A Tower of Ramanujan Graphs and a Reciprocity Law of Graph Zeta Functions

by
Kennichi Sugiyama

(Received April 28, 2020)
(Revised August 19, 2020)

Abstract

Let l be an odd prime. We will construct a tower of connected regular Ramanujan graph of degree $l+1$ from modular curves. This supplies an example of a collection of $(l+1)$-regular graphs whose non-zero eigenvalues of the Laplacian are contained in the interval $\left[(\sqrt{l}-1)^{2},(\sqrt{l}+1)^{2}\right]$. We also show graph (or Ihara) zeta functions satisfy a certain reciprocity law.

Key words: a Ramanujan graph, the Cheeger constant, an expander, a graph zeta function, a modular curve, a Brandt matrix, a reciprocity law. AMS classification 2010: 05C25, 05C38, 05C50, 05C75, 11G18, 11G20, 11M38, 11M99.

1. Introduction

Let p be a prime satisfying $p \equiv 1(\bmod 12)$ and let us fix an odd prime l different from p. In [25] we have constructed a connected regular Ramanujan graph $G_{p}^{(l)}(1)$ of degree $l+1$ non-bipartite. The number of vertices $G_{p}^{(l)}(1)$ is $(p-1) / 12$ and the Euler characteristic is

$$
\chi\left(G_{p}^{(l)}(1)\right)=\frac{(p-1)(1-l)}{24} .
$$

The graph $G_{p}^{(l)}(1)$ is regarded as a graph of level one. In this paper we will construct a connected non-bipartite regular Ramanujan graph of degree $l+1$ of a higher level.

In the following let p be a prime such that $p \equiv 1(\bmod 12)$ and l an odd prime different from p. Let $\mathcal{N}_{p, l}$ be the set of square free positive integers such that every member N is prime to $l p$. Then to each N of $\mathcal{N}_{p, l}$, a connected non-bipartite $(l+1)$-regular Ramanujan graph $G_{p}^{(l)}(N)$ of which the number of vertices is $v(N):=\frac{(p-1) \sum_{d \mid N} d}{12}$ will be assigned. Let $\lambda_{0}\left(G_{p}^{(l)}(N)\right) \leq \lambda_{1}\left(G_{p}^{(l)}(N)\right) \leq \cdots \leq \lambda_{v(N)-1}\left(G_{p}^{(l)}(N)\right)$ denote eigenvalues of the Laplacian of $G_{p}^{(l)}(N)$. Since $G_{p}^{(l)}(N)$ is connected $\lambda_{0}\left(G_{p}^{(l)}(N)\right)=0$ and $\lambda_{1}\left(G_{p}^{(l)}(N)\right)$ is positive. A relationship between the adjacency matrix and the Laplacian (cf. (2)) shows that

$$
\begin{equation*}
\rho^{i}\left(G_{p}^{(l)}(N)\right):=(l+1)-\lambda_{i}\left(G_{p}^{(l)}(N)\right) \tag{1}
\end{equation*}
$$

is an eigenvalue of the adjacency matrix.
Theorem 1.1. (1) For $i \geq 1$.

$$
(\sqrt{l}-1)^{2} \leq \lambda_{i}\left(G_{p}^{(l)}(N)\right) \leq(\sqrt{l}+1)^{2}, \quad \forall N \in \mathcal{N}_{p, l} .
$$

(2) Let M and N be elements of $\mathcal{N}_{p, l}$ satisfying $M \mid N$. Then $G_{p}^{(l)}(N)$ is a covering of $G_{p}^{(l)}(M)$ of degree $\sigma_{1}(N / M)$ and

$$
\rho^{1}\left(G_{p}^{(l)}(N)\right) \geq \rho^{1}\left(G_{p}^{(l)}(M)\right), \quad \lambda_{1}\left(G_{p}^{(l)}(N)\right) \leq \lambda_{1}\left(G_{p}^{(l)}(M)\right) .
$$

Here σ_{1} is the Euler function defined by

$$
\sigma_{1}(n)=\sum_{d \mid n} d .
$$

Our tower of Ramanujan graphs $\left\{G_{p}^{(l)}(N)\right\}_{N \in \mathcal{N}_{p, l}}$ has an interesting geometric property. In order to explain further we recall the (discrete) Cheeger constant. In general let G be a connected d-regular graph of n vertices. The Cheeger constant $h(G)$ of G is defined by

$$
h(G)=\min \left\{\frac{|\partial S|}{|S|}: S \subset V(G), 0<|S| \leq \frac{n}{2}\right\},
$$

where $V(G)$ denotes the set of vertices and

$$
\partial S:=\{\{u, v\} \in G E(G): u \in S, v \in V(G) \backslash S\} .
$$

Here $G E(G)$ is the set of geometric edges (i.e. the set of unoriented edges, see §2) and $|\cdot|$ denotes the cardinality. Then the smallest non-zero eigenvalue $\lambda_{1}(G)$ of the Laplacian satisfies ([2] [26])

$$
\frac{\lambda_{1}(G)}{2} \leq h(G) \leq \sqrt{2 d \lambda_{1}(G)}
$$

and the next corollary is an immediate consequence of Theorem 1.1.
Corollary 1.1. (A gap theorem)

$$
\frac{(\sqrt{l}-1)^{2}}{2} \leq h\left(G_{p}^{(l)}(N)\right) \leq \sqrt{2(l+1)}(\sqrt{l}+1)
$$

for any $N \in \mathcal{N}_{p, l}$.
In general the graph zeta function (or the Ihara zeta function) $Z(G)(t)$ is defined for a finite connected graph G. Although a priori $Z(G)(t)$ is a power series of t, the Ihara formula tells us that it is a rational function (see Fact 2.1). We will show that the zeta functions of our graphs satisfy a reciprocity law.

Theorem 1.2. (A reciprocity law) Let p and q be distinct primes satisfying $p \equiv$ $q \equiv 1(\bmod 12)$ and l an odd prime different from p and q. Then

$$
\frac{Z\left(G_{p}^{(l)}(q)\right)(t)}{Z\left(G_{p}^{(l)}(1)\right)(t)^{2}}=\frac{Z\left(G_{q}^{(l)}(p)\right)(t)}{Z\left(G_{q}^{(l)}(1)\right)(t)^{2}}
$$

In particular

$$
Z\left(G_{p}^{(l)}(q)\right)(t) \equiv Z\left(G_{q}^{(l)}(p)\right)(t) \quad \bmod \mathbb{Q}(t)^{\times 2}
$$

Here is an application of Theorem $\mathbf{1 . 1}$ to modular forms. As before let p be a prime satisfying $p \equiv 1(\bmod 12)$ and N a square free positive integer prime to p. Then the spaces of cusp forms $S_{2}\left(\Gamma_{0}(p N)\right)$ and one of p-new forms $S_{2}\left(\Gamma_{0}(p N)\right)_{p N / N}$ of level $p N$ (see $\S 4$, especially (21)) have decompositions

$$
S_{2}\left(\Gamma_{0}(p N)\right)=\oplus_{\alpha} \mathbb{C} f_{\alpha}, \quad S_{2}\left(\Gamma_{0}(p N)\right)_{p N / N}=\oplus_{\chi} \mathbb{C} f_{\chi}
$$

where f_{α} and f_{χ} are normalized Hecke eigenforms of character α and χ (cf. Theorem 4.1 and (22)). Using the result due to Alon-Boppana ([1] [2]) we will show the following.

THEOREM 1.3. Let p be a prime satisfying $p \equiv 1(\bmod 12)$ and l an odd prime different from p. Let $\left\{r_{i}\right\}_{i=1}^{\infty}$ be a set of mutually distinct primes not dividing $l p$. Set $N_{k}=\prod_{i=1}^{k} r_{i}$ and then

$$
\lim _{k \rightarrow \infty} \operatorname{Max}\left\{a_{l}\left(f_{\chi}\right): S_{2}\left(\Gamma_{0}\left(p N_{k}\right)\right)_{p N_{k} / N_{k}}=\oplus_{\chi} \mathbb{C} f_{\chi}\right\}=2 \sqrt{l},
$$

where $a_{l}\left(f_{\chi}\right)$ denotes the l-th Fourier coefficient of f_{χ}. In particular

$$
\lim _{k \rightarrow \infty} \operatorname{Max}\left\{a_{l}\left(f_{\alpha}\right): S_{2}\left(\Gamma_{0}\left(p N_{k}\right)\right)=\oplus_{\alpha} \mathbb{C} f_{\alpha}\right\}=2 \sqrt{l}
$$

Acknowledgment. The author is very much obliged to the referee who points out mistakes and gives kind comments.

2. Basic facts of the zeta function of a graph

A (finite) graph G consists of a finite set of vertices $V(G)$ and a finite set of oriented edges $E(G)$, which satisfy the following property: there are end point maps,

$$
\partial_{0}, \quad \partial_{1}: E(G) \rightarrow V(G),
$$

and an orientation resersal,

$$
J: E(G) \rightarrow E(G), \quad J^{2}=\text { identity }
$$

such that $\partial_{i} \circ J=\partial_{1-i}(i=0,1)$. The quotient $E(G) / J$ is called the set of geometric edges and is denoted by $G E(G)$. We regard an element of $e \in G E(G)$ as an unoriented edge and if its end-points are u and v we write $e=\{u, v\}$. For $x \in V(G)$ we set

$$
E_{j}(x)=\left\{e \in E(G) \mid \partial_{j}(e)=x\right\}, \quad j=0,1 .
$$

Thus $J E_{j}(x)=E_{1-j}(x)$. Intuitively $E_{0}(x)$ (resp. $\left.E_{1}(x)\right)$ is the set of edges departing from (resp. arriving at) x. The degree of $x, d(x)$, is defined by

$$
d(x)=\left|E_{0}(x)\right|+\left|E_{1}(x)\right| .
$$

$E(G)$ is naturally divided into two classes, loops and passes. An edge $e \in E(G)$ is called a loop if $\partial_{0}(e)=\partial_{1}(e)$ (i.e. the two ends points of e coincide) and is called a pass otherwise. Let $p(x)$ be the number of passes starting from x. On the other hand $l(x)$ denotes the half of the number of loops at x, that is $l(x)$ is the number of geometric loops. Note that, because of the involution J, if we replace "departing" by "arriving" these number does not change. By definition, it is clear that

$$
d(x)=2 l(x)+p(x) .
$$

We set $q(x):=d(x)-1$. Let $C_{0}(G)$ be the free \mathbb{Z}-module generated by $V(G)$ with vertices as the natural basis. We define endomorphisms Q and A of $C_{0}(G)$ by

$$
Q(x)=q(x) x, \quad x \in V(G),
$$

and

$$
A(x)=\sum_{e \in E(G), \partial_{0}(e)=x} \partial_{1}(e), \quad x \in V(G),
$$

respectively. Note that because of the involution J,

$$
A(x)=\sum_{e \in E(G), \partial_{1}(e)=x} \partial_{0}(e) .
$$

The operator A will be called the adjacency operator. We sometimes identify it with the representing matrix with respect to the basis $\{x\}_{x \in V(G)}$. Thus the $y x$-entry $A_{y x}$ of A is the number of edges departing from x and arriving at y. The orientation reversing involution J implies

$$
A_{x y}=A_{y x} .
$$

Note that $A_{x x}=2 l(x)$ and $p(x)=\sum_{y \neq x} A_{y x}$. If $d(x)=k$ for all $x \in V(G), G$ is called k-regular.

Connecting distinct vertices x and y by geometric $A_{x y}$-edges and drawing $\frac{1}{2} A_{x x}$-loops at x, the adjacency matrix A determines an unoriented 1 -dimensional simplicial complex. We call it the geometric realization of G, and denote it by G again. We say that G is connected if the geometric realization is. The Euler characteristic $\chi(G)$ is equal to $|V(G)|-$ $|G E(G)|$, hence if G is connected, the fundamental group is a free group of rank $1-$ $|V(G)|+|G E(G)|$. For a later purpose, we summarize the relationship between a graph and its adjacency matrix.

Proposition 2.1. Let $A=\left(a_{i j}\right)_{1 \leq i, j \leq m}$ be an $m \times m$-matrix satisfying the following conditions.
(1) The entries $\left\{a_{i j}\right\}_{i j}$ are non-negative integers and satisfy

$$
a_{i j}=a_{j i}, \quad \forall i \text { and } j .
$$

(2) $a_{i i}$ is even for every i.

Then there is a unique graph G whose adjacency matrix is A. Moreover, G is k-regular if and only if one of the following equivalent condition satisfied :
(a)

$$
\sum_{i=1}^{m} a_{i j}=k, \quad \forall j
$$

(b)

$$
\sum_{j=1}^{m} a_{i j}=k, \quad \forall i
$$

In the following, a graph G is always assumed to be connected. A path of length m is a sequence $c=\left(e_{1}, \cdots, e_{m}\right)$ of edges such that $\partial_{0}\left(e_{i}\right)=\partial_{1}\left(e_{i-1}\right)$ for all $1<i \leq m$ and the path is reduced if $e_{i} \neq J\left(e_{i-1}\right)$ for all $1<i \leq m$. The path is closed if $\partial_{0}\left(e_{1}\right)=\partial_{1}\left(e_{m}\right)$, and the closed path has no tail if $e_{m} \neq J\left(e_{1}\right)$. A closed path of length one is nothing but a loop. Two closed paths are equivalent if one is obtained from the other by a cyclic shift of the edges. Let $\mathfrak{C}(G)$ be the set of equivalence classes of reduced and tail-less closed paths of G. Since the length depends only on the equivalence class, the length function descends to the map;

$$
l: \mathfrak{C}(G) \rightarrow \mathbb{N}, \quad l([c])=l(c),
$$

where $[c]$ is the class determined by c. We define a reduced and tail-less closed path C to be primitive if it is not obtained by going $r(\geq 2)$ times some another closed path. Let $\mathfrak{P}(G)$ be the subset of $\mathfrak{C}(G)$ consisting of the classes of primitive closed paths (which are reduced and tail-less by definition). The graph zeta function (or Ihara zeta function) of G is defined to be

$$
Z(G)(t)=\prod_{[c] \in \mathfrak{P}(G)} \frac{1}{1-t^{l([c])}} .
$$

Although this is an infinite product, it is a rational function.
FACt 2.1 ([4], [11], [12], [16], [24]).

$$
Z(G)(t)=\frac{\left(1-t^{2}\right)^{x(G)}}{\operatorname{det}\left[1-A t+Q t^{2}\right]} .
$$

FACT 2.2 ([25]). Let G be a k-regular graph with m vertices. Then the Euler characteristic $\chi(G)$ is

$$
\chi(G)=\frac{m(2-k)}{2} .
$$

Remark 2.1. Note that the Euler characteristic does not depend on the number of loops.

Let $E_{o r}(G) \subset E(G)$ be a section of the natural projection $E(G) \rightarrow G E(G)$. In other word we choose an orientation on geometric edges and make the geometric realization into an oriented one dimensional simplicial complex. Let $C_{1}(G)$ be the free \mathbb{Z}-module generated by $E_{\text {or }}(G)$. Then the boundary map

$$
\partial: C_{1}(G) \rightarrow C_{0}(G)
$$

is naturally defined. Let ∂^{t} be the dual of ∂ and the Laplacian Δ of G is defined to be $\Delta=\partial \partial^{t}$. It is known (and easy to check) that ([27], [11]),

$$
\begin{equation*}
\Delta=1-A+Q . \tag{2}
\end{equation*}
$$

Now let G be a connected k-regular graph. Since 0 is an eigenvalue of Δ with multiplicity one, (2) shows that k is an eigenvalue of A with multiplicity one. Because of semi-positivity of Δ we find that

$$
|\lambda| \leq k \quad \text { for any eigenvalue } \lambda \text { of } A
$$

and that $-k$ is an eigenvalue of A if and only if G is bipartite ([27], Chapter 3). Here G is called bipartite if the set of vertices $V(G)$ can be divided into disjoint subset V_{0} and
V_{1} such that every edge connects points in V_{0} and V_{1}, namely there is no edge whose end points are simultaneously contained in $V_{i}(i=0,1)$.

Definition 2.1. Let G be a k-regular graph. We say that it is Ramanujan, if all eigenvalues λ of A with $|\lambda| \neq k$ satisfy

$$
|\lambda| \leq 2 \sqrt{k-1} .
$$

See [15], [16], [19] and [28] for detailed expositions of Ramanujan graphs.
A map f from a graph G^{\prime} to G is defined to be a pair $f=\left(f_{V}, f_{E}\right)$ of maps

$$
f_{V}: V\left(G^{\prime}\right) \rightarrow V(G), \quad f_{E}: E\left(G^{\prime}\right) \rightarrow E(G)
$$

satisfying

$$
\partial_{i} f_{E}=f_{V} \partial_{i}, \quad i=0,1 .
$$

Suppose that G and G^{\prime} are connected. If there is a positive integer d such that $\left|f_{V}^{-1}(v)\right|=$ $\left|f_{E}^{-1}(e)\right|=d$ for any $v \in V(G)$ and $e \in E(G), f$ is mentioned as a covering map of degree d.

3. A construction of a Ramanujan graph

Although there are several ways to construct a Ramanujan graph (eg. [17] [18]), we adopt the construction due to $\operatorname{Pizer}([20])$, which is most suited to our program. Let p be a prime, and B the quaternion algebra over \mathbb{Q} ramified at two places p and ∞. Let R be a fixed maximal order in B and $\left\{I_{1}, \cdots, I_{n}\right\}$ be the set of left R-ideals representing the distinct ideal classes. We choose $I_{1}=R$ and say n the class number of B. For $1 \leq i \leq n$, R_{i} denotes the right order of I_{i}, and let w_{i} be the order of $R_{i}^{\times} /\{ \pm 1\}$. The product

$$
\begin{equation*}
W=\prod_{i=1}^{n} w_{i} \tag{3}
\end{equation*}
$$

is independent of the choice of R and is equal to the exact denominator of $\frac{p-1}{12}$ ([8] p.117) and Eichler's mass formula states that

$$
\sum_{i=1}^{n} \frac{1}{w_{i}}=\frac{p-1}{12}
$$

Let \mathbb{F} be an algebraic closure of \mathbb{F}_{p}. There are n distinct isomorphism classes $\left\{E_{1}, \cdots, E_{n}\right\}$ of supersingular elliptic curves over \mathbb{F} such that $\operatorname{End}\left(E_{i}\right) \simeq R_{i}$.
Now we assume that $p-1$ is divisible 12. Then $\frac{p-1}{12}$ is an integer and $W=\prod_{i=1}^{n} w_{i}=1$, namely $w_{i}=1$ for all i. Hence by Eichler's mass formula

$$
\begin{equation*}
n=\frac{p-1}{12} . \tag{4}
\end{equation*}
$$

We fix an odd prime l different from p and let $\mathcal{N}_{p, l}$ denote the set of square free positive integers prime to $l p$. For $N \in \mathcal{N}_{p, l}$, an enhanced supersingular elliptic curve of level N is defined to be a pair $\mathbf{E}=\left(E, C_{N}\right)$ of a supersingular elliptic curve E and its
cyclic subgroup C_{N} of order N. A homomorphism ϕ from $\mathbf{E}=\left(E, C_{N}\right)$ to $\mathbf{E}^{\prime}=\left(E^{\prime}, C_{N}^{\prime}\right)$ is defined by a homomorphism $\phi: E \rightarrow E^{\prime}$ satisfying

$$
\phi\left(C_{N}\right)=C_{N}^{\prime} .
$$

Let Σ_{N} be the set of isomorphism classes of enhanced supersingular elliptic curve of level N defined over \mathbb{F}. Then the cardinality $\nu(N)$ of Σ_{N} is

$$
\begin{equation*}
\nu(N)=\frac{(p-1) \sigma_{1}(N)}{12}, \quad \sigma_{1}(N)=\sum_{d \mid N} d . \tag{5}
\end{equation*}
$$

Here $\sigma_{1}(N)$ counts the number of cyclic subgroups of E of order N. Let $\operatorname{Hom}\left(\mathbf{E}_{i}, \mathbf{E}_{j}\right)(l)$ denote the set of homomorphisms from \mathbf{E}_{i} to \mathbf{E}_{j} of degree l. We define the Brandt matrix $B_{p}^{(l)}(N)$ is defined to be a $v(N) \times v(N)$-matrix whose (i, j)-entry is

$$
\begin{equation*}
b_{i j}=\frac{1}{2}\left|\operatorname{Hom}\left(\mathbf{E}_{j}, \mathbf{E}_{i}\right)(l)\right| . \tag{6}
\end{equation*}
$$

The following result is proved in [25] Proposition 3.1.
Proposition 3.1. Let $N \in \mathcal{N}_{p, l}$. Then the Brandt matrix $B_{p}^{(l)}(N)=\left(b_{i j}\right)_{1 \leq i, j \leq \nu(N)}$ satisfies the following.
(1) Every entry is a non-negative integer and $B_{p}^{(l)}(N)$ is symmetric;

$$
b_{i j}=b_{j i} .
$$

(2) The diagonal entires $\left\{b_{i i}\right\}_{i}$ are even for all i.
(3) For any $i=1, \cdots, \nu(N)$,

$$
\sum_{j=1}^{n} b_{i j}=l+1
$$

By Proposition 2.1 there is a regular graph $G_{p}^{(l)}(N)$ of degree $l+1$ whose adjacency matrix is $B_{p}^{(l)}(N)$. In Theorem 5.1 we will show that it is a connected non-bipartite Ramanujan graph.

REMARK 3.1. We compare our construction of a Ramanujan graph with another one (eg. [12][16][17][28]). Let Z be the center of B^{\times}and set $D=B^{\times} / Z$. Let l be a prime different from p. Since B is unramified at $l, D\left(\mathbb{Q}_{l}\right) / D\left(\mathbb{Z}_{l}\right)=\operatorname{PGL}_{2}\left(\mathbb{Q}_{l}\right) / \operatorname{PGL}_{2}\left(\mathbb{Z}_{l}\right)$ which is the $(l+1)$-regular tree with the action of the Hecke operator T_{l} as adjacency operator. Let \mathcal{K} be an open subgroup of $\prod_{q \neq l, \infty} D\left(\mathbb{Z}_{q}\right)$ and let

$$
\Gamma_{\mathcal{K}}=D(\mathbb{Q}) \cap D(\mathbb{R}) D\left(\mathbb{Q}_{l}\right) \mathcal{K} .
$$

Then

$$
G_{p}^{(l)}(\mathcal{K})=\Gamma_{\mathcal{K}} \backslash D\left(\mathbb{Q}_{l}\right) / D\left(\mathbb{Z}_{l}\right)
$$

is an $(l+1)$-regular Ramanujan graph (possibly with multiple edges). For example let us take $N \in \mathcal{N}_{p, l}$ and we choose $\mathcal{K}=\prod_{q \neq l, \infty} \mathcal{K}_{q}$ to be

$$
\mathcal{K}_{q}=\left\{\begin{array}{ccc}
{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \quad a, b, c, d \in \mathbb{Z}_{q}, c \equiv 0(\bmod q),} & \text { if } \quad q \mid N \\
\text { a maximal compact subgroup of } D\left(\mathbb{Q}_{q}\right) & \text { if } & q \nmid l N,
\end{array}\right.
$$

where $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \operatorname{PGL}_{2}\left(\mathbb{Z}_{q}\right)$ is the equivalent class of $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{GL}_{2}\left(\mathbb{Z}_{q}\right)$. We let $\mathcal{K}_{0}(N)$ denote the defined compact subgroup. Then $G_{p}^{(l)}\left(\mathcal{K}_{0}(N)\right)$ is $G_{p}^{(l)}(N)$ under our notation. Hashimoto shows that $G_{p}^{(l)}(\mathcal{K})$ has no multiple edge if $p \equiv 1(\bmod 12)$, which coincides with Proposition 3.1 (cf. (7.14) of [9]). More precisely, in (7.14) of [9], he has shown that $G_{p}^{(l)}(1)$ is a quotient of the regular tree of degree $l+1$ by a torsion free group. He also proved that the class number of the function field of the modular curve $X_{0}(p)_{\mathbb{F}_{l}}$ over \mathbb{F}_{l} equals $(g+1) \kappa\left(G_{p}^{(l)}(1)\right)$. Here g is the genus of $X_{0}(p)_{\mathbb{F}_{l}}$ and $\kappa\left(G_{p}^{(l)}(1)\right)$ denotes the complexity of $G_{p}^{(l)}(1)$.

Theorem 3.1. Let M and N be elements of $\mathcal{N}_{p, l}$ such that M is a divisor of N. Then there is a covering map

$$
\pi_{N / M}: G_{p}^{(l)}(N) \rightarrow G_{p}^{(l)}(M)
$$

of degree $\sigma_{1}(N / M)$
Proof. Although this is clear from Remark 3.1 since $\mathcal{K}_{0}(N)$ is a subgroup of $\mathcal{K}_{0}(M)$ with index $\sigma_{1}(N / M)$, we will show another geometric (and elementary) proof. Since N is square free M and N / M are coprime. Thus a cyclic subgroup C_{N} is written by

$$
C_{M}=C_{M} \oplus C_{N / M}
$$

and we define

$$
\left(\pi_{N / M}\right)_{V}: V\left(G_{p}^{(l)}(N)\right) \rightarrow V\left(G_{p}^{(l)}(M)\right), \quad\left(\pi_{N / M}\right)_{V}\left(E, C_{M} \oplus C_{N / M}\right)=\left(E, C_{M}\right)
$$

Since the number of cyclic subgroups of E of order N / M is $\sigma_{1}(N / M),\left|\pi_{N / M}^{-1}(v)\right|=$ $\sigma_{1}(N / M)$ for any $v \in V\left(G_{p}^{(l)}(M)\right)$. By definition an edge of $G_{p}^{(l)}(N)$ from $\mathbf{E}=\left(E, C_{M} \oplus\right.$ $\left.C_{N / M}\right)$ to $\mathbf{E}^{\prime}=\left(E^{\prime}, C_{M}^{\prime} \oplus C_{N / M}^{\prime}\right)$ is a homomorphism f from E to E^{\prime} satisfying

$$
f\left(C_{M}\right)=C_{M}^{\prime}, \quad f\left(C_{N / M}\right)=C_{N / M}^{\prime}
$$

Forget the homomorphism of cyclic subgroups of order N / M and we have

$$
\operatorname{Hom}\left(\mathbf{E}, \mathbf{E}^{\prime}\right)(l) /\{ \pm 1\} \rightarrow \operatorname{Hom}\left(\pi_{N / M}(\mathbf{E}), \pi_{N / M}\left(\mathbf{E}^{\prime}\right)\right)(l) /\{ \pm 1\}
$$

which defines a map of the set of edges

$$
\left(\pi_{N / M}\right)_{E}: E\left(G_{p}^{(l)}(N)\right) \rightarrow E\left(G_{p}^{(l)}(M)\right)
$$

satisfying

$$
\partial_{i} \circ\left(\pi_{N / M}\right)_{E}=\left(\pi_{N / M}\right)_{V} \circ \partial_{i}, \quad i=0,1
$$

One finds that this map has degree $\sigma_{1}(N / M)$. In fact let g be an element of $\operatorname{Hom}\left(\pi_{N / M}(\mathbf{E})\right.$, $\left.\pi_{N / M}\left(\mathbf{E}^{\prime}\right)\right)(l)$. Thus g is a homomorphism from E to E^{\prime} of degree l satisfying

$$
g\left(C_{M}\right)=C_{M}^{\prime}
$$

Let $C_{N / M}$ be a cyclic subgroup of E of order N / M and we set $C_{N / M}^{\prime}=g\left(C_{N / M}\right)$. Then we have a homomorphism of enhanced supersingular elliptic curve of level N

$$
g:\left(E, C_{M} \oplus C_{N / M}\right) \rightarrow\left(E^{\prime}, C_{M}^{\prime} \oplus C_{N / M}^{\prime}\right)
$$

which defines an edge of $G_{p}^{(l)}(N)$. The number of cyclic subgroups of order N / M (i.e. choices of $\left.C_{N / M}\right)$ is $\sigma_{1}(N / M)$ and the claim has been proved.

4. A spectral decomposition of the character group

In this section we will establish a geometric version of Jacquet-Langlands correspondence (Theorem 4.2) and its real version (Theorem 4.3).

For a positive integer N, let $S_{2}\left(\Gamma_{0}(N)\right)$ denote the space of cusp forms of weight 2 for the Hecke congruence subgroup

$$
\Gamma_{0}(N):=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}): \quad c \equiv 0(\bmod N)\right\} .
$$

Let $Y_{0}(N)$ be the modular curve which parametrizes isomorphism classes of a pair $\mathbf{E}=$ (E, C_{N}) of an elliptic curve E and its cyclic subgroup C_{N} of order N. It is a smooth curve defined over \mathbb{Q} and the set of \mathbb{C}-valued points is the quotient of the upper half plane by $\Gamma_{0}(N)$. Let $X_{0}(N)$ be the compactification of $Y_{0}(N)$. It is a smooth projective curve defined over \mathbb{Q} and has the canonical model over \mathbb{Z} which has been studied by [7] and [13] in detail. The space of cusp forms $S_{2}\left(\Gamma_{0}(N)\right)$ is naturally identified with the space of holomorphic 1forms $H^{0}\left(X_{0}(N), \Omega\right)$ and in particular with the cotangent space $\operatorname{Cot}_{0}\left(J_{0}(N)\right)$ at the origin of the Jacobian variety $J_{0}(N)$ of $X_{0}(N)$.

For a prime p with $(p, N)=1, X_{0}(N)$ is furnished with the p-th Hecke operator defined by

$$
\begin{equation*}
T_{p}\left(E, C_{N}\right):=\sum_{C}\left(E / C,\left(C_{N}+C\right) / C\right), \tag{7}
\end{equation*}
$$

where C runs through all cyclic subgroup schemes of E of order p. If p is a prime divisor of N, an operator U_{p} is defined by

$$
\begin{equation*}
U_{p}\left(E, C_{N}\right):=\sum_{C \neq D}\left(E / C,\left(C_{N}+C\right) / C\right) \tag{8}
\end{equation*}
$$

where D is the cyclic subgroup of C_{N} of order p. By the functoriality, Hecke operators act on $J_{0}(N)$ and $\operatorname{Cot}_{0}\left(J_{0}(N)\right)=S_{2}\left(\Gamma_{0}(N)\right)$ and the resulting action coincides with the usual one on $S_{2}\left(\Gamma_{0}(N)\right)$ (see [23]). We define the Hecke algebra as $\mathbb{T}_{0}(N):=$ $\left.\mathbb{Z}\left[\left\{T_{p}\right\}_{(p, N)=1},\left\{U_{p}\right\}_{p \mid N}\right\}\right]$, which is a commutative subring of $\operatorname{End}\left(J_{0}(N)\right)$. The effects of T_{p} and U_{p} on $f=\sum_{n=1}^{\infty} a_{n} q^{n} \in S_{2}\left(\Gamma_{0}(N)\right)$ are

$$
\begin{equation*}
f \mid U_{p}=\sum_{n=1}^{\infty} a_{p n} q^{n} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
f \mid T_{p}=\sum_{n=1}^{\infty}\left(a_{p n}+p a_{n / p}\right) q^{n} . \tag{10}
\end{equation*}
$$

Here $a_{n / p}=0$ if n / p is not an integer.
Definition 4.1. For a positive integer M, we define a subalgebra $\mathbb{T}_{0}(N)^{(M)}$ of $\mathbb{T}_{0}(N)$ to be the omitting of Hecke operators from $\mathbb{T}_{0}(N)$ whose indices are prime divisors of M, that is

$$
\mathbb{T}_{0}(N)^{(M)}=\mathbb{Z}\left[\left[\left\{T_{p}\right\}_{(p, N M)=1},\left\{U_{p}\right\}_{p \mid N,(p, M)=1}\right\} .\right.
$$

We call an algebraic homomorphism from $\mathbb{T}_{0}(N)^{(M)}$ to \mathbb{C} as a character. If the image is contained in \mathbb{R} it is referred as real.

Let M be a positive integer and f an element of $S_{2}\left(\Gamma_{0}(M)\right)$. For a positive integer d we set

$$
f^{(d)}(z)=f(d z) \in S_{2}\left(\Gamma_{0}(d M)\right)
$$

Definition 4.2. Let N be a square free positive integer and let M be a divisor of N. For a divisor d of N / M we define

$$
S_{2}\left(\Gamma_{0}(M)\right)^{(d)}=\left\{f^{(d)}(z) \mid f \in S_{2}\left(\Gamma_{0}(M)\right)\right\} \subset S_{2}\left(\Gamma_{0}(N)\right) .
$$

The space of old forms of level N is defined to be

$$
S_{2}\left(\Gamma_{0}(N)\right)_{\text {old }}=\sum_{M \mid N, M \neq N} \sum_{d \mid(N / M)} S_{2}\left(\Gamma_{0}(M)\right)^{(d)} \subset S_{2}\left(\Gamma_{0}(N)\right)
$$

and the orthogonal complement of $S_{2}\left(\Gamma_{0}(N)\right)_{\text {old }}$ for the Petersson product is called by the space of new forms and denoted by $S_{2}\left(\Gamma_{0}(N)\right)_{\text {new }}$.

Let N be a square free positive integer and let q be a prime not dividing N. Since the action of T_{q} on $S_{2}\left(\Gamma_{0}(N)\right)$ is self-adjoint for the Petersson product and since $S_{2}\left(\Gamma_{0}(N)\right)_{\text {old }}$ is stable by $T_{q}, S_{2}\left(\Gamma_{0}(N)\right)_{\text {new }}$ is stable by $\mathbb{T}_{0}(N)^{(N)}$. This implies that $S_{2}\left(\Gamma_{0}(N)\right)_{\text {new }}$ admits a spectral decomposition by $\mathbb{T}_{0}(N)^{(N)}$. We will show that $S_{2}\left(\Gamma_{0}(N)\right)$ has an irreducible decomposition of multiplicity one by the action of the full Hecke algebra $\mathbb{T}_{0}(N)$ (Theorem 4.1), which plays a key role in our story. Although this fact should be fairly well-known, we will show a proof since we could not find appropriate references. In proving the theorem, a key fact is the following, which is mentioned as multiplicity one ([3] [14]).

FACT 4.1. Let N be a positive integer (which may not be square free) and $f=$ $\sum_{n=1}^{\infty} a_{n} q^{n}$ an element of $S_{2}\left(\Gamma_{0}(N)\right)$. Suppose that $a_{n}=0$ for all n with $(n, t)=1$, where t is a fixed positive integer. Then $f \in S_{2}\left(\Gamma_{0}(N)\right)_{\text {old }}$.

This fact yields an irreducible decomposition as a $\mathbb{T}_{0}(N)$-module

$$
S_{2}\left(\Gamma_{0}(N)\right)_{\text {new }}=\oplus_{\alpha} S_{2}\left(\Gamma_{0}(N)\right)_{\text {new }}(\alpha)
$$

by real characters such that every irreducible component has dimension one. Here $S_{2}\left(\Gamma_{0}(N)\right)_{\text {new }}(\alpha)$ denotes the isotypic component of α

$$
S_{2}\left(\Gamma_{0}(N)\right)_{\text {new }}(\alpha)=\left\{f \in S_{2}\left(\Gamma_{0}(N)\right)_{\text {new }}|f| T=\alpha(T) f, \quad \forall T \in \mathbb{T}_{0}(N)\right\}
$$

which is spanned by the normalized Hecke eigenform. Moreover since N is square free $\alpha_{q}= \pm 1$ for $q \mid N([10]$ Lemma 3.2). By the definition of the space of new forms we have

$$
\begin{equation*}
S_{2}\left(\Gamma_{0}(N)\right)=\oplus_{M \mid N}\left(\oplus_{d \mid(N / M)} S_{2}\left(\Gamma_{0}(M)\right)_{\text {new }}^{(d)}\right) . \tag{11}
\end{equation*}
$$

Fix a divisor M of N and let us consider the subspace

$$
\mathbb{S}_{M}=\oplus_{d \mid(N / M)} S_{2}\left(\Gamma_{0}(M)\right)_{\text {new }}^{(d)} .
$$

Let $N / M=l_{1} \cdots l_{m}$ be the prime decomposition. Then there is an isomorphism as vector spaces

$$
\begin{equation*}
\mathbb{S}_{M} \simeq S_{2}\left(\Gamma_{0}(M)\right)_{n e w}^{\oplus 2^{m}} . \tag{12}
\end{equation*}
$$

We will explicitly describe this isomorphism.
Proposition 4.1. Let N be a square free positive integer and M a divisor of N. Let $f \in S_{2}\left(\Gamma_{0}(M)\right)_{\text {new }}$ be a normalized Hecke eigenform. Then for $\epsilon=\left(\epsilon_{l_{1}}, \cdots, \epsilon_{l_{m}}\right)$ $\left(\epsilon_{l_{i}}= \pm\right)$ there is a normalized Hecke eigenform f_{ϵ} of level N satisfying the following conditions.
(1) If q is a prime not dividing N / M

$$
a_{q}\left(f_{\epsilon}\right)=a_{q}(f)
$$

(2)

$$
a_{l_{i}}\left(f_{\epsilon}\right)=\alpha_{l_{i}}^{\epsilon_{l_{i}}}
$$

where
$\alpha_{l_{i}}^{+}=\frac{a_{l_{i}}(f)+\sqrt{\Delta_{i}}}{2}, \quad \alpha_{l_{i}}^{-}=\frac{a_{l_{i}}(f)-\sqrt{\Delta_{i}}}{2}, \quad \Delta_{i}=a_{l_{1}}(f)^{2}-4 l_{i}(<0)$.
Moreover the 2^{m} complex numbers $\left\{\alpha_{l_{1}}^{(\pm)}, \cdots, \alpha_{l_{m}}^{(\pm)}\right\}$are mutually different.
Proof. In general let p be a prime and F a square free positive integer prime to p. We have two degeneracy maps $\alpha_{p}, \beta_{p}: X_{0}(p F) \rightarrow X_{0}(F)$ defined by

$$
\alpha_{p}\left(E, C_{p} \oplus C_{F}\right)=\left(E, C_{F}\right), \quad \beta_{p}\left(E, C_{p} \oplus C_{F}\right)=\left(E / C_{p},\left(C_{p} \oplus C_{F}\right) / C_{p}\right)
$$

which induces linear maps

$$
\begin{equation*}
\alpha_{p}^{*}, \beta_{p}^{*}: S_{2}\left(\Gamma_{0}(F)\right) \rightarrow S_{2}\left(\Gamma_{0}(p F)\right) \tag{13}
\end{equation*}
$$

whose effects on $f=\sum_{n=1}^{\infty} a_{n} q^{n} \in S_{2}\left(\Gamma_{0}(F)\right)$ are

$$
\begin{equation*}
\alpha_{p}^{*}(f)=f=\sum_{n=1}^{\infty} a_{n} q^{n}, \quad \beta_{p}^{*}(f)=f^{(p)}=\sum_{n=1}^{\infty} a_{n} q^{p n} . \tag{14}
\end{equation*}
$$

Let T be $T_{r}(r \nmid p F)$ or $U_{l}(l \mid F)$. Then T commutes with α_{p} and β_{p} and

$$
\begin{array}{cc}
S_{2}\left(\Gamma_{0}(F)\right) \oplus S_{2}\left(\Gamma_{0}(F)\right) \xrightarrow{\alpha_{p}^{*}+\beta_{p}^{*}} & S_{2}\left(\Gamma_{0}(p F)\right) \\
\quad(T, T) \downarrow & T \downarrow \tag{15}\\
S_{2}\left(\Gamma_{0}(F)\right) \oplus S_{2}\left(\Gamma_{0}(F)\right) \xrightarrow{\alpha_{p}^{*}+\beta_{p}^{*}} & S_{2}\left(\Gamma_{0}(p F)\right) .
\end{array}
$$

Using (14) and (15) we will inductively construct f_{ϵ} by the number of prime divisors m. We set $M_{m}=M l_{1} \cdots l_{m}(m \geq 1)$ and $M_{0}=M$. Suppose that we have constructed a desired normalized Hecke eigenform $f_{\epsilon} \in S_{2}\left(\Gamma_{0}\left(M_{m-1}\right)\right)$ of character χ_{ϵ}. For a prime r
different from l_{m}, we let T be T_{r} or U_{r} according to $r \nmid M_{m}$ or $r \mid M_{m-1}$, respectively. Then (15) implies

$$
\begin{array}{cc}
S_{2}\left(\Gamma_{0}\left(M_{m-1}\right)\right) \oplus S_{2}\left(\Gamma_{0}\left(M_{m-1}\right)\right) \xrightarrow{\alpha_{l m}^{*}+\beta_{l m}^{*}} & S_{2}\left(\Gamma_{0}\left(M_{m}\right)\right) \\
(T, T) \downarrow \tag{16}\\
T \downarrow \\
S_{2}\left(\Gamma_{0}\left(M_{m-1}\right)\right) \oplus S_{2}\left(\Gamma_{0}\left(M_{m-1}\right)\right) \xrightarrow{\alpha_{l m}^{*}+\beta_{l m}^{*}} & S_{2}\left(\Gamma_{0}\left(M_{m}\right)\right) .
\end{array}
$$

Hence

$$
\alpha_{l_{m}}^{*}\left(f_{\epsilon}\right) \mid T=\alpha_{l_{m}}^{*}\left(f_{\epsilon} \mid T\right)=\chi_{\epsilon}(T) \alpha_{l_{m}}^{*}\left(f_{\epsilon}\right)
$$

and

$$
\beta_{l_{m}}^{*}\left(f_{\epsilon}\right) \mid T=\beta_{l_{m}}^{*}\left(f_{\epsilon} \mid T\right)=\chi_{\epsilon}(T) \beta_{l_{m}}^{*}\left(f_{\epsilon}\right) .
$$

Define a character

$$
\chi_{\epsilon}^{\left(l_{m}\right)}: \mathbb{T}_{0}\left(M_{m}\right)^{\left(l_{m}\right)} \rightarrow \mathbb{C}
$$

by

$$
\chi_{\epsilon}^{\left(l_{m}\right)}(T)=\chi_{\epsilon}(T),
$$

and $\alpha_{l_{m}}^{*}\left(f_{\epsilon}\right)$ and $\beta_{l_{m}}^{*}\left(f_{\epsilon}\right)$ are $\mathbb{T}_{0}\left(M_{m}\right)^{\left(l_{m}\right)}$-eigenforms of the same character $\chi_{\epsilon}^{\left(l_{m}\right)}$. Let us investigate the action of $U_{l_{m}}$. By (9), (10) and (14)

$$
\binom{\alpha_{l_{m}}^{*}\left(f_{\epsilon}\right) \mid U_{l_{m}}}{\beta_{l_{m}}^{*}\left(f_{\epsilon}\right) \mid U_{l_{m}}}=\left(\begin{array}{cc}
a_{l_{m}}\left(f_{\epsilon}\right) & -l_{m} \\
1 & 0
\end{array}\right)\binom{\alpha_{l_{m}}^{*}\left(f_{\epsilon}\right)}{\beta_{l_{m}}^{*}\left(f_{\epsilon}\right)} .
$$

Use the assumption (1) and the characteristic polynomial of $U_{l_{m}}$ is

$$
\Phi(t)=t^{2}-a_{l_{m}}\left(f_{\epsilon}\right) t+l_{m}=t^{2}-a_{l_{m}}(f) t+l_{m}
$$

Since f is a normalized $\mathbb{T}_{0}(M)$-eigenform which is new, the discriminant $\Delta_{m}=a_{l_{m}}(f)^{2}-$ $4 l_{m}$ is negative ([5]). Therefore the eigenvalue of $U_{l_{m}}$ are mutually distinct and contained in $\mathbb{C} \backslash \mathbb{R}$. Set

$$
\begin{equation*}
\alpha_{l_{m}}^{+}=\frac{a_{l_{m}}(f)+\sqrt{\Delta_{m}}}{2}, \quad \alpha_{l_{m}}^{-}=\frac{a_{l_{m}}(f)-\sqrt{\Delta_{m}}}{2} \tag{17}
\end{equation*}
$$

and let f_{ϵ}^{+}and f_{ϵ}^{-}be the corresponding normalized cusp form of level M_{m} satisfying

$$
f_{\epsilon}^{+}\left|U_{l_{m}}=\alpha_{l_{m}}^{+} f_{\epsilon}^{+}, \quad f_{\epsilon}^{-}\right| U_{l_{m}}=\alpha_{l_{m}}^{-} f_{\epsilon}^{-} .
$$

Extend $\chi_{\epsilon}^{\left(l_{m}\right)}$ to a character χ_{ϵ}^{+}and χ_{ϵ}^{-}of $\mathbb{T}_{0}\left(M_{m}\right)=\mathbb{T}_{0}\left(M_{m}\right)^{\left(l_{m}\right)}\left[U_{l_{m}}\right]$ by

$$
\chi_{\epsilon}^{+}\left(U_{l_{m}}\right)=\alpha_{l_{m}}^{+}, \quad \chi_{\epsilon}^{-}\left(U_{l_{m}}\right)=\alpha_{l_{m}}^{-} .
$$

Then f_{ϵ}^{+}and f_{ϵ}^{-}are $\mathbb{T}_{0}\left(M_{m}\right)$-eigenforms whose characters are χ_{ϵ}^{+}and χ_{ϵ}^{-}, respectively. Observe that $\alpha_{l_{m}}^{+}$and $\alpha_{l_{m}}^{-}$are different from each of $\left\{\alpha_{l_{i}}^{+}, \alpha_{l_{i}}^{-}\right\}_{1 \leq i \leq m-1}$, where

$$
\alpha_{l_{i}}^{+}=\frac{a_{l_{i}}(f)+\sqrt{\Delta_{i}}}{2}, \quad \alpha_{l_{i}}^{-}=\frac{a_{l_{i}}(f)-\sqrt{\Delta_{i}}}{2}, \quad \Delta_{i}=a_{l_{i}}(f)^{2}-4 l_{i}
$$

In fact if $\alpha_{l_{m}}^{+}=\alpha_{l_{i}}^{+}(1 \leq i \leq m-1)$, comparing their real and imaginary part we conclude

$$
a_{l_{m}}(f)=a_{l_{i}}(f), \quad \Delta_{m}=\Delta_{i}
$$

which implies $l_{m}=l_{i}$. Thus we have constructed normalized 2^{m} Hecke eigenforms of level M_{m} from f whose characters are mutually different.

Proposition 4.1 yields a spectral decomposition of multiplicity one

$$
\begin{equation*}
\mathbb{S}_{M}=\oplus_{\beta} \mathbb{C} f_{\beta} \tag{18}
\end{equation*}
$$

where f_{β} is the normalized Hecke eigenform of character β. Let M^{\prime} be a divisor of N different from M and we consider the decomposition (18) for M^{\prime},

$$
\begin{equation*}
\mathbb{S}_{M^{\prime}}=\oplus_{\beta} \mathbb{C} f_{\beta^{\prime}} \tag{19}
\end{equation*}
$$

The following lemma shows that every character β in (18) is different from each of β^{\prime} in (19).

Lemma 4.1. Let $f \in S_{2}\left(\Gamma_{0}\left(N_{f}\right)\right)_{\text {new }}$ (resp. $\left.g \in S_{2}\left(\Gamma_{0}\left(N_{g}\right)\right)_{\text {new }}\right)$ be a normalized Hecke eigenform. If there is a positive integer t such that

$$
a_{l}(f)=a_{l}(g)
$$

for any prime l with $l \nmid t$, then $f=g$.
Proof. Let K_{f} (resp. K_{g}) be the number field generated by Fourier coefficients of f and (resp. g) over \mathbb{Q} and let K be the minimal extension of \mathbb{Q} that contains K_{f} and K_{g}. We fix a prime l satisfying $l \nmid N_{f} N_{g}$ and that completely splits in K. Corresponding to f and g, there are absolutely irreducible representations

$$
\rho_{f, l}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}\left(\mathbb{Q}_{l}\right), \quad \rho_{g, l}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}\left(\mathbb{Q}_{l}\right)
$$

of the conductor N_{f} and N_{g} respectively which satisfy

$$
\operatorname{det}\left(t-\rho_{f, l}\left(\operatorname{Frob}_{q}\right)\right)=t^{2}-a_{q}(f) t+q, \quad\left(q, l N_{f}\right)=1
$$

and

$$
\operatorname{det}\left(t-\rho_{g, l}\left(\operatorname{Frob}_{q}\right)\right)=t^{2}-a_{q}(g) t+q, \quad\left(q, l N_{g}\right)=1 .
$$

([6] Theorem 3.1). Here Frob_{q} is the Frobenius at a prime q. Let S be a finite set of primes. Since a semi-simple representation $\rho_{l}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}\left(\mathbb{Q}_{l}\right)$ is determined by values $\operatorname{Tr} \rho_{l}\left(F r o b_{q}\right)$ on the primes $q \notin S$ at which ρ_{l} is unramified ([6] Proposition 2.6 (3)), the assumption implies that $\rho_{f, l}=\rho_{g, l}$ and in particular $N_{f}=N_{g}$. Now we deduce that $f=g$ from Fact 4.1.

Remark 4.1. Here is an another way to see that any β in (18) is different from each of β^{\prime} in (19). If necessary changing M and M^{\prime}, let r be a prime divisor of M^{\prime} not dividing M. By the construction $\beta^{\prime}\left(U_{r}\right) \in \mathbb{R}$ and $\beta\left(U_{r}\right) \in \mathbb{C} \backslash \mathbb{R}$ and therefore β and β^{\prime} are different.

For a character α of $\mathbb{T}_{0}(N)$, let $S_{2}\left(\Gamma_{0}(N)\right)(\alpha)$ denote the isotypic component of α,

$$
S_{2}\left(\Gamma_{0}(N)\right)(\alpha)=\left\{f \in S_{2}\left(\Gamma_{0}(N)\right)|f| T=\alpha(T) f, \quad \forall T \in \mathbb{T}_{0}(N)\right\}
$$

Theorem 4.1. (Strong multiplicity one) Let N be a square free positive integer. Then there is an isomorphism as $\mathbb{T}_{0}(N)$-modules

$$
S_{2}\left(\Gamma_{0}(N)\right)=\oplus_{\alpha} S_{2}\left(\Gamma_{0}(N)\right)(\alpha)
$$

such that every irreducible component has dimension one and is spanned by the normalized Hecke eigenform f_{α}. The index α in the decomposition runs through the set of closed points $\operatorname{Spec}\left(\mathbb{T}_{0}(N)\right)(\mathbb{C})$ and there is an isomorphism

$$
\Phi: \mathbb{T}_{0}(N) \otimes \mathbb{C} \simeq \prod_{\alpha \in \operatorname{Spec}\left(\mathbb{T}_{0}(N)\right)(\mathbb{C})} \mathbb{C}
$$

such that the composition with the projection π_{α} to the α-factor is α :

$$
\pi_{\alpha} \circ \Phi=\alpha
$$

Proof. The previous argument and (11) show that $S_{2}\left(\Gamma_{0}(N)\right)(\alpha)$ is a \mathbb{C}-linear space generated by a normalized Hecke eigenform f_{α} and we have an irreducible decomposition of multiplicity one

$$
\begin{equation*}
S_{2}\left(\Gamma_{0}(N)\right)=\oplus_{\alpha} S_{2}\left(\Gamma_{0}(N)\right)(\alpha) \tag{20}
\end{equation*}
$$

The linear isomorphism

$$
\operatorname{Hom}_{\mathbb{C}}\left(\mathbb{T}_{0}(N), \mathbb{C}\right) \simeq S_{2}\left(\Gamma_{0}(N)\right), \quad \rho \mapsto \sum_{m=1}^{\infty} \rho\left(T_{m}\right) q^{m}
$$

implies that $\{\alpha\}$ in the right hand side of (20) is the set of closed points $\operatorname{Spec}\left(\mathbb{T}_{0}(N)\right)(\mathbb{C})$ and $\left\{f_{\alpha}\right\}_{\alpha \in \operatorname{Spec}\left(\mathbb{T}_{0}(N)\right)(\mathbb{C})}$ is a basis of $S_{2}\left(\Gamma_{0}(N)\right)$. Now the desired decomposition of $\mathbb{T}_{0}(N) \otimes \mathbb{C}$ is obvious.

Let p be any prime (not necessary $p \equiv 1(\bmod 12)$) and N a square free positive integer prime to p. We define the space of p-new forms $S_{2}\left(\Gamma_{0}(p N)\right)_{p N / N}$ to be the orthogonal complement of $\alpha_{p}^{*}\left(S_{2}\left(\Gamma_{0}(N)\right)\right)+\beta_{p}^{*}\left(S_{2}\left(\Gamma_{0}(N)\right)\right)$ in $S_{2}\left(\Gamma_{0}(p N)\right)$ for the Petersson inner product. Then (11) and (14) imply

$$
\begin{equation*}
S_{2}\left(\Gamma_{0}(p N)\right)_{p N / N}=\oplus_{M \mid N} \oplus_{d \mid(N / M)} S_{2}\left(\Gamma_{0}(p M)\right)_{n e w}^{(d)} \tag{21}
\end{equation*}
$$

and by Theorem 4.1 we have a decomposition of $\mathbb{T}_{0}(N)$-module of multiplicity one

$$
\begin{equation*}
S_{2}\left(\Gamma_{0}(p N)\right)_{p N / N}=\oplus_{\chi} \mathbb{C} f_{\chi} \tag{22}
\end{equation*}
$$

Here f_{χ} is a normalized Hecke eigenform whose character is χ. Let $\mathbb{T}_{0}(p N)_{p N / N}$ be the restriction of $\mathbb{T}_{0}(N)$ to this space. Then the set of characters in (22) coincides with $\operatorname{Spec}\left(\mathbb{T}_{0}(p N)_{p N / N}\right)(\mathbb{C})$ and there is an isomorphism

$$
\begin{equation*}
\Phi: \mathbb{T}_{0}(p N)_{p N / N} \otimes \mathbb{C} \simeq \prod_{\chi \in \operatorname{Spec}\left(\mathbb{T}_{0}(p N)_{p N / N}\right)(\mathbb{C})} \mathbb{C} \tag{23}
\end{equation*}
$$

such that the composition with the projection π_{χ} to χ-factor is χ :

$$
\pi_{\chi} \circ \Phi=\chi
$$

Using [21] we will clarify a relationship between $S_{2}\left(\Gamma_{0}(p N)\right)_{p N / N}$ and the Ramanujan $\operatorname{graph} G_{p}^{(l)}(N)$.

By the functoriality α_{p} and β_{p} induce a homomorphism

$$
\begin{equation*}
\alpha_{p}^{*}, \beta_{p}^{*}: J_{0}(N) \rightarrow J_{0}(p N) \tag{24}
\end{equation*}
$$

and we define a subvariety

$$
J_{0}(p N)_{p-o l d}=\alpha_{p}^{*} J_{0}(M)+\beta_{p}^{*} J_{0}(N) \subset J_{0}(p N)
$$

which is called as p-old subvariety. We define p-new subvariety to be the quotient

$$
J_{0}(p N)_{p N / N}=J_{0}(p N) / J_{0}(p N)_{p-o l d} .
$$

Now we consider the actions of Hecke operators. Let T be $T_{r}(r \nmid p N)$ or $U_{l}(l \mid N)$. Then T commutes with α_{p} and β_{p} and

and $J_{0}(p N)_{p-o l d}$ is $\mathbb{T}_{0}(p N)^{(p)}$-stable. By [21] Remark 3.9 $J_{0}(p N)_{p-o l d}$ is also preserved by U_{p} and it is $\mathbb{T}_{0}(p N)=\mathbb{T}_{0}(p N)^{(p)}\left[U_{p}\right]$-stable. Therefore $J_{0}(p N)_{p N / N}$ admits the action of $\mathbb{T}_{0}(p N)$ and the image of $\mathbb{T}_{0}(p N)$ in $\operatorname{End}\left(J_{0}(p N)_{p N / N}\right)$ is temporary denoted by \mathbb{T}^{\prime}. Having identified the holomorphic cotangent space of $J_{0}(p N)_{p N / N}$ at the origin with $S_{2}\left(\Gamma_{0}(p N)\right)_{p N / N}$ let us consider the representation of $\operatorname{End}\left(J_{0}(p N)_{p N / N}\right)$ on $S_{2}\left(\Gamma_{0}(p N)\right)_{p N / N}$. Then the image of \mathbb{T}^{\prime} in $\operatorname{End}\left(S_{2}\left(\Gamma_{0}(p N)\right)_{p N / N}\right)$ is $\mathbb{T}_{0}(p N)_{p N / N}$. Since representation of $\operatorname{End}\left(J_{0}(p N)_{p N / N}\right)$ on $S_{2}\left(\Gamma_{0}(p N)\right)_{p N / N}$ faithful, \mathbb{T}^{\prime} and $\mathbb{T}_{0}(p N)_{p N / N}$ are isomorphic and we identify them.

It is known that the Néron model of $J_{0}(p N)_{p N / N}$ over SpecZ has purely toric reduction \mathcal{T} at p. Let us describe its character group. $X_{0}(p N)_{\mathbb{F}_{p}}$ has two irreducible components Z_{F} and Z_{V}, which are isomorphic to $X_{0}(N)_{\mathbb{F}_{p}}$. Over Z_{F} (resp. Z_{V}) the parametrized cyclic group C_{p} of order p is the kernel of the Frobenius F (resp. the Verschiebung $V) . Z_{F}$ and Z_{V} transversally intersect at enhanced supersingular points of level N, that is $\Sigma_{N}=\left\{\mathbf{E}_{1}, \cdots, \mathbf{E}_{\nu(N)}\right\}$. Set

$$
X_{N}=\oplus_{i=1}^{\nu(N)} \mathbb{Z} \mathbf{E}_{i}
$$

and we adopt $\left\{\mathbf{E}_{1}, \cdots, \mathbf{E}_{v(N)}\right\}$ as a base. We define the action of Hecke operators on X_{N} by (7) and (8) and let \mathbb{T} denote a commutative subring of $\operatorname{End}_{\mathbb{Z}}\left(X_{N}\right)$ generated by Hecke operators. Let us consider the boundary map of the dual graph of $X_{0}(p N)_{\mathbb{F}_{p}}$,

$$
\partial: X_{N} \rightarrow \mathbb{Z} Z_{F} \oplus \mathbb{Z} Z_{F}, \quad \partial\left(\mathbf{E}_{i}\right)=Z_{F}-Z_{V} .
$$

Being $X_{N}^{(0)}$ the kernel of ∂, we have the exact sequence of Hecke modules

$$
\begin{equation*}
0 \rightarrow X_{N}^{(0)} \rightarrow X_{N} \xrightarrow{\partial} \mathbb{Z} \epsilon \rightarrow 0, \quad \epsilon=Z_{F}-Z_{V} . \tag{26}
\end{equation*}
$$

For brevity let us write E_{i} by [i]. Then

$$
\partial([i])=\epsilon, \quad 1 \leq \forall i \leq n
$$

and

$$
X_{N}^{(0)}=\left\{\sum_{i=1}^{n} a_{i}[i] \mid a_{i} \in \mathbb{Z}, \sum_{i=1}^{n} a_{i}=0\right\} .
$$

The the restriction \mathbb{T}_{0} of \mathbb{T} to $X_{N}^{(0)}$ has the following description. By [21] Proposition 3.1, $X_{N}^{(0)}$ is the character group of the connected component of the torus \mathcal{T}. By the Néron property, \mathcal{T} admits the action of $\mathbb{T}_{0}(p N)_{p N / N}\left(=\mathbb{T}^{\prime}\right)$ and the induced action on $X_{N}^{(0)}$ is \mathbb{T}_{0}. Therefore \mathbb{T}_{0} is the image of $\mathbb{T}_{0}(p N)_{p N / N}$ in $\operatorname{End}_{\mathbb{Z}}\left(X_{N}^{(0)}\right)$. Since the action of $\mathbb{T}_{0}(p N)_{p N / N}$ on $X_{N}^{(0)}$ is faithful ([21] Theorem 3.10), \mathbb{T}_{0} and $\mathbb{T}_{0}(p N)_{p N / N}$ are isomorphic and they will be identified from now on. The following theorem is a geometric version of Jacquet-Langlands correspondence.

THEOREM 4.2. Let N be a square free positive integer. There is an isomorphism as $\mathbb{T}_{0}(p N)_{p N / N}$-modules

$$
X_{N}^{(0)} \otimes \mathbb{C} \simeq S_{2}\left(\Gamma_{0}(p N)\right)_{p N / N} .
$$

Proof. As we have mentioned before, the action of $\mathbb{T}_{0}(p N)_{p N / N}$ on $X_{N}^{(0)}$ is faithful ([21] Theorem 3.10). Since the characters $\{\chi\}$ in (22) are mutually different and by (23) we see every irreducible component of (22) should appear as irreducible factor of $X_{N}^{(0)} \otimes \mathbb{C}$. Thus $S_{2}\left(\Gamma_{0}(p N)\right)_{p N / N}$ is contained in $X_{N}^{(0)} \otimes \mathbb{C}$. On the other hand the rank of $X_{N}^{(0)}$ is equal to $\operatorname{dim} \mathcal{T}=\operatorname{dim} J_{0}(p N)_{p N / N}$. Since the holomorphic cotangent space of $J_{0}(p N)_{p N / N}$ at the origin is $S_{2}\left(\Gamma_{0}(p N)\right)_{p N / N}$,

$$
\operatorname{dim} X_{N}^{(0)} \otimes \mathbb{C}=\operatorname{dim} S_{2}\left(\Gamma_{0}(p N)\right)_{p N / N}
$$

and the claim is proved.
Let us state a real version of Theorem 4.2. Since the character of a normalized Heckeeigen newform is real, using (15) and (20), Theorem 4.2 yields an decomposition as a $\mathbb{T}_{0}(p N)_{p N / N} \otimes \mathbb{R}$-module

$$
X_{N}^{(0)} \otimes \mathbb{R}=\oplus_{\gamma} V(\gamma)
$$

where

$$
V(\gamma)=\left\{v \in X_{N}^{(0)} \otimes \mathbb{R} \mid T(v)=\gamma(T) v \quad \forall T \in \mathbb{T}_{0}(p N)_{p N / N}^{(p N)}\right\} .
$$

Here γ is the real character of $\mathbb{T}_{0}(p N)_{p N / N}^{(p N)}$ which is the restriction of the character of the normalized Hecke eigen newform f_{γ} whose level N_{γ} satisfies

$$
N_{\gamma}=p M, \quad M \mid N .
$$

Lemma 4.1 shows that $\{\gamma\}$ are mutually different. Let $N / M=l_{1} \cdots l_{m}$ be the prime decomposition. We write

$$
\begin{equation*}
\mathbb{T}_{0}(p N)_{p N / N} \otimes \mathbb{R}=\left(\mathbb{T}_{0}(p N)_{p N / N}^{(N / M)} \otimes \mathbb{R}\right) \otimes_{\mathbb{R}} \mathbb{R}\left[U_{l_{1}}, \cdots, U_{l_{m}}\right] \tag{27}
\end{equation*}
$$

and $V(\gamma)$ is a $\mathbb{R}\left[U_{l_{1}}, \cdots, U_{l_{m}}\right]$-module. As we have seen in the proof of Proposition 4.1, the characteristic polynomial of $U_{l_{i}}$ is $P_{l_{i}}\left(U_{l_{i}}\right)=U_{l_{i}}^{2}-a_{l_{i}}\left(f_{\gamma}\right) U_{l_{i}}+l_{i}$ and $\operatorname{dim}_{\mathbb{R}} V(\gamma)=2^{m}$. Therefore

$$
V(\gamma) \simeq \mathbb{R}\left[U_{l_{1}}, \cdots, U_{l_{m}}\right] / I
$$

where I is an ideal of $\mathbb{R}\left[U_{l_{1}}, \cdots, U_{l_{m}}\right]$ generated by the polynomials $\left\{P_{l_{i}}\left(U_{l_{i}}\right)\right\}_{i=1, \cdots, m}$. Viewing $\mathbb{R} f_{\gamma}$ as a $\mathbb{T}_{0}(p N)_{p N / N}^{(N / M)} \otimes \mathbb{R}$-module, we write it by $\mathbb{R} f_{\gamma}^{(N / M)}$. Using (27) we see

$$
V(\gamma) \simeq \mathbb{R} f_{\gamma}^{(N / M)} \otimes_{\mathbb{R}}\left(\mathbb{R}\left[U_{l_{1}}, \cdots, U_{l_{m}}\right] / I\right)
$$

as $\mathbb{T}_{0}(p N)_{p N / N} \otimes \mathbb{R}$-modules. Thus we have proved a real version of Theorem 4.1 and Theorem 4.2.

THEOREM 4.3. (Weak multiplicity one) There is an irreducible decomposition

$$
X_{N}^{(0)} \otimes \mathbb{R}=\oplus_{\gamma} V(\gamma)
$$

as a $\mathbb{T}_{0}(p N)_{p N / N} \otimes \mathbb{R}$-module. Here $\{\gamma\}$ runs through the real characters of normalized Hecke eigen newforms $\left\{f_{\gamma}\right\}_{\gamma}$ such that the level $N_{f_{\gamma}}$ of f_{γ} satisfies $N_{f_{\gamma}}=p M$ where M is a divisor of N. Let $N / M=l_{1} \cdots l_{m}$ be the prime decomposition. Then a $\mathbb{T}_{0}(p N)_{p N / N} \otimes \mathbb{R}$ module $V(\gamma)$ is defined to be

$$
V(\gamma) \simeq \mathbb{R} f_{\gamma}^{(N / M)} \otimes_{\mathbb{R}}\left(\mathbb{R}\left[U_{l_{1}}, \cdots, U_{l_{m}}\right] / I\right) .
$$

Here the action of $\mathbb{T}_{0}(p N)_{p N / N} \otimes \mathbb{R}$ is defined via (27) and I is an ideal generated by polynomials $\left\{P_{l_{i}}\left(U_{l_{i}}\right)\right\}_{i=1, \cdots, m}$ where

$$
P_{l_{i}}\left(U_{l_{i}}\right)=U_{l_{i}}^{2}-a_{l_{i}}\left(f_{\gamma}\right) U_{l_{i}}+l_{i} .
$$

Moreover the characters $\{\gamma\}$ are mutually different.
Let l be an odd prime different from p. Remember that $N \in \mathcal{N}_{p, l}$ is the set of square free positive integers prime to $l p$.

Theorem 4.4. (Monotonicity) For $N \in \mathcal{N}_{p, l}$ let $\rho_{l}^{1}(N)$ be the largest eigenvalue of the Hecke operator T_{l} of $X_{N}^{(0)} \otimes \mathbb{R}$. Then for $M, N \in \mathcal{N}_{p, l}$ such that $M \mid N$,

$$
\rho_{l}^{1}(N) \geq \rho_{l}^{1}(M)
$$

Proof. Theorem 4.2 (or Theorem 4.3) shows that, under the decomposition (22), $\rho_{l}^{1}(N)$ is the maximum of l-th coefficients of Hecke eigenform $\left\{f_{\chi}\right\}_{\chi}$. By (21) we find $S_{2}\left(\Gamma_{0}(p M)\right)_{p M / M}$ is contained in $S_{2}\left(\Gamma_{0}(p N)\right)_{p N / N}$ and the claim is obtained.

5. Properties of the graphs

Let p be a prime satisfying $p \equiv 1(\bmod 12)$ and l be an odd prime different from p. Let us take $N \in \mathcal{N}_{p, l}$. For brevity we write $\mathbf{E}_{i}=\left(E_{i}, C_{N}\right)$ and let Γ_{l} be the set of cyclic subgroups of E_{i} of order l. The bijective correspondence

$$
\operatorname{Hom}\left(\mathbf{E}_{i}, \mathbf{E}_{j}\right)(l) / \pm 1 \simeq \Gamma_{l}, \quad f \mapsto \operatorname{Ker} f
$$

shows that the Brandt matrix $B_{p}^{(l)}(N)$ is the representation matrix of T_{l}. Since $B_{p}^{(l)}(N)$ is symmetric, the eigenvalues are all real. It is easy to check that $\epsilon=Z_{F}-Z_{V}$ (cf. (26)) satisfies

$$
T_{l}(\epsilon)=(l+1) \epsilon
$$

and since ∂ in (26) commutes with $T_{l}, l+1$ is an eigenvalue of $B_{p}^{(l)}(N)$. Let δ be a corresponding eigenvector. Using the Eichler-Shimura relation and the Weil conjecture, Theorem 4.2 (or Theorem 4.3) implies that the modulus of other eigenvalues are less than or equal to $2 \sqrt{l}$ and

$$
X_{N} \otimes \mathbb{R}=\left(X_{N}^{(0)} \otimes \mathbb{R}\right) \hat{\oplus} \mathbb{R} \delta
$$

where $\hat{\oplus}$ denotes an orthogonal direct sum. Moreover if $N \in \mathcal{N}_{p, l}$, Theorem 4.3 and this decomposition yield a spectral decomposition of $X_{N} \otimes \mathbb{R}$ in terms of eigenspaces of T_{l}. Theorem 4.2 implies that

$$
\begin{equation*}
\operatorname{det}\left[1-B_{p}^{(l)}(N) t+l t^{2}\right]=(1-t)(1-l t) \operatorname{det}\left[1-T_{l} t+l t^{2} \mid S_{2}\left(\Gamma_{0}(p N)\right)_{p N / N}\right] \tag{28}
\end{equation*}
$$

THEOREM 5.1. For any $N \in \mathcal{N}_{p, l}, G_{p}^{(l)}(N)$ is a connected regular Ramanujan graph of degree $l+1$ not bipartite.

Proof. By construction $G_{p}^{(l)}(N)$ is a regular graph of degree $l+1$. Let us investigate the eigenvalues of the adjacency matrix $B_{p}^{(l)}(N)$. As we have seen, $l+1$ is an eigenvalue of $B_{p}^{(l)}(N)$ and the modulus of other eigenvalues are less than or equal to $2 \sqrt{l}$. Thus $G_{p}^{(l)}(N)$ is a Ramanujan graph. By the equation (1) (see also (2)), 0 is an eigenvalue of the Laplacian with multiplicity one and we see that $G_{p}^{(l)}(N)$ is connected. In general a connected finite regular graph of degree d is bipartite if and only if $\pm d$ are eigenvalues of the adjacency matrix ([27]). Therefore $G_{p}^{(l)}(N)$ is not bipartite.
Now Theorem 1.1 is a direct consequence of the equation (1) (see also (2)), Theorem 4.4 and Theorem 5.1.

Proof of Theorem 1.2. Set $N=q$ and we use the decomposition (21). Since $S_{2}\left(\Gamma_{0}(p)\right)^{(q)}$ is isomorphic to $S_{2}\left(\Gamma_{0}(p)\right)$ as a $\mathbb{T}_{0}(p q)^{(p q)}$-module, we see

$$
S_{2}\left(\Gamma_{0}(p q)\right)_{p q / q}=S_{2}\left(\Gamma_{0}(p q)\right)_{\text {new }} \oplus S_{2}\left(\Gamma_{0}(p)\right)^{\oplus 2}
$$

as $\mathbb{T}_{0}(p q)^{(p q)}$-modules and

$$
\frac{\operatorname{det}\left(1-B_{p}^{(l)}(q) t+l t^{2}\right)}{\operatorname{det}\left(1-B_{p}^{(l)}(1) t+l t^{2}\right)^{2}}=\frac{\operatorname{det}\left(1-T_{l} t+l t^{2} \mid S_{2}\left(\Gamma_{0}(p q)\right)_{\text {new }}\right)}{(1-t)(1-l t)}=\frac{\operatorname{det}\left(1-B_{q}^{(l)}(p) t+l t^{2}\right)}{\operatorname{det}\left(1-B_{q}^{(l)}(1) t+l t^{2}\right)^{2}}
$$

by (28). On the other hand Fact $\mathbf{2 . 2}$ implies,

$$
\chi\left(G_{p}^{(l)}(q)\right)-2 \chi\left(G_{p}^{(l)}(1)\right)=\frac{(p-1)(q-1)(1-l)}{24}=\chi\left(G_{q}^{(l)}(p)\right)-2 \chi\left(G_{q}^{(l)}(1)\right)
$$

and the claim follows from Fact 2.1.
Proof of Theorem 1.3. Let us recall the decomposition (22)

$$
S_{2}\left(\Gamma_{0}(p N)\right)_{p N / N}=\oplus_{\chi} \mathbb{C} f_{\chi},
$$

where f_{χ} is a normalized Hecke eigenform. Then the second largest eigenvalue $\rho_{l}^{1}(N)$ of $B_{p}^{(l)}(N)$ is the maximum of $\left\{a_{l}\left(f_{\chi}\right)\right\}_{\chi}$ by Theorem 4.2 and satisfies $\rho_{l}^{1}(N) \leq 2 \sqrt{l}$ by Theorem 5.1. Let $\left\{r_{i}\right\}_{i=1}^{\infty}$ be the set of primes and $N_{k}=\prod_{i=1}^{k} r_{i}$. Then by Theorem 4.4, $\rho_{l}^{1}\left(N_{k}\right)$ is monotone increasing for k. In general let $\left\{G_{i}\right\}_{i}$ be an infinite family of connected d-regular graphs satisfying

$$
\lim _{i \rightarrow \infty}\left|V\left(G_{i}\right)\right|=\infty
$$

Then it is known that

$$
\liminf _{i \rightarrow \infty} \rho^{1}\left(G_{i}\right) \geq 2 \sqrt{d-1}
$$

by Alon and Boppana ([1][2][28]). We will use this fact. Since $\left\{G_{p}^{(l)}\left(N_{k}\right)\right\}_{k}$ is an infinite family of connected regular Ramanujan graphs of degree $l+1$ with

$$
\lim _{k \rightarrow \infty}\left|V\left(G_{p}^{(l)}\left(N_{k}\right)\right)\right|=\lim _{k \rightarrow \infty} \frac{(p-1) \prod_{i=1}^{k}\left(1+r_{i}\right)}{12}=\infty
$$

we see

$$
\lim _{k \rightarrow \infty} \rho_{l}^{1}\left(N_{k}\right)=2 \sqrt{l},
$$

and

$$
\lim _{k \rightarrow \infty} \operatorname{Max}\left\{a_{l}\left(f_{\chi}\right): S_{2}\left(\Gamma_{0}\left(p N_{k}\right)\right)_{p N_{k} / N_{k}}=\oplus_{\chi} \mathbb{C} f_{\chi}\right\}=2 \sqrt{l}
$$

Since $S_{2}\left(\Gamma_{0}\left(p N_{k}\right)\right)_{p N_{k} / N_{k}}$ is a subspace of $S_{2}\left(\Gamma_{0}\left(p N_{k}\right)\right)$, the remaining claim immediately follows from this result and the decomposition in Theorem 4.1.
The proof implies the following corollary.
Corollary 5.1. Let p be a prime satisfying $p \equiv 1(\bmod 12)$ and l an odd prime with $l \neq p$. Then for any set of mutually distinct primes $\left\{r_{i}\right\}_{i=1}^{\infty}$ which are different from l and p, there is a sequence of normalized Hecke eigenforms $\left\{f_{i}\right\}_{i}$ of weight 2 such that $f_{i} \in S_{2}\left(\Gamma_{0}\left(p r_{1} \cdots r_{i}\right)\right)_{\text {new }}$ and

$$
\lim _{i \rightarrow \infty} a_{l}\left(f_{i}\right)=2 \sqrt{l}
$$

References

[1] N. Alon, Eigenvalues and expanders, Combinatrica 6, No. 2: 83-96, 1986.
[2] N. Alon and V. Milman, λ_{1}, isoperimetric inequalities for graphs, and superconcentrations, J. Combin. Theory, Ser B 38: 73-88, 1985.
[3] A.O.L. Atkin and J. Lehner, Hecke operators on $\Gamma_{0}(m)$, Math. Ann., 185: 134-160, 1970.
[4] H. Bass, The Ihara-Selberg zeta functions of a tree lattice, Intern. J. Math., 3: 717-797, 1992.
[5] R.F. Coleman and B. Edixhoven, On the semi-simplicity of the U_{p}-operator on modular forms, Math. Ann., 310 no.1: 119-127, 1998.
[6] H. Darmon, F. Diamond and R. Taylor, Fermat's Last Theorem, Currents Developments in Mathematics, 1995, Intenational Press: 1-154, 1994.
[7] P. Deligne and M. Rapoport, Les schémas de modules de courbes elliptiques, Modular Function of One Variables II, Springer Lecture Notes 349: 143-316, 1979.
[8] B. H. Gross, Heights and the special values of L-series, C.M.S. Conf. Proc. 7: 115-187, 1987.
[9] K. Hashimoto, Zeta functions of finite graphs and representations of p-adic group, Adv. Stud. in Pure Math. 15: 211-280, 1989.
[10] H. Hida, A p-adic measure attached the zeta functions associated with two elliptic modular forms I, Inventiones Math. 79: 159-195, 1985.
[11] J. W. Hoffman, Remarks on the zeta function of a graph, Proc. Fourth Inter. Conf. Dynam. Sys. and Diff. Eq. 413-422, 2003.
[12] Y. Ihara, On discrete subgroups of the two by two projective linear group over p-adic fields, J. Math. Soc. Japan, 18: 219-235, 1966.
[13] N. Katz and B. Mazur, Arithmetic Moduli of Elliptic curves, Ann. of Math. Stud., Princeton Univ. Press, 1985.
[14] W. C. Li, New forms and functional equations, Math. Ann. 212: 285-315, 1975.
[15] W. W. Li, Character sums and abelian Ramanujan graphs, J. Number Theory 41: 199-217, 1992.
[16] W. W. Li, Zeta and L-functions in Number Theory and Combinatorics, CBMS Regional Conference series in Math. 129, AMS 2019.
[17] A. Lubotzky, R. Phillips and P. Sarnak, Ramanujan graphs, Combinatorica 8: 261-277, 1988.
[18] J.-M. Mestre, La méthod des graphes. Examples et applications, Proc. Int. Conf. on class numbers and fundamental units of algebraic number fields, Katata, Japan, 217-242, 1986.
[19] M.R. Murty, Ramanujan graphs, J. Ramanujan Math. Soc.1, 1-20, 2001.
[20] A.K. Pizer, Ramanujan graphs, Computational perspectives on number theory (Chicago, H. 1995), AMS/IP Stud. Adv. Math. 7, Amer. Math. Soc. Providence, RI: 159-178, 1998,
[21] K.A. Ribet, On modular representation of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ arising from modular forms, Inventiones Math., 100: 431-476, 1990.
[22] J.H. Silverman, The Arithmetic of Elliptic Curves, 2nd edition GTM 106, Springer, 2008, ISBN 9780387094936.
[23] G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton, Princeton Univ. Press, 1971.
[24] H.M. Stark and A.A. Terras, Zeta functions of finite graphs and coverings, Advanced in Math., 121: 124-165, 1996.
[25] K. Sugiyama, Zeta functions of Ramanujan graphs and modular forms, Comment. Math. Univ. Sanct. Pauli 66, 1-2: 29-43, 2017.
[26] R.M. Tanner, Explicit construction from a generalized N-gons, SIAM. J. Alg. Discr. Math. 5: 287-294, Press 1984.
[27] A. Terras, Fourier analysis on finite groups, London Math. Soc., Cambridge Univ. Press, 1999.
[28] A. Valette, Graphs de Ramanujan et application, Sém. Bourbaki 1996-97, n° 829, Astérisque: 247-276, 1997.

Department of Mathematics, Faculty of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo 171-8501, Japan
e-mail: kensugiyama@rikkyo.ac.jp

