, we obtain that ⟨x2, y⟩ is a
primary component of both I and IQ[X]⟨x,y⟩ ∩Q[X] = ⟨x⟩ ∩ ⟨x2, y⟩.

3.3 Additional Criterion for Prime Divisor

Here, we add a criterion for prime divisor based on the third saturated quotient. The second
condition (B) implies P = (I : (I : P )) while the third condition (C) does not always mean
P = (I : (I : P∞)) (see Remark 5.1.1).

Theorem 3.3.1 (Criterion 5; [17], Theorem 31). Let I be an ideal and P a prime ideal. Then, the
following conditions are equivalent.

(A) P ∈ Ass(I).
(B) P ⊃ (I : (I : P )).
(C) P ⊃ (I : (I : P∞)).

Proof. By Corollary 2.1.3, (A) is equivalent to (B). By Proposition 2.2.4,√
(I : (I : P )) =

√
(I : (I : P∞)) =

∩
P ′∈Ass(I),P⊂P ′ P ′. Thus, the equivalence between (A) and (C)

is proved by the similar way of Corollary 2.1.3. 2

Example 3.3.2. For I = ⟨x5+x4, x3y+x2y⟩ = ⟨x2⟩∩⟨x4, y⟩∩⟨x+1⟩ and a prime divisor P = ⟨x⟩,
it follows that (I : P ) = ⟨x⟩ ∩ ⟨x3, y⟩ ∩ ⟨x + 1⟩ and (I : P∞) = ⟨x + 1⟩. Thus, we obtain that
(I : (I : P )) = ⟨x⟩ ⊂ P and (I : (I : P∞)) = ⟨x2⟩ ∩ ⟨x4, y⟩ ⊂ P .

Using the second saturated quotient, we can compute the minimal pseudo-primary component
(see Proposition 1.1.22) without knowing all isolated prime divisors.

Lemma 3.3.3 ([17], Lemma 32). Let I be an ideal and P an isolated prime divisor of I. Then,
(I : (I : P∞)∞) is the minimal P -pseudo-primary component of I.

Proof. Let Q be a primary decomposition of I. By Proposition 2.2.2 (2.4),

(I : (I : P∞)∞) =
∩

Q∈Q,P⊂
√

IK[X]√Q∩K[X]Q.
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Thus it is enough to show that the following statements are equivalent for each Q ∈ Q.
(1-a) P ⊂

√
IK[X]√Q ∩K[X].

(1-b) P is the unique isolated prime divisor which is contained in
√
Q.

Show that (1-a) implies (1-b). As
√
IK[X]√Q ∩K[X] ⊂

√
Q, we know P ⊂

√
Q. Then, we suppose

that there is another isolated prime divisor P ′ contained in
√
Q. We obtain that√

IK[X]√Q ∩K[X] =
∩

Q′∈Q,Q′⊂
√
Q

√
Q′ ⊂ P ′.

However, this implies P ⊂ P ′ and contradicts that P ′ is isolated. It is easy to prove that (1-b)
implies (1-a). Since P is the unique isolated prime divisor which is contained in

√
Q, we obtain that√

IK[X]√Q ∩K[X] =
∩

Q′∈Q,Q′⊂
√
Q

√
Q′ = P.

2

Example 3.3.4. For I = ⟨xy3 + xy2, x2y + x2⟩ = ⟨x⟩ ∩ ⟨x2, y2⟩ ∩ ⟨y + 1⟩ and P = ⟨x⟩, we obtain
that (I : (I : P∞)∞) = ⟨x⟩ ∩ ⟨x2, y2⟩ is the minimal P -pseudo-component of I.

Using Lemma 3.3.3, we obtain the following criterion for isolated prime divisor.

Theorem 3.3.5 (Criterion 6; [17], Theorem 33). Let I be an ideal and P a prime ideal containing
I. Then, the following conditions are equivalent.

(A) P is an isolated prime divisor of I.
(B) (I : (I : P∞)∞) ̸= K[X].

Proof. Show that (A) implies (B). By Lemma 3.3.3, (I : (I : P∞)∞) ̸= K[X]. Show that (B)
implies (A). By Proposition 2.2.2 (2.4),

(I : (I : P∞)∞) =
∩

Q∈Q,P⊂
√

IK[X]√Q∩K[X]Q ̸= K[X]

for a primary decomposition Q of I. Then, there is an isolated prime divisor P ′ containing P . Since√
I ⊂ P ⊂ P ′ and P ′ is isolated, this implies P = P ′ is isolated. 2

Since each prime divisor of I contains I, Theorem 3.3.5 directly induces the following.

Corollary 3.3.6 (Criterion 7; [17], Corollary 34). Let I be an ideal and P a prime divisor of I.
Then,

(i) P is isolated if (I : (I : P∞)∞) ̸= K[X],
(ii) P is embedded if (I : (I : P∞)∞) = K[X].

Example 3.3.7. Let I = ⟨xy3 + xy2, x2y + x2⟩ = ⟨x⟩ ∩ ⟨x2, y2⟩ ∩ ⟨y + 1⟩ ⊂ Q[x, y]. For a prime
divisor P1 = ⟨x⟩, (I : (I : P∞)∞) = ⟨x⟩ ∩ ⟨x2, y2⟩ ̸= Q[x, y] and P1 is isolated. For a prime divisor
P2 = ⟨x, y⟩, (I : (I : P∞)∞) = Q[x, y] and P2 is embedded.
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Chapter 4

Local Primary Algorithms

In this chapter, we devise Local Primary Algorithms (LPAs) which compute a P -primary component
of I for a given prime divisor P of I. Our method applies different procedures for two cases; isolated
and embedded. Algorithm 1 shows the outline of LPAs. Its termination comes from Proposition
4.1.1. When S = K[X] \ P for an isolated prime divisor P , the P -isolated primary component of I
is the effective localization of I at P .

4.1 Generating Primary Component

First, we introduce several ways to generate primary components through equidimensional hull
computation.

Proposition 4.1.1 ([10], Section 4. [22], Remark 10). Let I be an ideal and P a prime divisor
of I. For any positive integer m, I + Pm is P-hull-primary, and for a sufficiently large integer m,
hull(I + Pm) is a P -primary component appearing in a primary decomposition of I.

Example 4.1.2. For I = ⟨x3, xy2, x2z, xyz⟩ = ⟨x⟩ ∩ ⟨x2, y⟩ ∩ ⟨x3, y2, z⟩ and P = ⟨x, y⟩, we obtain
that

I + P 3 = ⟨x3, x2y, xy2, y3, x2z, xyz⟩

and hull(I+P 3) = ⟨x2, xy, y3⟩ is a P -primary component of I. Here, I = ⟨x⟩∩⟨x2, xy, y3⟩∩⟨x3, y2, z⟩
is another primary decomposition (see Lemma 4.2.1).

We can use criteria for primary component to check if m is large enough or not. If P is an
isolated prime divisor, then the P -primary component is computed directly by using the second
saturated quotient. By Lemma 3.3.3, (I : (I : P∞)∞) is the minimal P -pseudo-primary component
of I and thus hull((I : (I : P∞)∞)) is the isolated P -primary component of I by Lemma 1.3.5.
To compute equidimensional hull, we can use regular sequence (see Proposition 1.4.6) or MIS (see
Lemma 4.2.7).

Theorem 4.1.3 ([17], Theorem 36). Let I be an ideal and P an isolated prime divisor of I. Then

hull((I : (I : P∞)∞))

is the isolated P -primary component of I.
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Example 4.1.4. For I = ⟨x2y3+x2y2, x3y+x3⟩ = ⟨x2⟩∩⟨x3, y2⟩∩⟨y+1⟩ and P = ⟨x⟩, the isolated
P -primary component is hull((I : (I : P∞)∞)) = hull(⟨x3, x2y2⟩). Here, x3 is a regular sequence
of ⟨x3, x2y2⟩ = ⟨x2⟩ ∩ ⟨x3, y2⟩ and the codimension of ⟨x2⟩ ∩ ⟨x3, y2⟩ is 1. Thus hull(⟨x3, x2y2⟩) =
(⟨x3⟩ : (⟨x3⟩ : (⟨x3, x2y2⟩))) = (⟨x3⟩ : ⟨x⟩) = ⟨x2⟩ by Proposition 1.4.6

Algorithm 1 General Frame of Local Primary Algorithm

Input: I: an ideal, P : a prime ideal
Output: • a P -primary component of I if P is a prime divisor of I

• “P is not a prime divisor” otherwise
1: if P is a prime divisor of I (Criterion 5) then
2: if P is isolated (Criteria 6,7) then
3: Q← the minimal P -pseudo-primary component of I (Lemma 3.3.3)
4: Q← hull(Q) (Theorem 4.1.3)
5: return Q is the isolated P primary component
6: else
7: m← 1, Q← K[X]
8: while Q is not primary component of I (Criteria 1,3,4) do
9: Q← a P -hull-primary ideal related to m (Proposition 4.1.1, Lemma 4.2.3)

10: Q← hull(Q)
11: m← m+ 1
12: end while
13: return Q is an embedded P -primary component
14: end if
15: else
16: return “P is not a prime divisor”
17: end if

4.2 Techniques for Improving LPAs

We introduce practical techniques for implementing LPAs.

4.2.1 Another Way of Generating Primary Component

LetG = {f1, . . . , fr} be a generator of a prime ideal P . Usually we take {f e1
1 f e2

2 · · · f er
r | e1+· · ·+er =

m} as a generator of Pm for a positive integer m. However, this generator has (r+m−1)!
(r−1)!m! elements

and it becomes difficult to compute hull(I +Pm) when m becomes large. To avoid the explosion of

the number of the generator, we can use P
[m]
G = ⟨fm

1 , . . . , fm
r ⟩ instead.

First, we introduce a lemma to compute primary decomposition by using equdimensional hull.

Lemma 4.2.1 ([17], Lemma 37). Let Q be a primary decomposition of I and Q ∈ Q. If
√
Q-hull-

primary ideal Q′ satisfies I ⊂ Q′ ⊂ Q, then (Q\{Q})∪{hull(Q′)} is another primary decomposition
of I.

Proof. By Lemma 1.3.9, we obtain that I ⊂ Q′ ⊂ hull(Q′) ⊂ Q. Since I ∩ hull(Q′) = I and
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Q ∩ hull(Q′) = hull(Q′), we obtain that

I = I ∩ hull(Q′) =

 ∩
Q′′∈Q,Q′′ ̸=Q

Q′′ ∩Q

 ∩ hull(Q′) =
∩

Q′′∈Q,Q′′ ̸=Q

Q′′ ∩ hull(Q′).

Thus, (Q \ {Q}) ∪ {hull(Q′)} is an irredundant primary decomposition of I. 2

Example 4.2.2. Let I = ⟨x2z, xyz⟩ = ⟨x⟩ ∩ ⟨x2, y⟩ ∩ ⟨z⟩, Q′ = ⟨y3, y2z+ y2, x2, xy⟩ = ⟨x2, xy, y2⟩ ∩
⟨x2, xy, y3, z+1⟩ and P = ⟨x, y⟩. Then, Q′ is P -hull-primary. For a primary component Q = ⟨x2, y⟩,
we obtain that I ⊂ Q′ ⊂ Q and hull(Q′) = ⟨x2, xy, y2⟩ is also a P -primary component of I.

Next, the following lemma gives another efficient way to compute a primary component from
its prime divisor.

Lemma 4.2.3 ([17], Lemma 38). For any positive integer m, I + P
[m]
G is P -hull-primary, and for

a sufficiently large integer m, hull(I + P
[m]
G ) is a P -primary component appearing in a primary

decomposition of I if P is a prime divisor of I.

Proof. As

√
P

[m]
G = P and

√
I + P =

√
I + P

[m]
G = P , I + P

[m]
G is P -hull-primary. By Proposition

4.1.1, hull(I + Pm) is a P -primary component of I for a sufficiently large integer m. Since I ⊂
I + P

[m]
G ⊂ I + Pm ⊂ hull(I + Pm), hull(I + P

[m]
G ) is a P -primary component by Lemma 4.2.1. 2

Example 4.2.4. For I = ⟨x3, xy2, x2z, xyz⟩ = ⟨x⟩ ∩ ⟨x2, y⟩ ∩ ⟨x3, y2, z⟩ and P = ⟨G⟩ = ⟨x, y⟩,
we obtain that I + P

[3]
G = ⟨x3, xy2, y3, x2z, xyz⟩ and hull(I + P

[3]
G ) = ⟨x2, xy, y3⟩ is a P -primary

component of I.

4.2.2 Regular Sequence Computation for Pseudo-Primary Ideal

We can compute a regular sequence in a P -pseudo-primary ideal I from one of P by the following
lemma. Since a generator of P may be more easily than one of I, it tends to be less time-consuming.

Lemma 4.2.5 ([18], Lemma 56). Let I be a P -pseudo-primary ideal and f1, . . . , fc a regular sequence
in P . Then, for sufficiently large integers m1, . . . ,mc, f

m1
1 , . . . , fmc

c is a regular sequence in I.

Proof. By Theorem 26 in [21], fm1
1 , . . . , fmc

c is a regular sequence for any positive integersm1, . . . ,mc.
Since I is P -pseudo-primary, it follows that

√
I = P . Thus, for sufficiently large integers m1, . . . ,mc,

{fm1
1 , . . . , fmc

c } ⊂ I and fm1
1 , . . . , fmc

c is a regular sequence in I. 2

Since
√
(I : (I : P∞)∞) = P if P is isolated, we obtain the following corollary. From codim(P ) =

codim((I : (I : P∞)∞)) and Lemma 1.4.6, we can compute the equidimensional hull hull((I : (I :
P∞)∞)) by using a regular sequence in P .

Corollary 4.2.6 ([18], Corollary 57). Let I be an ideal and P its isolated prime divisor. Let
f1, . . . , fc be a regular sequence in P . Then, for a sufficiently large integer m, fm1

1 , . . . , fmc
c is a

regular sequence in (I : (I : P∞)∞).
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4.2.3 Equidimensional Hull Computation with MIS

Next, we devise another computation of hull(I+Pm) based on MIS which tends to be much efficient
than computations based on Proposition 1.4.6. Similarly, by this technique we can replace I with
IK[X]K[U ]× ∩K[X] for an MIS U of P at the first step of LPA.

Lemma 4.2.7 ([17], Lemma 39). Let I be a P -hull-primary ideal. For an MIS U of P , hull(I) =
IK[X]K[U ]× ∩K[X].

Proof. Let Q be a primary decomposition of I. Then, hull(I) is the unique primary component
disjoint from K[U ]×. Thus, IK[X]K[U ]× ∩K[X] =

∩
Q∈Q,Q∩K[U ]×=∅Q = hull(I). 2

Example 4.2.8. For I = ⟨x2, xy⟩ = ⟨x⟩ ∩ ⟨x2, y⟩ and P = ⟨x⟩ in Q[X] = Q[x, y], we obtain that I
is P -hull-primary and U = {y} is an MIS of P . Then, hull(I) = ⟨x⟩ = IQ[X]Q[U ]× ∩Q[X].

4.3 Further Discussion of LPAs

In this section, we devise another algorithm “LPA-(P
[m]
G +MIS) without DIQ” to compute the

particular primary component, without DIQ and its variants. The algorithm uses equidimensional
hull to generate primary component in the similar way as LPAs. As different points, it uses MIS
for another criterion of prime divisors and a generalized splitting tool for an additional criterion of
primary components.

First, we introduce a new criterion for prime divisors using MIS instead of DIQ.

Proposition 4.3.1 (Criterion 8; [18], Proposition 60). Let I be an ideal and P a prime ideal in
K[X]. Then the following conditions are equivalent.

(1) P ∈ Ass(I).

(2) (I ′ : P∞) ̸= I ′, where I ′ = IK[X]K[U ]× ∩K[X] for an MIS U of P .

Proof. Let Q be a primary decomposition of I. To prove that (1) implies (2), we remark that
P ∈ Ass(I) leads P ∈ Ass(I ′) from Lemma 1.2.1 and P ∩ K[U ]× = ∅. Thus, we obtain that
(I ′ : P∞) ̸= I ′ since P ̸∈ Ass((I ′ : P∞)). Next, we show that (2) implies (1). Since (I ′ : P∞) ̸= I ′,
there is a prime divisor P ′ ∈ Ass(I ′) containing P . Then P ′ ∩K[U ]× = ∅ and dim(P ′) ≤ dim(P ) =
#U . From Lemma 1.2.1, P ′ ∈ Ass(I) and thus dim(P ′) ≥ #U . Hence, dim(P ) = dim(P ′) and
P = P ′ ∈ Ass(I). 2

Example 4.3.2. Let I = ⟨x3, x2y⟩ = ⟨x2⟩ ∩ ⟨x3, y⟩ and P = ⟨x⟩ in Q[X] = Q[x, y]. Then, U = {y}
is the MIS of P and I ′ = IQ[X]Q[U ]× ∩ Q[X] = ⟨x2⟩. Since (I ′ : P∞) = Q[X] ̸= I ′, we conclude
P ∈ Ass(I).

Next, we introduce a P -pseudo-descending chain to devise a generalized splitting tool and a new

criterion for isolated prime divisors. It is a generalization of Pm and P
[m]
G .

Definition 4.3.3 (P -pseudo-descending chain; [18], Definition 62). Let P be a prime ideal and
J1 ⊃ J2 ⊃ J3 ⊃ · · · a descending chain of P -pseudo-primary ideals. We say that J1 ⊃ J2 ⊃ J3 ⊃ · · ·
is a P -pseudo-descending chain if PJm ⊃ Jm+1 for every positive integer m.
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Example 4.3.4. As an easy example, P ⊃ P 2 ⊃ P 3 ⊃ · · · is a P -pseudo-descending chain. For a

generator G of P , P
[1]
G ⊃ P

[2]
G ⊃ P

[3]
G ⊃ · · · is a P -pseudo-descending chain since P

[m]
G is P -pseudo-

primary and PP
[m]
G ⊃ P

[m+1]
G for every m.

Remark 4.3.5. We remark that a P -pseudo-descending chain is not always a P -filtration i.e. it
does not always satisfy the other inclusion PJm ⊂ Jm+1.

We can use a P -pseudo-descending chain to generate a P -primary component as Lemma 4.3.6,
a generalization of Proposition 4.1.1 and Lemma 4.2.3.

Lemma 4.3.6 ([18], Lemma 65). Let I be an ideal, P a prime divisor of I and J1 ⊃ J2 ⊃ J3 ⊃ · · ·
be a P -pseudo-descending chain. Then, for a sufficiently integer m, hull(I + Jm) is a P -primary
component of I. Moreover, if hull(I + Jm) is a P -primary component of I for some m, then
hull(I + Jm+1) is also a P -primary component of I.

Proof. Let Q be a P -primary component of I. Since K[X] is Noetherian, there is a sufficiently
large integer m s.t. Pm ⊂ Q. As Pm ⊃ Pm−1J1 ⊃ Pm−2J2 ⊃ · · · ⊃ PJm−1 ⊃ Jm, it follows

that I ⊂ I + Jm ⊂ Q. Here,
√
I + Jm =

√√
I + P = P and thus I + Jm is P -pseudo-primary,

in particular, P -hull-primary. From Lemma 4.2.1, we obtain that hull(I + Jm) is a P -primary
component of I. Next, we show the second statement. If hull(I + Jm) is a P -primary component
of I for some m, then it follows that I ⊂ I + Jm+1 ⊂ I + Jm ⊂ hull(I + Jm). Thus, hull(I + Jm+1)
is a P -primary component of I from Lemma 4.2.1. 2

Example 4.3.7. Let I = ⟨x2, xy⟩ = ⟨x⟩ ∩ ⟨x2, y⟩, P = ⟨x, y⟩ and Jm = ⟨xm, ym⟩. We obtain that
hull(I + Jm) = ⟨x2, xy, ym⟩ is a P -primary component of I if m ≥ 2.

Here, we devise a generalized splitting tool and find an integer m s.t. hull(I+Jm) is a P -primary
component as follows.

Proposition 4.3.8 (Generalized Splitting Tool; [18], Proposition 67). Let I be an ideal, P a prime
divisor of I and J1 ⊃ J2 ⊃ J3 ⊃ · · · be a P -pseudo-descending chain. Then, for a sufficiently large
integer m,

I = (I : P∞) ∩ (I + Jm).

In particular, for such m, hull(I + Jm) is a P -primary component of I.

Proof. By Lemma 1.2.7, I = (I : P∞) ∩ (I + Pm) for a sufficiently large integer m. As Jm ⊂ Pm,
it follows that

I = (I : P∞) ∩ (I + Pm) ⊃ (I : P∞) ∩ (I + Jm) ⊃ I

and thus I = (I : P∞)∩ (I+Jm). Since (I : P∞) does not have a P -primary component and I+Jm
is P -hull-primary, we obtain that hull(I + Jm) is a P -primary component of I. 2

Example 4.3.9. Let I = ⟨x2, xy⟩ = ⟨x⟩ ∩ ⟨x2, y⟩, P = ⟨x, y⟩ and Jm = ⟨xm, ym⟩. We obtain that
I = (I : P∞) ∩ (I + J2) = ⟨x⟩ ∩ ⟨x2, xy, y2⟩ and ⟨x2, xy, y2⟩ is a P -primary component of I.

A P -pseudo-descending chain gives us the following criteria for isolated prime divisors.

Theorem 4.3.10 (Criterion 9; [18], Theorem 69). Let I be an ideal, P a prime divisor of I and
J1 ⊃ J2 ⊃ J3 ⊃ · · · a P -pseudo-descending chain. We suppose that hull(I + Jm) is a P -primary
component of I for some m. Then, the following statements are equivalent.
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(1) P is an isolated prime divisor of I.

(2) hull(I + Jm) = hull(I + Jm+1).

Proof. First, we show that (1) implies (2). By Lemma 4.3.6, hull(I + Jm+1) is also a P -primary
component of I. Since P is isolated, the P -primary component is determined independently from
the choice of primary decompositions and hull(I + Jm) = hull(I + Jm+1). Second, we show that (2)
implies (1). Let R = K[X]P /IK[X]P . Since I+Jm is P -hull-primary, it follows that hull(I+Jm) =
(I + Jm)K[X]P ∩ K[X] and thus hull(I + Jm)R = JmR. As hull(I + Jm) = hull(I + Jm+1), we
obtain that JmR = Jm+1R. Thus, from Jm ⊃ PJm ⊃ Jm+1, it follows that JmR ⊃ PJmR ⊃
Jm+1R = JmR, hence, JmR = PJmR. Since JmR is a finitely generated K[X]P -module, we obtain
that JmR = 0 by Nakayama’s Lemma (see Lemma 2.1.30 in [13]). Thus, JmK[X]P = IK[X]P and
P ∈ Ass(

√
I), otherwise, IK[X]P has two or more prime divisors. Therefore, P is isolated. 2

Example 4.3.11. Let I = ⟨x3, x2y⟩ = ⟨x2⟩ ∩ ⟨x3, y⟩. For P1 = ⟨x⟩, it follows that hull(I + P 2
1 ) =

hull(I + P 3
1 ) = ⟨x2⟩ is a P1-primary component. Thus, P1 is the isolated prime divisor of I. On

the other hand, for P2 = ⟨x, y⟩ and Jm = ⟨xm, ym⟩, hull(I + J3) = ⟨x3, x2y, y3⟩ is a P2-primary
component and hull(I + J3) ⊋ hull(I + J4) = ⟨x3, x2y, y4⟩; thus P2 is embedded.

Remark 4.3.12. An integer m s.t. hull(I+Jm) is a P -primary component of I may be smaller than

m′ s.t. hull(I +Pm′
) is a P -primary component of I. Thus, by taking Jm = P

[m]
G , we may compute

a primary component more easily by hull(I + P
[m]
G ). It is worth to think P v

G = ⟨fm1
1 , . . . , fmr

r ⟩ for a
vector v = (m1, . . . ,mr) ∈ Zr

≥0 for an efficient computation of a primary component by hull(I+P v
G).

Algorithm 2 is another version of Local Primary Algorithm, without using DIQ. As Jm, we use

P
[m]
G (currently we think this Jm is the best), for efficient computations, and an MIS in steps of the

following algorithm.

Algorithm 2 Local Primary Algorithm Without Double Ideal Quotient

Input: I: an ideal，P : a prime ideal in K[X]
Output: • a P -primary component if P is a prime divisor

• “P is not a prime divisor” otherwise
1: U ← a Maximal Independent Set of P , I ′ ← IK[X]K[U ]× ∩K[X]
2: G← {f1, . . . , fs} a generator of P , m← 1
3: if (I ′ : P∞) = I ′ then
4: return “P is not a prime divisor ” (Criterion 8)
5: end if
6: while (I ′ : P∞) ∩ (I ′ + P

[m]
G ) ̸= I ′ do

7: m← m+ 1 (Proposition 4.3.8)
8: end while
9: Qm ← hull(I ′ + P

[m]
G ) = (I ′ + P

[m]
G )K[X]K[U ]× ∩K[X] (Lemma 4.2.7)

10: Qm+1 ← hull(I ′ + P
[m+1]
G ) = (I ′ + P

[m+1]
G )K[X]K[U ]× ∩K[X]

11: if Qm = Qm+1 then
12: return “Qm is the isolated P -primary component of I ” (Criterion 9)
13: else
14: return “Qm is an embedded P -primary component of I ” (Criterion 9)
15: end if
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Remark 4.3.13. When we compute all primary components Q1, . . . , Qr of I by LPAs from a given
Ass(I) = {P1, . . . , Pr}, the intersection of Q1, . . . , Qr coincides with I. We independently prove
this by mathematical induction on the number of primary components r. When r = 1, there is
nothing to show. Suppose r > 1. We may assume P =

√
Qr is a maximal prime divisor of I (see

Definition 3.2.3). Then, Qi is a primary component of (I : P∞) for i < r by Lemma 1.2.1 since
(I : P∞) is the localization of I with respect to S = K[X] \

∪r−1
i=1

√
Qi. Thus, by the assumption of

the induction,
∩r−1

i=1 Qi = (I : P∞). Here, by Theorem 3.2.5, (I : P∞) ∩Qr = I. Hence, We obtain
that

∩r
i=1Qi =

∩r−1
i=1 Qi ∩Qr = (I : P∞) ∩Qr = I.
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Chapter 5

Modular Methods for Effective
Localization

In this chapter, we introduce modular techniques for (double) ideal quotient and saturation. It is
well-known that modular techniques are useful to avoid intermediate coefficient growth and have a
good relationship with parallel computing. To apply modular techniques, we devise some general-
izations of criteria for prime divisors and primary components presented in Chapter 3.

5.1 Generalizations of Criteria by DIQs

In this section, we introduce some generalizations of criteria for prime divisors and primary compo-
nents by DIQs. First, the following remark is important to devise modular associated test (Theorem
5.2.9).

Remark 5.1.1. In Theorem 3.3.1, the condition P ⊃ (I : (I : P )) is equivalent to P = (I : (I : P ))
since P ⊂ (I : (I : P )) always holds for any ideals I and P . Indeed, P (I : P ) ⊂ I from the definition
of (I : P ) and thus P ⊂ (I : (I : P )).

Next, we remark some relationships between DIQ and localizations as follows.

Remark 5.1.2. The operations of DIQ and localization at a prime ideal are commutative. Indeed,
for ideals I, J and a prime ideal P , (I : J)P = (IP : JP ) from Corollary 3.15 in [1] and thus we
obtain that (I : (I : J))P = (IP : (I : J)P ) = (IP : (IP : JP )). Similarly, we have (I : (I : J∞))P =
(IP : (I : J∞)P ) = (IP : (IP : J∞

P )) as (I : J∞) = (I : Jm) and (IP : J∞
P ) = (IP : Jm

P ) for a
sufficiently large integer m. Also, a prime ideal P is associated with an ideal I if and only if PP

is associated with IP since there is a correspondence between primary decompositions of I and IP
(see Proposition 4.9 in [1]). Similarly, for a P -primary ideal Q, Q is a P -primary component of I
if and only if QP is a PP -primary component of IP .

Next, we introduce extended theorems about DIQ and its variants toward intermediate primary
decomposition in Section 5.3. Theorem 3.3.1 gives a relationship between an ideal I and a prime
divisor P . It can be extended to one between an ideal I and an intersection of some prime divisors
J . Thus, we consider a radical ideal J instead of a prime ideal P as follows.
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Theorem 5.1.3 ([15], Theorem 2.1.4). Let I be an ideal and J a proper radical ideal. Then, the
following conditions are equivalent.

(A) Ass(J) ⊂ Ass(I),
(B) J ⊃ (I : (I : J)),
(C) J ⊃ (I : (I : J∞)).

Proof. First, we show that (A) implies (B). Let P ∈ Ass(J) ⊂ Ass(I). Then, P ⊃ (I : (I : P ))
by Theorem 3.3.1. Thus, P ⊃ (I : (I : P )) ⊃ (I : (I : J)). Since J =

∩
P∈Ass(J) P , we obtain that

J ⊃ (I : (I : J)). Next, we show that (B) implies (C). As (I : J) ⊂ (I : J∞), we obtain that
J ⊃ (I : (I : J)) ⊃ (I : (I : J∞)). Finally, we show that (C) implies (A). Let P ∈ Ass(J). Then,
JP ⊃ (I : (I : J∞))P = (IP : (IP : J∞

P )) from Remark 5.1.2 and thus JP = PP ∈ Ass(IP ) from
Theorem 3.3.1. Hence, P ∈ Ass(I) by Remark 5.1.2. 2

Example 5.1.4. Let I = ⟨x5+x3, x3y+xy⟩ = ⟨x⟩∩⟨x3, y⟩∩⟨x2+1⟩ ⊂ Q[x, y] and J = ⟨x, y⟩∩⟨x2+1⟩.
Then, (I : (I : J)) = ⟨x, y⟩∩⟨x2+1⟩ = J and Ass(J) = {⟨x, y⟩, ⟨x2+1⟩} ⊂ Ass(I) = {⟨x⟩, ⟨x, y⟩, ⟨x2+
1⟩}. In addition, we obtain that (I : (I : J∞)) = ⟨x2, y⟩ ∩ ⟨x2 + 1⟩ ⊂ J .

Here, we generalize Proposition 4.1.1 to an intersection of equidimensional prime divisors as
follows.

Lemma 5.1.5 ([15], Lemma 2.1.7). Let I be an ideal and J an intersection of prime divisors of
I. Suppose J is unmixed i.e. dim(P ) = dim(J) for any P ∈ Ass(J). Then, for a sufficiently
large integer m, hull(I + Jm) is an intersection of primary components appearing in a primary
decomposition of I i.e. hull(I + Jm) =

∩
P∈Ass(J)Q(P ) where Q(P ) is a P -primary component of

I.

Proof. Let m be a positive integer. First, we note that, for each P ∈ Ass(J), I ⊂ hull(I + Jm)P ∩
K[X] ⊂ hull(I + Pm) since

I ⊂ I + Jm ⊂ hull(I + Jm) ⊂ hull(I + Jm)P ∩K[X]

⊂ hull(I + Pm)P ∩K[X] = hull(I + Pm)

where the last equality comes from the fact that
√
I + Pm = P and P is the unique isolated prime

divisor of I + Pm. By Lemma 4.1.1, there exist a sufficiently large integer m(P ) and a primary
decomposition Q of I such that hull(I + Pm(P )) ∈ Q. Then,

I ⊂
∩

P∈Ass(J)

hull(I + Jm(P ))P ∩K[X] ⊂
∩

P∈Ass(J)

hull(I + Pm(P ))

and, by intersecting
∩

Q∈Q,
√
Q ̸∈Ass(J)Q with them, we obtain that

I ⊂

 ∩
P∈Ass(J)

hull(I + Jm(P ))P ∩K[X]

 ∩ ∩
Q∈Q,

√
Q ̸∈Ass(J)

Q

⊂

(
∩

P∈Ass(J)

hull(I + Pm(P ))

 ∩ ∩
Q∈Q,

√
Q ̸∈Ass(J)

Q = I.
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Thus,
(∩

P∈Ass(J) hull(I + Jm(P ))P ∩K[X]
)
∩
∩

Q∈Q,
√
Q ̸∈Ass(J)Q = I and hull(I+Jm(P ))P ∩K[X] is

a P -primary component of I. Since J is unmixed,
√
I + Jm =

√
J =

∩
P∈Ass(J) P and Ass(hull(I +

Jm)) = Ass(J) i.e. hull(I + Jm) =
∩

P∈Ass(J) hull(I + Jm)P ∩K[X]. Thus, for m ≥ max{m(P ) |
P ∈ Ass(J)}, hull(I + Jm) is an intersection of primary components of a primary decomposition of
I. 2

We also generalize Theorem 3.1.5 to an intersection of primary components as follows. We can
check whether m appearing in Lemma 5.1.5 is large enough or not by Theorem 5.1.6. We remark
that Theorem 3.1.5 holds for any Noetherian rings.

Theorem 5.1.6 ([15], Theorem 2.1.9). Let I be an ideal and J an intersection of prime divisors of
I. Suppose J is unmixed. For an unmixed ideal L with

√
L = J , assume that

√
(L : (I : J∞)) = J

and let Z = (I : J∞) ∩ L. Then, the following conditions are equivalent.

(A) L =
∩

P∈Ass(J)Q(P ) where Q(P ) is a P -primary components of I.

(B) (I : (I : Z)∞) = Z.

Proof. First, we show that (A) implies (B). From (A), it is easy to see that T = Ass((I : J∞)) ∪
Ass(L) is an isolated set (see Definition 1.1.32). Indeed, for P ′ ∈ Ass(I), if there exists P ∈ T s.t.
P ′ ⊂ P , then P ′ ∈ T since Ass((I : J∞)) = {P ′′ ∈ Ass(I) | J ̸⊂ P ′′} (see Lemma 1.2.10 (1.4))
and Ass(L) = Ass(J). Thus, for S = K[X] \ (

∪
P∈T P ), we obtain that Z = IK[X]S ∩K[X] from

Lemma 1.2.3 and T = Ass(Z). By Lemma 3.1.3, we obtain that (I : (I : Z)∞) = Z.
Second, we show that (B) implies (A). Let P ∈ Ass(J). Then, we obtain that PP = JP and√

LP = (
√
L)P = JP = PP . Thus, LP is a PP -primary ideal and ZP = (I : J∞)P ∩ LP = (IP :

J∞
P )∩LP . Since

√
(L : (I : J∞)) = J ,

√
(LP : (IP : J∞

P )) = PP and thus LP ̸⊃ (IP : J∞
P ); otherwise

we get
√

(LP : (IP : J∞
P )) = K[X]P ̸= PP . Here, (IP : (IP : ZP )

∞) = ZP for all P ∈ Ass(J) since
(I : (I : Z)∞) = Z and (IP : (IP : ZP )

∞) = (I : (I : Z)∞)P . Thus, by Theorem 3.1.5, LP is a
primary component of IP . Since L is unmixed and L =

√
J , it follows that L =

∩
P∈Ass(J) LP∩K[X].

From Remark 5.1.2, LP ∩K[X] is a P -primary component of I if and only if LP is a PP -primary
component of IP . Finally, we obtain the equivalence. 2

We generalize Theorem 4.1.3 as follows. We remark that each Q(P ) in the following theorem is
determined uniquely since it is an isolated primary component of I.

Theorem 5.1.7 ([15], Theorem 2.1.11). Let I be an ideal and J an intersection of isolated prime
divisors of I. Suppose J is unmixed. Then

hull((I : (I : J∞)∞)) =
∩

P∈Ass(J)

Q(P )

where Q(P ) is the isolated P -primary component of I.

Proof. Let Q be a primary decomposition of I. By Proposition 2.2.2 (2.4), we obtain that

(I : (I : J∞)∞) =
∩

Q∈Q,J⊂
√

IK[X]√Q∩K[X]

Q.
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Since J ⊂
√

IK[X]√
Q(P )

∩K[X] =
√
Q(P ) = P for P ∈ Ass(J) ⊂ Assiso(I), it follows that

(I : (I : J∞)∞) =
∩

P∈Ass(J)

Q(P ) ∩
∩

Q∈Q,J⊂
√

IK[X]√Q∩K[X],
√
Q ̸∈Ass(J)

Q.

As J is unmixed, each Q(P ) has the same dimension for P ∈ Ass(J). Then,

dim(
∩

Q∈Q,J⊂
√

IK[X]√Q∩K[X],
√
Q ̸∈Ass(J)

Q) < dim(J)

from the fact that for Q ∈ Q with J ⊂
√
IK[X]√Q ∩K[X] and

√
Q ̸∈ Ass(J), there exists

P ∈ Ass(J) s.t. P ⊊
√
Q. Since J is an intersection of isolated prime divisors of I, we obtain that

hull((I : (I : J∞)∞)) =
∩

P∈Ass(J)

Q(P ).

2

5.2 Modular Techniques for DIQ

We propose modular techniques for DIQ. For a prime number p, let Z(p) = {a/b ∈ Q | a, b ∈
Z and p ∤ b} be the localized ring by p and Fp[X] the polynomial ring over the finite field of order
p. We denote by ϕp the canonical projection Z(p)[X] → Fp[X]. For F ⊂ Q[X], we denote by I(F )
the ideal generated by F . For F ⊂ Z(p)[X], we denote ⟨ϕp(F )⟩ by Ip(F ) and ϕp(I(F )∩Z(p)[X]) by
I0p (F ).

We recall an outline of “modular algorithm for ideal operation” (see [24]) as Algorithm 3. Given
ideals I, J , ideal operations AL(∗, ∗) over Q[X] and ALp(∗, ∗) over Fp[X] as inputs, we compute
AL(I, J) as the output by using modular computations. First, we choose a list of random prime
numbers P, which satisfies certain computable condition primeTest. For example, primeTest is
to check whether p is permissible (see Definition 5.2.1) for Gröbner bases of I and J or not. Next,
we compute modular operations Hp = ALp(I, J) for each p ∈ P . After omitting expected unlucky
primes by deleteUnluckyPrimes, we lift Hp’s up to Hcan by CRT and rational reconstruction.
Finally, we check if Hcan is really the correct answer by finalTest. If finalTest says False,
then we enlarge P and continue from the first step. In this thesis, we introduce new finalTest
for ideal quotient and DIQ. We remark that the termination of this modular algorithm is ensured
by the finiteness of unlucky prime numbers. For example, for a given ideals I, J and an algorithm
for the ideal quotient (I : J) over the rational numbers, there are only finitely many steps from the
inputs to the outputs and thus the number of coefficients is also finite; hence we can project the
computations onto those over finite fields Fp for all prime numbers p except those dividing some
denominators appearing in coefficients (see Lemma 6.1 in [24] for details).
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Algorithm 3 Modular Algorithm for Ideal Operation

Input: I, J : ideals, AL(∗, ∗): an ideal operation over Q[X], ALp(∗, ∗): an ideal operation over
Fp[X]

Output: AL(I, J) over Q[X]
choose P as a list of random primes satisfying primeTest
HP ← ∅
while do
for p ∈ P do
Hp ← ALp(I, J)
HP ← HP ∪ {Hp}

end for
(HP lucky,Plucky)← deleteUnluckyPrimes(HP ,P)
lift HP lucky to Hcan by CRT and rational reconstruction
if Hcan passes finalTest then
return Hcan

end if
enlarge P with prime numbers not used so far

end while

First, we introduce some notions of good primes as follows.

Definition 5.2.1 ([24], Definition 2.1). Let p be a prime number, F ⊂ Q[X] and ≺ a monomial
ordering. Let G be the reduced Gröbner basis of I(F ) with respect to ≺.

(1) p is said to be weak permissible for F , if F ⊂ Z(p)[X].

(2) p is said to be permissible for F and ≺, if p is weak permissible for F ⊂ Q[X] and ϕp(lc≺(f)) ̸=
0 for all f in F .

(3) p is said to be compatible with F if p is weak permissible for F and I0p (F ) = Ip(F ).

(4) p is said to be effectively lucky for F and ≺, if p is permissible for (G,≺) and ϕp(G) is the
reduced Gröbner basis of Ip(G).

Remark 5.2.2. If p is effectively lucky for F and ≺, then p is compatible with F (see Lemma 3.1
(3) in [24]).

Next, the notion of p-compatible Gröbner basis candidate is very useful for easily computable
tests toward finalTest in modular techniques .

Definition 5.2.3 ([24], Definition 4.1). Let Gcan be a finite subset of Q[X] and F ⊂ Q[X]. We
call Gcan a p-compatible Gröbner basis candidate for F and ≺, if p is permissible for Gcan and
ϕp(Gcan) is a Gröbner basis of I0p (F ) with respect to ≺.

The following can be used to finalTest in modular techniques.

Lemma 5.2.4 ([24], Proposition 4.1). Suppose that Gcan is a p-compatible Gröbner basis candidate
for (F,≺), and Gcan ⊂ I(F ). Then Gcan is a Gröbner basis of I(F ) with respect to ≺.
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We introduce the following easily computable tests for ideal quotient and saturation in modular
techniques, appearing in [24].

Lemma 5.2.5 ([24], Lemma 6.2 and Lemma 6.4). Suppose that a prime number p is compatible
with (F,≺) and permissible for (f,≺). For a finite subset Hcan ⊂ Q[X], Hcan is a Gröbner basis of
(I(F ) : ⟨f⟩) with respect to ≺, if the following conditions hold;

(1) p is permissible for (Hcan,≺),

(2) ϕp(Hcan) is a Gröbner basis of (Ip(F ) : ⟨ϕp(f)⟩) with respect to ≺,

(3) Hcan ⊂ (I(F ) : ⟨f⟩).

For a finite subset Lcan ⊂ Q[X], Lcan is a Gröbner basis of (I(F ) : ⟨f⟩∞) with respect to ≺, if
the following conditions hold;

(1) p is permissible for (Lcan,≺),

(2) ϕp(Lcan) is a Gröbner basis of (Ip(F ) : ⟨ϕp(f)⟩∞) with respect to ≺,

(3) Lcan ⊂ (I(F ) : ⟨f⟩∞).

We generalize Lemma 5.2.5 by replacing f into an ideal J as follows. We recall that Ip(G) =
⟨ϕp(G)⟩Fp[X] where p is weak permissible for G.

Lemma 5.2.6 ([15], Lemma 2.2.6). Suppose that a prime number p is compatible with (F,≺) and
permissible for (G,≺). For a finite subset Hcan ⊂ Q[X], Hcan is a Gröbner basis of (I(F ) : I(G))
with respect to ≺, if the following conditions hold;

(1) p is permissible for (Hcan,≺),

(2) ϕp(Hcan) is a Gröbner basis of (Ip(F ) : Ip(G)) with respect to ≺,

(3) Hcan ⊂ (I(F ) : I(G)).

Proof. Since p is permissible for (Hcan,≺), we can consider Ip(Hcan) = ⟨ϕp(Hcan)⟩. It is enough to
show that Ip(Hcan) = ϕp((I(F ) : I(G))∩Z(p)[X]) since the equation implies Hcan is a p-compatible
Gröbner basis candidate for (I(F ) : I(G)) with respect to ≺ and a Gröbner basis of (I(F ) : I(G))
with respect to ≺ from Hcan ⊂ (I(F ) : I(G)) and Lemma 5.2.4.

It is clear that Ip(Hcan) ⊂ ϕp((I(F ) : I(G)) ∩ Z(p)[X]) as Hcan ⊂ (I(F ) : I(G)). To show
the inverse inclusion, we pick h ∈ (I(F ) : I(G)) ∩ Z(p)[X]. Then, hG ⊂ I(F ) ∩ Z(p)[X] where
hG = {hg | g ∈ G} since p is permissible for h and G. Thus,

ϕp(h)Ip(G) = ϕp(h)⟨ϕp(G)⟩ = ⟨ϕp(hG)⟩
⊂ ⟨ϕp(I(F ) ∩ Z(p)[X])⟩ = I0p (F ) = Ip(F )

by the compatibility of F ; we obtain that ϕp(h) ∈ (Ip(F ) : Ip(G)) = Ip(Hcan). Hence Ip(Hcan) ⊃
ϕp((I(F ) : I(G)) ∩ Z(p)[X]). 2

Remark 5.2.7. We can check whether Hcan ⊂ (I(F ) : I(G)) or not, by checking whether I(Hcan)I(G) ⊂
I(F ) or not.
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We apply this lemma to DIQ as follows.

Theorem 5.2.8 ([15], Theorem 2.2.8). Suppose that a prime number p is compatible with (F,≺)
and permissible for (G,≺). Assume p satisfies (Ip(F ) : Ip(G)) = ϕp((I(F ) : I(G)) ∩ Z(p)[X]). For
a finite subset Kcan ⊂ Q[X], Kcan is a Gröbner basis of (I(F ) : (I(F ) : I(G))) with respect to ≺ if
the following conditions hold;

(1) p is permissible for (Kcan,≺),

(2) ϕp(Kcan) is a Gröbner basis of (Ip(F ) : (Ip(F ) : Ip(G))) with respect to ≺,

(3) Kcan ⊂ (I(F ) : (I(F ) : I(G))).

Proof. Since p is permissible for (Kcan,≺), we can consider Ip(Kcan) = ⟨ϕp(Kcan)⟩. By Lemma 5.2.4,
it is enough to show that Kcan is a p-compatible Gröbner basis candidate of (I(F ) : (I(F ) : I(G))).
Since Kcan ⊂ (I(F ) : (I(F ) : I(G))), Ip(Kcan) ⊂ ϕp((I(F ) : (I(F ) : I(G))) ∩ Z(p)[X]) holds. Thus,
we show the other inclusion. Let h ∈ (I(F ) : (I(F ) : I(G))) ∩ Z(p)[X]. Then,

ϕp(h)ϕp((I(F ) : I(G)) ∩ Z(p)[X]) ⊂ ϕp(I(F ) ∩ Z(p)[X]) = I0p (F ) = Ip(F ).

Since ϕp((I(F ) : I(G)) ∩ Z(p)[X]) = (Ip(F ) : Ip(G)), we obtain that ϕp(h) ∈ (Ip(F ) : (Ip(F ) :
Ip(G))) = Ip(Kcan). Hence, Ip(Kcan) ⊃ ϕp((I(F ) : (I(F ) : I(G))) ∩ Z(p)[X]). 2

To check the conditions (Ip(F ) : Ip(G)) = ϕp((I(F ) : I(G)) ∩ Z(p)[X]) and Kcan ⊂ (I(F ) :
(I(F ) : I(G))), we need a Gröbner basis H of (I(F ) : I(G)) in general (the former by Ip(H) =
(Ip(F ) : Ip(G)) and the latter by I(Kcan)I(H) ⊂ I(F ), respectively). However, as to the latter, in a
special case that P is an associated prime divisor of I, we confirm it more easily. Setting I(G) = P
for a prime ideal P , we devise the following “Modular Associated Test” using modular techniques.

Theorem 5.2.9 (Modular Associated Test; [15], Theorem 2.2.9). Let I be an ideal and P a prime
ideal. Let F and G be Gröbner bases of I and P respectively. Suppose p is permissible for F , G and
satisfies (Ip(F ) : Ip(G)) = ϕp((I(F ) : I(G)) ∩ Z(p)[X]). Let Kcan be a finite subset of Q[X]. Then,
P is a prime divisor of I if the following conditions hold;

(1) p is permissible for (Kcan,≺),

(2) ϕp(Kcan) is a Gröbner basis of (Ip(F ) : (Ip(F ) : Ip(G))) with respect to ≺,

(3) (Ip(F ) : (Ip(F ) : Ip(G))) = Ip(G),

(4) Kcan ⊂ P .

Proof. To prove this, we use Theorem 5.2.8. If all conditions in Theorem 5.2.8 hold, then Kcan is
a Gröbner basis of (I : (I : P )) and thus (I : (I : P )) ⊂ P by the condition Kcan ⊂ P ; hence,
P is a prime divisor of I by Theorem 3.3.1. Now, we show that all conditions in Theorem 5.2.8
hold. Since we have directly (1) and (2) in Theorem 5.2.8, it is enough to check the condition
Kcan ⊂ (I(F ) : (I(F ) : I(G))). Indeed, we obtain that Kcan ⊂ P ⊂ (I(F ) : (I(F ) : I(G))) by
Remark 5.1.1 and (4). 2

41



In the above associated test, Kcan will coincide with G if P is a prime divisor of I. Thus, we can
omit CRT and rational reconstruction as follows. Also, we minimize the number of prime numbers
we use since we can check the number is large enough comparing with the following ∥G∥. For a
finite set G of Q[X], we define

∥G∥ = max
{
a2 + b2 | a

b
is a coefficient in a term of an element of G

}
.

Corollary 5.2.10 (Modular Associated Test without CRT, Algorithm 4; [15], Corollary 2.2.10).
Let I be an ideal and P a prime ideal. Let F and G be Gröbner bases of I and P respectively.
Let P be a finite set of prime numbers. Suppose every p ∈ P is permissible for F , G and satisfies
(Ip(F ) : Ip(G)) = ϕp((I(F ) : I(G)) ∩ Z(p)[X]). Then, P is a prime divisor of I if the following
conditions hold;

(1) (Ip(F ) : (Ip(F ) : Ip(G))) = Ip(G) for every p ∈ P,

(2)
∏

p∈P p is larger than ∥G∥.

Proof. Since
∏

p∈P p is larger than coefficients appearing in G for the rational reconstruction (see
Lemma 4.2. in [7]), G is a Gröbner basis candidate itself and we can set Kcan = G in Theorem
5.2.9. Then, Kcan satisfies all conditions in the theorem. 2

Algorithm 4 Modular Associated Test without CRT

Input: F : a Gröbner basis of an ideal I, G: a Gröbner basis of a prime ideal P , H: a Gröbner
basis of (I(F ) : I(G))

Output: True if P is a prime divisor of I
choose P as a list of random primes satisfying primeTest (p ∈ P is permissible for F , G and
H) and

∏
p∈P p > ∥G∥;

RESTART
while do
for p ∈ P do
if (Ip(F ) : (Ip(F ) : Ip(G))) ̸= Ip(G) then

delete p from P
end if

end for
if

∏
p∈P p ≤ ∥G∥ then

enlarge P with prime numbers not used so far and go back to RESTART
end if
if (Ip(F ) : Ip(G)) = Ip(H) for every p ∈ P then

return True
end if
enlarge P with prime numbers not used so far and go back to RESTART

end while

Also, we devise a non-associated test as follows. The test is useful since it does not need a
condition (Ip(F ) : Ip(G)) = ϕp((I(F ) : I(G)) ∩ Z(p)[X]).
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Algorithm 5 Modular Non-Associated Test

Input: F : a Gröbner basis of an ideal I, G: a Gröbner basis of a prime ideal P , H: a Gröbner
basis of (I(F ) : I(G))

Output: False if P is NOT a prime divisor of I
choose P as a list of random primes satisfying primeTest
KP ← ∅
while do
for p ∈ P do
Kp ← (Ip(F ) : (Ip(F ) : Ip(G)))
if (Ip(F ) : (Ip(F ) : Ip(G))) = Ip(G) then

delete p from P
else
KP ← KP ∪ {Kp}

end if
end for
(KP lucky,Plucky)← deleteUnluckyPrimes(KP ,P)
lift KP lucky to Kcan by CRT and rational reconstruction
if I(Kcan)I(H) ⊂ I then
return False

end if
enlarge P with prime numbers not used so far;

end while

Theorem 5.2.11 (Modular Non-Associated Test, Algorithm 5; [15], Theorem 2.2.11). Let I be an
ideal and P a prime ideal. Let F and G be Gröbner bases of I and P respectively. Suppose p is
permissible for F and G. Let Kcan ⊂ Q[X] and we assume that p is permissible for Kcan. Then, P
is not a prime divisor of I if the following conditions hold;

(1) ϕp(Kcan) is a Gröbner basis of (Ip(F ) : (Ip(F ) : Ip(G))) with respect to ≺,

(2) Kcan ⊂ (I : (I : P )),

(3) (Ip(F ) : (Ip(F ) : Ip(G))) ̸= Ip(G).

Proof. Suppose P is a prime divisor of I. Then, (I : (I : P )) = P from Remark 5.1.1 and

ϕp(Kcan) ⊂ ϕp((I : (I : P )) ∩ Z(p)[X])

= ϕp(P ∩ Z(p)[X]) = I0p (G) = Ip(G).

Since ⟨ϕp(Kcan)⟩ = (Ip(F ) : (Ip(F ) : Ip(G))) ⊃ Ip(G), we obtain that (Ip(F ) : (Ip(F ) : Ip(G)) =
Ip(G). This contradicts (Ip(F ) : (Ip(F ) : Ip(G))) ̸= Ip(G). 2

Next, we consider modular saturation. Since (I : Jm) = (I : J∞) for a sufficiently large m, the
following holds from Lemma 5.2.6.

Lemma 5.2.12 ([15], Lemma 2.2.12). Suppose that a prime number p is compatible with (F,≺) and
permissible for (G,≺). For a finite subset Hcan ⊂ Q[X], Hcan is a Gröbner basis of (I(F ) : I(G)∞)
with respect to ≺, if the following conditions hold;
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(1) p is permissible for (Hcan,≺),

(2) ϕp(Hcan) is a Gröbner basis of (Ip(F ) : Ip(G)∞) with respect to ≺,

(3) Hcan ⊂ (I(F ) : I(G)∞).

To check Hcan ⊂ (I(F ) : I(G)∞), we can use the following.

Lemma 5.2.13 ([15], Lemma 2.2.13). Let Hcan, F and G be finite subsets of K[X]. For G =
{f1, . . . , fk} and a positive integer m, we denote {fm

1 , . . . , fm
k } by G[m]. Then, the following condi-

tions are equivalent.
(A) Hcan ⊂ (I(F ) : I(G)∞),
(B) I(Hcan)I(G)m ⊂ I(F ) for some m,
(C) I(Hcan)I(G

[m]) ⊂ I(F ) for some m.

Proof. First, we show that (A) implies (B). This is obvious from the definition of (I(F ) : I(G)∞).
Next, we show that (B) implies (C). Since I(G[m]) ⊂ I(G)m, I(Hcan)I(G

[m]) ⊂ I(Hcan)I(G)m ⊂
I(F ). Finally, we show that (C) implies (A). As I(G)km ⊂ I(G[m]), we obtain that I(Hcan)I(G)km ⊂
I(Hcan)I(G

[m]) ⊂ I(F ) and Hcan ⊂ (I(F ) : I(G)∞). 2

Since the number of generators of I(G[m]) is less than that of I(G)m, it is better to check whether
I(Hcan)I(G

[m]) ⊂ I(F ) or not.
Finally, we introduce modular techniques for double saturation (the second saturated quotient).

Theorem 5.2.14 ([15], Theorem 2.2.14). Suppose that a prime number p is compatible with (F,≺)
and permissible for (G,≺). Assume p satisfies (Ip(F ) : Ip(G)∞) = ϕp((I(F ) : I(G)∞) ∩ Z(p)[X]).
For a finite subset Kcan ⊂ Q[X], Kcan is a Gröbner basis of (I(F ) : (I(F ) : I(G)∞)∞) with respect
to ≺ if the following conditions hold;

(1) p is permissible for (Kcan,≺),

(2) ϕp(Kcan) is a Gröbner basis of (Ip(F ) : (Ip(F ) : Ip(G)∞)∞) with respect to ≺,

(3) Kcan ⊂ (I(F ) : (I(F ) : I(G)∞)∞).

Proof. For a sufficiently large integer m, (I(F ) : I(G)∞) = (I(F ) : I(G)m) and (Ip(F ) : Ip(G)∞) =
(Ip(F ) : Ip(G)m). Thus, we can prove this by the similar way of Theorem 5.2.8. 2

5.3 Intermediate Primary Decomposition

In this section, we introduce intermediate primary decomposition as a bi-product of modular local-
izations devised in Section 5.2. We give a rough outline of possible “intermediate primary decompo-
sition via MIS”. The idea of modular primary decomposition comes from [29]. In general, modular
primary decomposition is very difficult to compute since primary component may be different over
infinite many finite fields. For example, I = ⟨x2 + 1⟩ ∩ ⟨x+ 1⟩ is a primary decomposition in Q[X],
however, it is not one in Fp[X] for every prime number p of type p = 4n + 1. Thus, we propose
intermediate primary decomposition via MIS instead of full primary decomposition. Then, for a
subset U ⊂ X, we define

AssU (Ip(F )) = {P̄p ∈ Ass(Ip(F )) | U is an MIS of P̄p}.
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where p is permissible for F . Also, we denote the set of prime divisors of I which have the same
MIS U by

AssU (I) = {P ∈ Ass(I) | U is an MIS of P}.

We note that U is an MIS of I(F ) if U is one of the initial ideal ⟨lt≺(I(F ))⟩ (see Exercise 3.5.1
in [13]). Thus, if p is effective lucky for (F ,≺) and U is an MIS of ⟨lt≺(I(F ))⟩ then U is also an
MIS of I(F ) and Ip(F ). Here, we define intermediate primary decomposition in general setting as
follows (a certain generalization of one in [26]).

Definition 5.3.1 ([15], Definition 2.3.1). Let I be an ideal. Then, a set of ideals Q is called an
intermediate primary decomposition (IPD) of I if

(a) for all Q ∈ Q, Ass(Q) ⊂ Ass(I),

(b)
∩

Q∈QQ = I.

We call Q ∈ Q an intermediate primary component of I. In particular, when there is a subset U of
X s.t. Ass(Q) = AssU (I), we call Q an intermediate component of I via U .

We remark that
∪

Q∈QAss(Q) = Ass(I). For computing intermediate primary decomposition,
the following corollary is very useful to generate prime divisors.

Corollary 5.3.2 ([15], Corollary 2.3.2). Let F be a Gröbner basis of I and p a permissible prime
number for F . Let U be a subset of X such that AssU (Ip(F )) is not empty, and H̄ a Gröbner
basis of J̄ =

∩
Pp∈AssU (Ip(F )) Pp. Let Hcan be a Gröbner basis candidate constructed from H̄ and

J = I(Hcan). Assume p is permissible for Hcan. Suppose Hcan is a Gröbner basis of J and p is
effectively lucky for the reduced Gröbner basis L of (I : J) with Ip(L) = (Ip(F ) : Ip(Hcan)). If J is
a prime ideal then J is a prime divisor of I.

Proof. To apply Theorem 5.2.9 for I and J , we check the conditions. First, since p is effectively
lucky for L, p is compatible with L by Remark 5.2.2. Thus, ϕp((I(F ) : I(Hcan))∩Z(p)[X]) = I0p (L) =
Ip(L) = (Ip(F ) : Ip(Hcan)). From the assumption, p is permissible for Hcan. As Ip(Hcan) = J̄ is an
intersection of equidimensional prime divisors of Ip(F ), it follows that (Ip(F ) : (Ip(F ) : Ip(Hcan)) =
Ip(Hcan) by Theorem 5.1.3. Thus, ϕp(Hcan) = H̄ is a Gröbner basis of (Ip(F ) : (Ip(F ) : Ip(Hcan)).
It is obvious that Hcan ⊂ J . Hence, all conditions in Theorem 5.2.9 hold and thus J is a prime
divisor of I. 2

When J is not prime, we can check the radicality of J by the following lemma. For any effectively
lucky p for Hcan, if ⟨H̄⟩ is radical then ⟨Hcan⟩ is also radical.

Lemma 5.3.3 ([24], Lemma 6.7). Suppose that Hcan is the output of our CRT modular computation,
that is, it satisfies the following:

(1) p is permissible for (Hcan,≺),

(2) ϕp(Hcan) coincides with the reduced Gröbner basis of
√
Ip(F )

(3) Hcan ⊂
√
I(F )

Then Hcan is the reduced Gröbner basis of
√

I(F ) with respect to ≺.
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We can extend Corollary 5.3.2 to an intersection of prime divisors by using Theorem 5.1.3 as
Proposition 5.3.4. We can ensure that the lifted ideal I(Hcan) is radical from Lemma 5.3.3 and an
intersection of prime divisors I from Theorem 5.1.3 and Theorem 5.2.8.

Proposition 5.3.4 ([15], Proposition 2.3.4). Under the conditions of Corollary 5.3.2 (except the
primality of J), if J is a radical ideal then J is some intersections of prime divisors of I.

We note that, if AssU (Ip(F )) consists of one prime, that is, J̄ is prime, then we check if J is
prime or not more easily. Moreover, if AssU (Ip(F )) consists of two prime ideals P̄1 and P̄2 and then
we combine those prime divisors and apply the criterion for radical to the lifting of P̄1 ∩ P̄2. We
also make the same argument for P̄1 ∩ P̄2 ∩ P̄3, P̄1 ∩ P̄2 ∩ P̄3 ∩ P̄4 and so on.

Example 5.3.5. Let I = ⟨x⟩∩⟨x3, y⟩∩⟨x2+1⟩ ⊂ Q[x, y]. Let F = {x3y+xy, x5+x3} be the reduced
Gröbner basis of I. We consider two prime numbers p = 3, 5. Then, Ass(I3(F )) = {⟨x⟩, ⟨x, y⟩, ⟨x2+
1⟩} and Ass(I5(F )) = {⟨x⟩, ⟨x, y⟩, ⟨x + 2⟩, ⟨x + 3⟩}. For U1 = {y} and U2 = ∅, AssU1(I3(F )) =
{⟨x⟩, ⟨x2 + 1⟩} and AssU2(I3(F )) = {⟨x, y⟩}. Similarly, AssU1(I5(F )) = {⟨x⟩, ⟨x + 2⟩, ⟨x + 3⟩}
and AssU2(I5(F )) = {⟨x, y⟩}. For Jp(U) =

∩
Pp∈AssU (Ip(F )) Pp, it follows that J3(U1) = ⟨x3 + x⟩,

J5(U1) = ⟨x3+x⟩, J3(U2) = ⟨x, y⟩ and J5(U2) = ⟨x, y⟩. By using CRT, we may compute radicals of
intermediate primary components Jcan(U1) = ⟨x3+x⟩ and Jcan(U2) = ⟨x, y⟩. Finally, we obtain an
intermediate primary decomposition {⟨x3 + x⟩, ⟨x3, y⟩} of I from Lemma 5.1.5 and Theorem 5.1.7.

Finally, we sketch an outline of intermediate primary decomposition via MIS as follows. Its
termination comes from the finiteness of unlucky primes for computation of associated prime divisors
and primary components.

Intermediate Primary Decomposition via MIS

Input: F : a Gröbner basis of an ideal I.

Output: {Q(U)}: an IPD via MIS of I.

(Step 1) choose P as a list of random primes satisfying primeTest

(Step 2) compute Ass(Ip(F )) for p ∈ P and choose a set of MISs U from Ass(Ip(F ))

(Step 3) compute Jp(U) =
∩

Pp∈AssU (Ip(F )) Pp for each U ∈ U and let JP(U) = JP(U) ∪ {Jp(U)}

(Step 4) delete unlucky p for JP(U) and obtain JP lucky(U)

(Step 5) lift JP lucky(U) to Jcan(U) by CRT and rational reconstruction. If Jcan(U) is unmixed then
go to Step 6; otherwise RESTART

(Step 6) if Jcan(U) passes finalTest (Proposition 5.3.4) then go to Step 7: otherwise RESTART

(Step 7) compute an intersection of primary components Q(U) by hull(I + Jcan(U)m) (Lemma 5.1.5
and 5.1.6) or hull((I : (I : Jcan(U)∞)∞)) (Theorem 5.1.7) for isolated cases

(Step 8) if
∩

U∈U Q(U) = I then return {Q(U)}; otherwise RESTART

RESTART: enlarge P with prime numbers not used so far and go back to Step 2
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Chapter 6

Experiments

In this chapter, we see computational experiments on our algorithms. Since it is very difficult
to analyze the complexity of Gröbner basis computation, we compare the timings of implemented
algorithms instead. From the experiments, we see that LPAs have clearly effectiveness by their
specialities and each LPA has its characteristics coming from its effective techniques. Also, we
examined the efficiency of modular techniques for ideal quotients by computational experiments.

6.1 Experiments on LPAs

We made an implementation on the computer algebra system Risa/Asir [25] and apply it to several
examples as experiments. We revisited old examples in [17], I1(n) and Ak,m,n. The former I1(n) =
⟨x2⟩ ∩ ⟨x4, y⟩ ∩ ⟨x3, y3, (z + 1)n + 1⟩ is an ideal whose embedded primary components are not easy
to compute. If n is considerable large, it is difficult to compute a full primary decomposition
of I1(n) though the isolated divisor P1 = ⟨x⟩ can be detected pretty easily. The latter Ak,m,n

defined in [27] is more valuable for mathematics and its primary decomposition has important
meanings in Computer Algebra for Statistics. We newly considered T1, . . . , T10 that appear in [19]
for benchmarks of effective localization. We describe the more details of ideals in Section 6.1.4.
Timings are measured on a PC with Intel Core i7-8700B CPU with 32GB memory.

Now, we explain the details of Local Primary Algorithms (LPAs). From Proposition 1.4.6, the
primitive LPA (LPA-0) use double ideal quotient and regular sequence to compute equidimensional

hull. To compute a regular sequence in I+P
[m]
G and one in (I : (I : P∞)∞) efficiently, we use Lemma

4.2.5 and Corollary 4.2.6 respectively. As improved versions, LPA-P
[m]
G is an implementation based

on Lemma 4.2.3 and LPA-MIS is one from Lemma 4.2.7 and Criteria 3, 4. Both methods are

implemented in LPA-(P
[m]
G +MIS). The new algorithm LPA-(P

[m]
G +MIS) without DIQ is based on

Algorithm 2. In all figures, the horizontal axis shows isolated or embedded prime divisors and the
vertical axis represents the timing (in seconds) of each prime divisor. In particular, the embedded
prime divisors are in decreasing order of their dimensions.

6.1.1 Computation of Isolated Components

First, we apply LPAs to isolated primary components. In Table 6.1, for many cases, we can see that
LPAs have clearly effectiveness by their specialities. We call an algorithm stable for an ideal if the
statistical standard deviation of timing data for their prime divisors is small. Figure 6.1 and Table
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6.2 show that LPA-0 is stable for T1 since the the statistical standard deviation is 4.17, which is

much smaller than those of LPA-MIS and LPA-(P
[m]
G +MIS). On the other hand, both LPA-MIS and

LPA-(P
[m]
G +MIS) without DIQ take much time for some cases and are unstable since the statistical

standard deviations are over 100 times of that of LPA-0. Also, we can see its instability in Figures
6.2 and 6.3, where we limit the maximum to 35 seconds. The main reason is that MIS-localization
becomes very time-consuming for specific ideals and prime ideals. However, when MIS-localization

is efficient, timings of LPA-MIS and LPA-(P
[m]
G +MIS) without DIQ are much faster than those of

LPA-0. There are almost no difference between timings of LPA-MIS and LPA-(P
[m]
G +MIS) without

DIQ since MIS-localization is very effective and it can reduce the timings of other parts. As a
summary of our analysis for isolated examples,

• LPAs have clearly effectiveness by their specialities.

• LPA-0 is stable, on the other hand, both LPA-MIS and LPA-(P
[m]
G +MIS) without DIQ are

unstable due to such strange behavior of MIS-localization. However, it is much useful than
LPA-0 when MIS-localization works well.

Ideals\Algorithms LPA-0 LPA-MIS
LPA-(P

[m]
G +MIS)

w/o DIQ

I1(100), P1 0.01 0.007 0.006

I1(200), P1 0.02 0.01 0.01

I1(300), P1 0.03 0.01 0.01

I1(400), P1 0.04 0.02 0.01

I1(500), P1 0.05 0.02 0.02

A3,4,5, P2 14.1 > 7200 > 7200

T1, P3 12.3 > 7200 > 7200

T1, P4 28.2 0.20 0.19

T2, P5 50.0 > 7200 > 7200

T3, P6 0.96 0.04 0.04

T4, P7 4.11 7.74 7.84

T5, P8 5.22 0.07 0.07

T6, P9 0.13 0.02 0.01

T7, P10 25.5 0.21 0.21

T8, P11 0.06 0.02 0.02

T9, P12 2.42 1.78 1.73

T10, P13 151 2.81 2.81

Table 6.1: Local Primary Algorithm (Isolated)
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Figure 6.1: LPA-0 (49 isolated prime divisors of T1)
Figure 6.2: LPA-MIS (49 isolated prime divisors of
T1)

Figure 6.3: LPA-(P
[m]
G +MIS) without DIQ (49 isolated prime divisors of T1)

Ideals \ Algorithms LPA-0
LPA-MIS LPA-(P

[m]
G +MIS) w/o DIQ

(LPA-MIS/LPA-0) ((LPA-(P
[m]
G +MIS) w/o DIQ)/LPA-0)

T1 4.17 457 (109) 478 (114)

T3 173 428 (2.47) 428 (2.47)

T4 0.68 14.9(21.9) 14.8 (21.7)

T5 2.65 541(204) 541 (204)

T7 4.26 282(66.1) 281 (65.9)

T8 327 438(1.33) 439 (1.34)

T9 0.11 582 (5290) 584 (5309)

T10 16.8 557 (33.1) 562 (33.4)

Table 6.2: The statistical standard deviations of timing data for isolated prime divisors, where we
limit the maximum to 1200 seconds

6.1.2 Computation of Embedded Components

In Table 6.3, the primitive LPA (LPA-0) is not practical for some examples since the cost of com-

puting hull(I + Pm) is much high. Comparing LPA-0 and LPA-P
[m]
G (also LPA-MIS and LPA-

(P
[m]
G +MIS)), we can see that the technique P

[m]
G -products is effective for most cases. As algo-

rithms using MIS-localization, LPA-(P
[m]
G +MIS) and LPA-(P

[m]
G +MIS) without DIQ have good ef-

fectiveness by their specialities for many cases, for examples, (I1(n), P14), (A2,4,4, P15), (A2,3,7, P16),
(T1, P17), (T4, P21), (T7, P24), (T8, P25), (T10, P27) and so on. From Table 6.3, we can see that
MIS-technique is efficient for many cases. However, there are some examples s.t. MIS-localization
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is not efficient, for instance, (T1, P18) and (T3, P20). In Figures 6.4, 6.5 and 6.7, we can see that

LPAs using MIS are unstable due to MIS-localization, comparing them with LPA-P
[m]
G . Same as

isolated components, there are almost no difference between timings of LPA-(P
[m]
G +MIS) and those

of LPA-(P
[m]
G +MIS) without DIQ since MIS-localization is much powerful and we can ignore the

timings for computation of DIQ. In summary,

• The technique P
[m]
G -products is effective for most cases.

• Both LPA-(P
[m]
G +MIS) and LPA-(P

[m]
G +MIS) without DIQ are much efficient to compute

specific embedded components for most prime divisors.

• MIS-localization is very powerful but unstable, compared to LPA-P
[m]
G .

Ideals \ Algorithms LPA-0 LPA-P
[m]
G

LPA-MIS LPA-(P
[m]
G +MIS)

LPA-(P
[m]
G +MIS)

w/o DIQ

I1(100), P14 0.09 0.07 0.01 0.01 0.007

I1(200), P14 0.17 0.14 0.02 0.02 0.01

I1(300), P14 0.29 0.25 0.02 0.02 0.01

I1(400), P14 0.41 0.31 0.03 0.03 0.02

I1(500), P14 0.43 0.38 0.03 0.02 0.03

A2,4,4, P15 1707 5.50 0.56 0.25 0.32

A2,3,7, P16 143 25.1 0.60 0.37 0.41

T1, P17 73.8 71.8 0.27 0.22 0.20

T1, P18 61.6 58.2 >7200 >7200 >7200

T2, P19 214 188 >7200 >7200 >7200

T3, P20 0.75 0.76 29.6 29.5 29.5

T4, P21 10.9 9.53 0.12 0.10 0.08

T5, P22 >7200 63.0 >7200 2.82 1.13

T6, P23 >7200 5.83 >7200 0.13 0.05

T7, P24 86.3 41.5 5.89 0.21 0.19

T8, P25 3.32 0.27 0.08 0.04 0.02

T9, P26 9.54 8.18 >7200 >7200 >7200

T10, P27 4338 256 668 0.89 0.80

Table 6.3: Local Primary Algorithm (Embedded)
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Figure 6.4: LPA-(P
[m]
G +MIS)

(120 embedded prime divisors of T1)
upper limit: 10 seconds

Figure 6.5: LPA-(P
[m]
G +MIS) w/o DIQ

(120 embedded prime divisors of T1)
upper limit: 10 seconds

Figure 6.6: LPA-P
[m]
G

(120 embedded prime divisors of T1)
upper limit: 200 seconds

Figure 6.7: LPA-MIS
(120 embedded prime divisors of T1)
upper limit: 200 seconds

6.1.3 Summary on Computational behavior

In isolated cases, LPAs have clearly effectiveness by their specialities. In embedded cases, the
technique Pm

G -products is a useful way. For both cases, MIS-localization is very efficient for many
ideals and prime divisors, however, it is unstable. To make our LPAs more effective and efficient,

we need to improve DIQ or MIS-localization. Since methods without MIS (LPA-0 and LPA-P
[m]
G

are stable, those with improved DIQ will give us efficient and stable LPAs. On the other hand, if we
succeed in improving the efficiency of MIS-localization, we will also have more efficient algorithms.

6.1.4 Ideals and Prime Ideals in Experiments

I1(n) =⟨x2⟩ ∩ ⟨x4, y⟩ ∩ ⟨x3, y3, (z + 1)n + 1⟩ ⊂ Q[x, y, z].

A3,4,5 =⟨(x12x23 − x13x22)x31 − x11x32x23 + x11x33x22 + (x13x32 − x12x33)x21,

x13x32 − x12x33)x24 + (−x14x32 + x12x34)x23 + (x14x33 − x13x34)x22,

(x14x33 − x13x34)x25 + (−x15x33 + x35x13)x24 + (x15x34 − x35x14)x23,

(x42x23 − x43x22)x31 − x41x32x23 + x41x33x22 + (x43x32 − x42x33)x21,

(x43x32 − x42x33)x24 + (−x44x32 + x42x34)x23 + (x44x33 − x43x34)x22,

(x44x33 − x43x34)x25 + (−x45x33 + x35x43)x24 + (x45x34 − x35x44)x23⟩
⊂ Q[xij | 1 ≤ i ≤ 4, 1 ≤ j ≤ 5].

A2,4,4 =⟨−x21x12 + x22x11,−x22x13 + x23x12,−x23x14 + x24x13, x32x21 − x31x22,

x33x22 − x32x23, x34x23 − x24x33, x42x31 − x41x32, x43x32 − x42x33,

x44x33 − x43x34⟩ ⊂ Q[xij | 1 ≤ i ≤ 4, 1 ≤ j ≤ 4].

51



A2,3,7 =⟨−x21x12 + x22x11,−x22x13 + x23x12,−x23x14 + x24x13,−x24x15 + x25x14,

− x25x16 + x26x15,−x26x17 + x27x16, x32x21 − x31x22, x33x22 − x32x23,

x34x23 − x24x33, x35x24 − x25x34, x36x25 − x26x35, x37x26 − x36x27⟩
⊂ Q[xij | 1 ≤ i ≤ 3, 1 ≤ j ≤ 7].

T1 =⟨cdefghiz + cdefhjz + bcdeijz, 3cdfghz3 + 4bdefghj + 4bdehjz2,

2bfghijz + fhjz3, 4bcefhz + cfgijz, cdjz, 3egjz4 + bcdgij + 2cdhjz2,

3defiz + 2defz2 + 4bcei, 4bcefiz + 3dfhjz2, cefhjz + bcfiz2 + giz4,

4ceghiz + bcejz⟩ ⊂ Q[b, c, d, e, f, g, h, i, j, z].

T2 =⟨3bcegz2 + 4bcghi+ 2bcez2, bcez + 3dhi, cfgiz3 + bcdegh, cfgz4+

3cdefgh, 2bcfgiz2 + bcdegh+ z6, bchz + 4bcg, 4bcdgiz + 2cfhiz2+

3bdfhi, bdefhz + bz4, 3befgiz + 2cefgz2 + 4cfhz2, 3bfh+ 4fhi+ bz2⟩
⊂ Q[b, c, d, e, f, g, h, i, z].

T3 =⟨4befjkmz3 + 2bcdhijlm+ cdegkmz2, cdeghjlz, 2defghilz + 4jlz6+

defjlz2, beghjlmz + 4ceghiz2 + bdeflz2⟩ ⊂ Q[b, c, d, e, f, g, h, i, j, k, l,m, z].

T4 =⟨2cfhiz2 + bdefh, bcfijz + 4bcghi, 2cdejz + 4cdfj + ijz2, bcdfgijz+

cdijz3, 3bceijz + 3cgijz2 + beiz3, 4bchjz + cgiz2, behj, 3cdefhiz+

2bdfgjz + 2bchjz2⟩ ⊂ Q[b, c, d, e, f, g, h, i, j, z].

T5 =⟨4bc2d2e2gh2iz2 + b2ciz9 + 2bceg2hz5, bcd2e2g2h2, bcfhz5 + b2dfg2iz,

4bc2e2f2h2i2z2 + b2c2e2fh2iz3, 2b2de2f2hi2z + 3b2c2e2h2i2⟩
⊂ Q[b, c, d, e, f, g, h, i, z].

T6 =⟨4bcdfghlz + 3bcfhlz3, befhkl + defghz, 3bdefhijklz + 2cfhjkz5+

bdehkz4, 4befijkl + dgklz3, bcdefghj + 2bcdegijz + 2bcdhjklz,

cdegijz + 3bcdefk + 4fhklz2, 2bdeghjkz + cdez5 + 3eghjz3,

bcdghijz + cdfhklz + 2bcdhkz2, 2bcdefi+ bhijkl, eghjkz5+

2bcefghjkl, gilz2 + 2beil, g, 3cdefijkl + 4bcdgjz3, cdehijz + 4cegjz3,

bchkl, cdfghklz + befhilz + cdfgjlz, fiz5 + 2cdfghk + bdfhiz,

befijklz2 + 3bcdghijl, 2bgijklz + 2bcghil + cefhjz, 2defghjz+

3cefhijz + 3bdghiz⟩ ⊂ Q[b, c, d, e, f, g, h, i, j, k, l, z].

T7 =⟨cfghijklz + cdz7, 3bdikz7 + 3bcdefghikl + 4bfghkz5, 3befghijkz+

2bcegijz3, 3cfhjlz + dfhjlz + 4bdfkl, 3bejz4 + bdfgjk + 2begjz2,

cdefgjkz + 3efgjlz2 + 4elz5, bcdefghjk, 4cehjlz4 + 3ceghijkl,

efghjklz, ik, 4beghijkz3 + 3bdeghijkl, cdefkl + dgjklz, 2bghijlz+

bcdgiz + 4eghjkz, bcehijklz + cdghijlz2, 2bcdefglz + 2cfgijlz2+

chz6, 4bdefhjlz + bdhijlz + 2defgklz, 2cdgiklz + cehklz2 + 4cghilz,

chjkl, 2bcdhijlz + cgijz4, bdfhijkz + 4bdijkz3 + 2dhlz4⟩
⊂ Q[b, c, d, e, f, g, h, i, j, k, l, z].

T8 =⟨3bejz4 + bdfgjk + 2begjz2, cdefgjkz + 3efgjlz2 + 4elz5, bcdefghjk,

4cehjlz4 + 3ceghijkl⟩ ⊂ Q[b, c, d, e, f, g, h, i, j, k, l, z]

T9 =⟨3hz4 + 2cdfg, bdefgh+ cfgz3 + cgz4, bcgz2 + cdef + defz, , 3efgh+
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bcez + 2bfz2, 3defh+ 2cegh, dehz + 4cgz2, 2cdefhz + chz3, 3cdefhz+

2cfghz, 3dfghz + 2efhz2 + 2bcgz, bdhz + 2efz + 2bhz⟩
⊂ Q[b, c, d, e, f, g, h, z].

T10 =⟨4cdfhjkz + 4efhijz2 + cehiz2, bcdfiz, 3bdefhj + 4cdeghz, cdegkz+

bdiz3, bcdkz2 + 2begjk, 2cdefhijz + 3cehijz3 + bcdhz4, efhjkz + 3bcfhz,

2bcegiz + 3dghijz + 3fghiz, bdfjz + dfjkz, 4efhikz + 3befhi+ 2dfghi,

cdhijz + 2efgkz2, bcdgikz2 + bcdfgik, dfgikz, 2bcdghiz + bcegiz2+

bdfijk, cdefghijz, bcdegijkz + cdefkz4, 4bdfghjz + bdgkz3 + 2bcdeij,

cefghijkz + 4defgikz3 + 4eghkz4, bcdgijkz + ceghjkz2 + 4cefghz3⟩
⊂ Q[b, c, d, e, f, g, h, i, j, k, z].

P1 =⟨x⟩ ⊂ Q[x, y, z].

P2 =⟨x13, x23, x33, x43⟩ ⊂ Q[xij | 1 ≤ i ≤ 4, 1 ≤ j ≤ 5].

P3 =⟨b, z⟩ ⊂ Q[b, c, d, e, f, g, h, i, j, z].

P4 =⟨e, i, z⟩ ⊂ Q[b, c, d, e, f, g, h, i, j, z].

P5 =⟨g, h, z⟩ ⊂ Q[b, c, d, e, f, g, h, i, z].

P6 =⟨h, z⟩ ⊂ Q[b, c, d, e, f, g, h, i, j, k, l,m, z].

P7 =⟨b, j, z⟩ ⊂ Q[b, c, d, e, f, g, h, i, j, z].

P8 =⟨f, g, i⟩ ⊂ Q[b, c, d, e, f, g, h, i, z].

P9 =⟨z4 + hdb, c, g, k, l⟩ ⊂ Q[b, c, d, e, f, g, h, i, j, k, l, z].

P10 =⟨b, c, e, h, i, j⟩ ⊂ Q[b, c, d, e, f, g, h, i, j, k, l, z].

P11 =⟨e, k⟩ ⊂ Q[b, c, d, e, f, g, h, i, j, k, l, z].

P12 =⟨e, g, z⟩ ⊂ Q[b, c, d, e, f, g, h, z].

P13 =⟨e, g, k, z⟩ ⊂ Q[b, c, d, e, f, g, h, i, j, k, z].

P14 =⟨x, y⟩ ⊂ Q[x, y, z].

P15 =⟨x12x31 − x32x11, x42x11 − x41x12, x42x31 − x41x32, x44x31 − x41x34,

x44x32 − x42x34, x13, x21, x22, x23, x24, x33, x43⟩
⊂ Q[xij | 1 ≤ i ≤ 4, 1 ≤ j ≤ 4].

P16 =⟨x16x27 − x17x26, x34x13 − x33x14, x37x16 − x36x17, x36x27 − x37x26,

x12, x15, x21, x22, x23, x24, x25, x32, x35⟩ ⊂ Q[xij | 1 ≤ i ≤ 3, 1 ≤ j ≤ 7].

P17 =⟨e, f, j, z⟩ ⊂ Q[b, c, d, e, f, g, h, i, j, z].

P18 =⟨c, d, j, z⟩ ⊂ Q[b, c, d, e, f, g, h, i, j, z].

P19 =⟨−4fec+ 3d, b, g, h, z⟩ ⊂ Q[b, c, d, e, f, g, h, i, z].

P20 =⟨lfdb+ 4higc, e, j,m⟩ ⊂ Q[b, c, d, e, f, g, h, i, j, k, l,m, z].

P21 =⟨c, d, h, j, z⟩ ⊂ Q[b, c, d, e, f, g, h, i, j, z].

P22 =⟨c, d, g, i, z⟩ ⊂ Q[b, c, d, e, f, g, h, i, z].

P23 =⟨b, c, d, e, f, g, h, i, z⟩ ⊂ Q[b, c, d, e, f, g, h, i, j, k, l, z].

P24 =⟨g, i, j, l, z⟩ ⊂ Q[b, c, d, e, f, g, h, i, j, k, l, z].

P25 =⟨f, g, k, z⟩ ⊂ Q[b, c, d, e, f, g, h, i, j, k, l, z].

P26 =⟨c, e, g, h, z⟩ ⊂ Q[b, c, d, e, f, g, h, z].

P27 =⟨c+ 4jf, b, d, g, h, k, z⟩ ⊂ Q[b, c, d, e, f, g, h, i, j, k, z].
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6.2 Experiments on Modular Localizations

In this section, we see some naive experiments on Singular [9]. Timings (in seconds) are measured
in real time and on a PC with Intel Core i7-8700B CPU with 32GB memory. We see several examples
with intermediate coefficient growth. The source code for several algorithms ( modQuotient, modSat
and modDiq) is open in https://github.com/IshiharaYuki/moddiq.

To implement modular algorithms for (double) ideal quotient and saturation, we use the library
modular.lib. A function modular returns a candidate from modular computations by CRT and ra-
tional reconstruction. As the optional arguments, the function has primeTest, deleteUnluckyPrimes,
pTest and finalTest. In this thesis, we implemented primeTest, pTest and finalTest for (dou-
ble) ideal quotient and saturation. Also, we use Singular implemented functions quotient and
sat to compute (I : J) and (I : J∞) respectively (about computations of ideal quotient and sat-
uration, see [13]). We explain some details of our implementations. First, modQuotient computes
ideal quotient by modular techniques based on Lemma 5.2.6. Second, modSat computes saturation
by modular techniques based on Lemma 5.2.12 and Lemma 5.2.13. Third, diq computes DIQ by
using quotient twice and modDiq computes DIQ based on Theorem 5.2.8. The function modDiq

uses modQuotient to check the condition that (Ip(F ) : Ip(G)) = ϕp((I(F ) : I(G)) ∩ Z(p)[X]) and
Kcan ⊂ (I(F ) : (I(F ) : I(G))) in Theorem 5.2.8. Of course, we can compute DIQ by using
modQuotient twice.

Here, we use the degree reverse lexicographical ordering (see Example 1.1.2 and dp on Singu-
lar). We tested our implementation by “cyclic ideal”, where cyclic(n) is defined in Q[x1, . . . , xn]
(see the definition in [4]). We let

P28 = ⟨−15x5 + 16x36 − 60x26 + 225x6 − 4, 2x25 − 7x5 + 2x26 − 7x6 + 28, (4x6 − 1)x5 − x6 + 4,

4x1 + x5 + x6, 4x2 + x5 + x6, 4x3 + x5 + x6, 4x4 + x5 + x6⟩,
P29 = ⟨x22 + 4x2 + 1, x1 + x2 + 4, x3 − 1, x4 − 1, x5 − 1, x6 − 1⟩

be prime divisors of cyclic(6) and

Q28 = ⟨(−15x5 + 16x36 − 60x26 + 225x6 − 4)2, (2x25 − 7x5 + 2x26 − 7x6 + 28)2, (4x6 − 1)x5 − x6 + 4,

4x1 + x5 + x6, 4x2 + x5 + x6, 4x3 + x5 + x6, 4x4 + x5 + x6⟩

a P28-primary ideal. Also, we let

I2 = ⟨8x2y2 + 5xy3 + 3x3z + x2yz, x5 + 2y3z2 + 13y2z3 + 5yz4, 8x3 + 12y3 + xz2,

7x2y4 + 18xy3z2 + y3z3⟩

be a modification of an ideal appearing in [3] and

I3 = ⟨xw11 − yw10, yw12 − zw11,−w11w20 + w21w10,−w21w12 + w22w11⟩

be A2,3,3 (see [27]). As inputs, we used their Gröbner bases.
In Table 6.4, we can see that modQuotient is very effective for computation of such ideals. In

Table 6.5, we compare timings of computations of saturation in each method. To consider ideals
with non-prime components, we take an intersection or products of ideals. We can see that modSat
is very effective even when multiplicities of target primary components are large. In Table 6.6, we
see results of prime divisors checks by DIQ in each method. We can see that modular methods
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“double modQuotient” and modDiq are very efficient, comparing with the rational diq. In almost
cases in the table, modDiq is faster than modQuotient since the final test (Theorem 5.2.8) may have
some effectiveness for efficient computations.

As a whole, we examined the efficiency of modular techniques for ideal quotients by computa-
tional experiments.

ideal quotient quotient modQuotient

(cyclic(6) : P28) 35.0 11.2
(cyclic(6) : P29) 15.1 7.65

(I22 : I2) 7.80 0.32
(I32 : I2) 255 7.67
(I42 : I2) 2137 68.8
(I2I3 : I3) 0.88 0.72

Table 6.4: Ideal quotient

saturation sat modSat

((cyclic(6) ∩Q28) : P
∞
28 ) 86.9 16.4

(I2I
2
3 : I∞3 ) 1264 21.9

((I2 · (x100, xy)⟩ : ⟨x, y⟩∞) 0.33 0.13
((I2 · (x500, xy)⟩ : ⟨x, y⟩∞) 27.3 1.18
((I2 · (x1000, xy)⟩ : ⟨x, y⟩∞) 201 4.25

Table 6.5: Saturation

[ideal, prime divisor] diq double modQuotient modDiq

[cyclic(6), P28] 37.0 28.9 17.8
[cyclic(6), P29] 15.3 9.36 11.3
[I32 , ⟨x, y⟩] 13.1 8.96 5.32
[I42 , ⟨x, y⟩] 254 81.7 41.4

[I22I3, ⟨x, y, z⟩] 143 80.7 29.1

Table 6.6: Double ideal quotient
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Conclusion and Future Works

“Computer Algebra” is an interdisciplinary field of mathematics and computer science. It mainly
concerns algebraic computations over the integer ring, the rational field, finite fields, polynomial
rings and so on. Computational aspects of Computer Algebra give us variants of application for pure
mathematics and applied mathematics by its symbolic computations. This thesis is mainly dedicated
to devise efficient methods for operations in polynomial rings, especially effective localization of
ideals (at a prime ideal).

We provide new algorithms which obtain the particular primary components directly by using
Double Ideal Quotient (DIQ) and its variants. We call such algorithms “Local Primary Algo-
rithms(LPAs)”. LPAs are based on several generating tools and criteria for primary components
with different procedures for two cases; isolated and embedded. For isolated cases, LPAs use the
“second saturated quotient” (I : (I : P∞)∞) and its “equidimensional hull” hull((I : (I : P∞)∞)) to
compute the isolated P -primary component of I; while for embedded cases, LPAs use the “equidi-

mensional hull” of I+Pm. For improving LPAs, we devise several efficient techniques; P
[m]
G -products,

MIS-hull, and MIS-localization. Also, we present another localization method without DIQ to com-
pare it and LPAs with DIQ. In the computer experiments, we see that LPAs have strong effectiveness
by their specialities in almost every cases. In particular, MIS-localization is much effective as an
improvement technique for LPAs in many examples (see Table 6.1 and Table 6.3 in Chapter 6).
However, its computational behavior is somehow unstable (see Figure 6.2, 6.3 in Chapter 6). Hence,
we conclude that effectiveness of LPAs depends on ideals and thus, at present, it would be better
to apply them in parallel.

To make LPAs more efficiently, we apply modular techniques for (double) ideal quotient and
saturation. It is well-known that modular techniques are useful to avoid intermediate coefficient
growth and make rational computations more efficiently. Given ideals I, J , ideal operations AL(∗, ∗)
over Q[X] and ALp(∗, ∗) over Fp[X] where p is a prime number, as inputs, we compute AL(I, J)
as the output by using modular computations. First, we choose a list of random prime numbers
P, which satisfies certain computable condition primeTest. For example, primeTest is to check
whether p ∈ P is permissible for Gröbner bases of I and J or not. Next, we compute modular
operations Hp = ALp(I, J) for each p ∈ P . After omitting expected unlucky primes by delete-
UnluckyPrimes, we lift Hp’s up to Hcan by CRT and rational reconstruction. Finally, we check
Hcan is really the correct answer by finalTest. If finalTest says False, then we enlarge P and
continue from the first step. In this thesis, we introduce new finalTest for (double) ideal quotient
and saturation. In the computer experiments, we see that modular techniques are effective for such
ideal operations.

In future work, to make our LPAs more practical we shall continue to improve it through ob-
taining timing data for a lot of larger examples. In particular, we need to invent effective algorithms
to compute DIQ and MIS-localization. To do it, we can apply our primary component criteria to
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probabilistic or inexact methods for primary decomposition, such as numerical ones. Probabilistic
or inexact ways may have low computational costs but low accuracy for outputs. Hence, our criteria
using DIQ can guarantee their outputs. For example, we are thinking to combine our LPAs and
Numerical Primary Decomposition in [20] to compute possible prime divisors and primary compo-
nents. Of course, it is important to analyze the complexity of LPAs. Meanwhile, we are on the way
to implement Associated Check (Algorithm 4, 5) and complete an efficient algorithm of Intermedi-
ate Primary Decomposition (IPD) via MIS. We will continue to improve the implementations and
extend experiments to other examples. Also, we are thinking about IPD in another way (e.g. using
the second saturated quotient) and apply IPD to compute a candidate of a prime divisor.
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[12] Gianni, P., Trager, B., Zacharias, G.: Gröbner bases and primary decomposition of polynomial
ideals. J. Symb. Comput., 6 (2), 149-167 (1988)

58



[13] Greuel, G.-M., Pfister, G.: A Singular Introduction to Commutative Algebra. Springer, Hei-
delberg (2008)

[14] Idrees, N., Pfister, G., Steidel, S.: Parallelization of modular algorithms. J. Symb. Comput.,
46 (6), 672-684 (2011)

[15] Ishihara, Y.: Modular techniques for effective localization and double ideal quotient. In Pro-
ceedings of ISSAC ’20, ACM, 265-272 (2020)

[16] Ishihara, Y., Vaccon, T., Yokoyama, K.: On FGLM algorithms with tropical Gröbner bases.
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