A Tower of Ramanujan Graphs and a Reciprocity Law of Graph Zeta Functions

by

Kennichi SUGIYAMA

(Received April 28, 2020) (Revised August 19, 2020)

Abstract. Let *l* be an odd prime. We will construct a tower of connected regular Ramanujan graph of degree l + 1 from modular curves. This supplies an example of a collection of (l + 1)-regular graphs whose non-zero eigenvalues of the Laplacian are contained in the interval $[(\sqrt{l} - 1)^2, (\sqrt{l} + 1)^2]$. We also show graph (or Ihara) zeta functions satisfy a certain reciprocity law.

Key words: a Ramanujan graph, the Cheeger constant, an expander, a graph zeta function, a modular curve, a Brandt matrix, a reciprocity law. AMS classification 2010: 05C25, 05C38, 05C50, 05C75, 11G18, 11G20, 11M38, 11M99.

1. Introduction

Let p be a prime satisfying $p \equiv 1 \pmod{12}$ and let us fix an odd prime l different from p. In [25] we have constructed a connected regular Ramanujan graph $G_p^{(l)}(1)$ of degree l+1 non-bipartite. The number of vertices $G_p^{(l)}(1)$ is (p-1)/12 and the Euler characteristic is

$$\chi(G_p^{(l)}(1)) = \frac{(p-1)(1-l)}{24}$$

The graph $G_p^{(l)}(1)$ is regarded as a graph of level *one*. In this paper we will construct a connected non-bipartite regular Ramanujan graph of degree l + 1 of a higher level.

In the following let *p* be a prime such that $p \equiv 1 \pmod{12}$ and *l* an odd prime different from *p*. Let $\mathcal{N}_{p,l}$ be the set of square free positive integers such that every member *N* is prime to *lp*. Then to each *N* of $\mathcal{N}_{p,l}$, a connected non-bipartite (l + 1)-regular Ramanujan graph $G_p^{(l)}(N)$ of which the number of vertices is $\nu(N) := \frac{(p-1)\sum_{d|N}d}{12}$ will be assigned. Let $\lambda_0(G_p^{(l)}(N)) \leq \lambda_1(G_p^{(l)}(N)) \leq \cdots \leq \lambda_{\nu(N)-1}(G_p^{(l)}(N))$ denote eigenvalues of the Laplacian of $G_p^{(l)}(N)$. Since $G_p^{(l)}(N)$ is connected $\lambda_0(G_p^{(l)}(N)) = 0$ and $\lambda_1(G_p^{(l)}(N))$ is positive. A relationship between the adjacency matrix and the Laplacian (cf. (2)) shows that

(1)
$$\rho^{i}(G_{p}^{(l)}(N)) := (l+1) - \lambda_{i}(G_{p}^{(l)}(N))$$

is an eigenvalue of the adjacency matrix.

THEOREM 1.1. (1) For i > 1.

$$(\sqrt{l}-1)^2 \le \lambda_i (G_p^{(l)}(N)) \le (\sqrt{l}+1)^2, \quad \forall N \in \mathcal{N}_{p,l}.$$

(2) Let *M* and *N* be elements of $\mathcal{N}_{p,l}$ satisfying M|N. Then $G_p^{(l)}(N)$ is a covering of $G_p^{(l)}(M)$ of degree $\sigma_1(N/M)$ and

$$\rho^{1}(G_{p}^{(l)}(N)) \ge \rho^{1}(G_{p}^{(l)}(M)), \quad \lambda_{1}(G_{p}^{(l)}(N)) \le \lambda_{1}(G_{p}^{(l)}(M)).$$

Here σ_1 *is the Euler function defined by*

$$\sigma_1(n) = \sum_{d|n} d.$$

Our tower of Ramanujan graphs $\{G_p^{(l)}(N)\}_{N \in \mathcal{N}_{p,l}}$ has an interesting geometric property. In order to explain further we recall *the (discrete) Cheeger constant*. In general let *G* be a connected *d*-regular graph of *n* vertices. The Cheeger constant h(G) of *G* is defined by

$$h(G) = \min\{\frac{|\partial S|}{|S|} : S \subset V(G), \ 0 < |S| \le \frac{n}{2}\},\$$

where V(G) denotes the set of vertices and

$$\partial S := \{\{u, v\} \in GE(G) : u \in S, v \in V(G) \setminus S\}$$

Here GE(G) is the set of geometric edges (i.e. the set of unoriented edges, see §2) and $|\cdot|$ denotes the cardinality. Then the smallest non-zero eigenvalue $\lambda_1(G)$ of the Laplacian satisfies ([2] [26])

$$\frac{\lambda_1(G)}{2} \le h(G) \le \sqrt{2d\lambda_1(G)}$$

and the next corollary is an immediate consequence of Theorem 1.1.

 $\langle 1 \rangle$

COROLLARY 1.1. (A gap theorem)

$$\frac{(\sqrt{l}-1)^2}{2} \le h(G_p^{(l)}(N)) \le \sqrt{2(l+1)}(\sqrt{l}+1)$$

for any $N \in \mathcal{N}_{p,l}$.

In general the graph zeta function (or the Ihara zeta function) Z(G)(t) is defined for a finite connected graph G. Although a priori Z(G)(t) is a power series of t, the Ihara formula tells us that it is a rational function (see **Fact 2.1**). We will show that the zeta functions of our graphs satisfy a reciprocity law.

THEOREM 1.2. (A reciprocity law) Let p and q be distinct primes satisfying $p \equiv q \equiv 1 \pmod{12}$ and l an odd prime different from p and q. Then

$$\frac{Z(G_p^{(l)}(q))(t)}{Z(G_p^{(l)}(1))(t)^2} = \frac{Z(G_q^{(l)}(p))(t)}{Z(G_q^{(l)}(1))(t)^2}.$$

In particular

$$Z(G_p^{(l)}(q))(t) \equiv Z(G_q^{(l)}(p))(t) \mod \mathbb{Q}(t)^{\times 2}.$$

Here is an application of **Theorem 1.1** to modular forms. As before let p be a prime satisfying $p \equiv 1 \pmod{12}$ and N a square free positive integer prime to p. Then the spaces of cusp forms $S_2(\Gamma_0(pN))$ and one of p-new forms $S_2(\Gamma_0(pN))_{pN/N}$ of level pN (see §4, especially (21)) have decompositions

$$S_2(\Gamma_0(pN)) = \bigoplus_{\alpha} \mathbb{C} f_{\alpha}, \quad S_2(\Gamma_0(pN))_{pN/N} = \bigoplus_{\chi} \mathbb{C} f_{\chi},$$

where f_{α} and f_{χ} are normalized Hecke eigenforms of character α and χ (cf. **Theorem 4.1** and (22)). Using the result due to Alon-Boppana ([1] [2]) we will show the following.

THEOREM 1.3. Let p be a prime satisfying $p \equiv 1 \pmod{12}$ and l an odd prime different from p. Let $\{r_i\}_{i=1}^{\infty}$ be a set of mutually distinct primes not dividing lp. Set $N_k = \prod_{i=1}^k r_i$ and then

$$\lim_{k\to\infty} \operatorname{Max}\{a_l(f_{\chi}) : S_2(\Gamma_0(pN_k))_{pN_k/N_k} = \bigoplus_{\chi} \mathbb{C}f_{\chi}\} = 2\sqrt{l},$$

where $a_l(f_{\chi})$ denotes the *l*-th Fourier coefficient of f_{χ} . In particular

$$\lim_{k \to \infty} \operatorname{Max}\{a_l(f_{\alpha}) : S_2(\Gamma_0(pN_k)) = \bigoplus_{\alpha} \mathbb{C}f_{\alpha}\} = 2\sqrt{l}.$$

Acknowledgment. The author is very much obliged to the referee who points out mistakes and gives kind comments.

2. Basic facts of the zeta function of a graph

A (finite) graph G consists of a finite set of vertices V(G) and a finite set of oriented edges E(G), which satisfy the following property: there are *end point maps*,

$$\partial_0, \quad \partial_1: E(G) \to V(G),$$

and an orientation resersal,

$$J: E(G) \to E(G), \quad J^2 = \text{identity},$$

such that $\partial_i \circ J = \partial_{1-i}$ (i = 0, 1). The quotient E(G)/J is called *the set of geometric edges* and is denoted by GE(G). We regard an element of $e \in GE(G)$ as an unoriented edge and if its end-points are u and v we write $e = \{u, v\}$. For $x \in V(G)$ we set

$$E_{i}(x) = \{e \in E(G) \mid \partial_{i}(e) = x\}, \quad j = 0, 1.$$

Thus $JE_j(x) = E_{1-j}(x)$. Intuitively $E_0(x)$ (resp. $E_1(x)$) is the set of edges departing from (resp. arriving at) x. The *degree* of x, d(x), is defined by

$$d(x) = |E_0(x)| + |E_1(x)|.$$

E(G) is naturally divided into two classes, *loops* and *passes*. An edge $e \in E(G)$ is called *a loop* if $\partial_0(e) = \partial_1(e)$ (i.e. the two ends points of *e* coincide) and is called *a pass* otherwise. Let p(x) be the number of passes starting from *x*. On the other hand l(x) denotes the half of the number of loops at *x*, that is l(x) is the number of *geometric* loops. Note that, because of the involution *J*, if we replace "departing" by "arriving" these number does not change. By definition, it is clear that

$$d(x) = 2l(x) + p(x).$$

We set q(x) := d(x) - 1. Let $C_0(G)$ be the free \mathbb{Z} -module generated by V(G) with vertices as the natural basis. We define endomorphisms Q and A of $C_0(G)$ by

$$Q(x) = q(x)x, \quad x \in V(G),$$

and

$$A(x) = \sum_{e \in E(G), \partial_0(e) = x} \partial_1(e), \quad x \in V(G),$$

respectively. Note that because of the involution J,

$$A(x) = \sum_{e \in E(G), \partial_1(e) = x} \partial_0(e).$$

The operator A will be called *the adjacency operator*. We sometimes identify it with the representing matrix with respect to the basis $\{x\}_{x \in V(G)}$. Thus the yx-entry A_{yx} of A is the number of edges departing from x and arriving at y. The orientation reversing involution Jimplies

$$A_{xy} = A_{yx}.$$

Note that $A_{xx} = 2l(x)$ and $p(x) = \sum_{y \neq x} A_{yx}$. If $d(x) = k$ for all $x \in V(G)$, G is called *k*-regular.

Connecting distinct vertices x and y by geometric A_{xy} -edges and drawing $\frac{1}{2}A_{xx}$ -loops at x, the adjacency matrix A determines an unoriented 1-dimensional simplicial complex. We call it the geometric realization of G, and denote it by G again. We say that G is connected if the geometric realization is. The Euler characteristic $\chi(G)$ is equal to |V(G)||GE(G)|, hence if G is connected, the fundamental group is a free group of rank 1 – |V(G)| + |GE(G)|. For a later purpose, we summarize the relationship between a graph and its adjacency matrix.

PROPOSITION 2.1. Let $A = (a_{ij})_{1 \le i, j \le m}$ be an $m \times m$ -matrix satisfying the following conditions.

(1) The entries $\{a_{ii}\}_{ii}$ are non-negative integers and satisfy

$$a_{ij} = a_{ji}, \quad \forall i \text{ and } j.$$

(2) a_{ii} is even for every *i*.

Then there is a unique graph G whose adjacency matrix is A. Moreover, G is k-regular if and only if one of the following equivalent condition satisfied : (a)

$$\sum_{i=1}^{m} a_{ij} = k, \quad \forall j$$
$$\sum_{k=1}^{m} a_{ki} = k \quad \forall i$$

(b)

$$\sum_{j=1}^{m} a_{ij} = k, \quad \forall i$$

In the following, a graph *G* is always assumed to be *connected*. A path of length *m* is a sequence $c = (e_1, \dots, e_m)$ of edges such that $\partial_0(e_i) = \partial_1(e_{i-1})$ for all $1 < i \le m$ and the path is *reduced* if $e_i \ne J(e_{i-1})$ for all $1 < i \le m$. The path is *closed* if $\partial_0(e_1) = \partial_1(e_m)$, and the closed path has *no tail* if $e_m \ne J(e_1)$. A closed path of length one is nothing but a loop. Two closed paths are *equivalent* if one is obtained from the other by a cyclic shift of the edges. Let $\mathfrak{C}(G)$ be the set of equivalence classes of reduced and tail-less closed paths of *G*. Since the length depends only on the equivalence class, the length function descends to the map;

$$l: \mathfrak{C}(G) \to \mathbb{N}, \quad l([c]) = l(c),$$

where [c] is the class determined by c. We define a reduced and tail-less closed path C to be primitive if it is not obtained by going $r (\geq 2)$ times some another closed path. Let $\mathfrak{P}(G)$ be the subset of $\mathfrak{C}(G)$ consisting of the classes of primitive closed paths (which are reduced and tail-less by definition). The graph zeta function (or *Ihara zeta function*) of G is defined to be

$$Z(G)(t) = \prod_{[c] \in \mathfrak{P}(G)} \frac{1}{1 - t^{l([c])}}.$$

Although this is an infinite product, it is a rational function.

FACT 2.1 ([4], [11], [12], [16], [24]).

$$Z(G)(t) = \frac{(1-t^2)^{\chi(G)}}{\det[1-At+Qt^2]}.$$

FACT 2.2 ([25]). Let G be a k-regular graph with m vertices. Then the Euler characteristic $\chi(G)$ is

$$\chi(G) = \frac{m(2-k)}{2}.$$

REMARK 2.1. Note that the Euler characteristic does not depend on the number of loops.

Let $E_{or}(G) \subset E(G)$ be a section of the natural projection $E(G) \to GE(G)$. In other word we choose an orientation on geometric edges and make the geometric realization into an oriented one dimensional simplicial complex. Let $C_1(G)$ be the free \mathbb{Z} -module generated by $E_{or}(G)$. Then the boundary map

$$\partial: C_1(G) \to C_0(G)$$

is naturally defined. Let ∂^t be the dual of ∂ and the *Laplacian* Δ of *G* is defined to be $\Delta = \partial \partial^t$. It is known (and easy to check) that ([27], [11]),

$$\Delta = 1 - A + Q.$$

Now let G be a connected k-regular graph. Since 0 is an eigenvalue of Δ with multiplicity one, (2) shows that k is an eigenvalue of A with multiplicity one. Because of semi-positivity of Δ we find that

 $|\lambda| \leq k$ for any eigenvalue λ of A

and that -k is an eigenvalue of A if and only if G is bipartite ([27], **Chapter 3**). Here G is called *bipartite* if the set of vertices V(G) can be divided into disjoint subset V_0 and

 V_1 such that every edge connects points in V_0 and V_1 , namely there is no edge whose end points are simultaneously contained in V_i (i = 0, 1).

DEFINITION 2.1. Let G be a k-regular graph. We say that it is Ramanujan, if all eigenvalues λ of A with $|\lambda| \neq k$ satisfy

$$|\lambda| \le 2\sqrt{k-1}.$$

See [15], [16], [19] and [28] for detailed expositions of Ramanujan graphs.

A map f from a graph G' to G is defined to be a pair $f = (f_V, f_E)$ of maps

$$f_V: V(G') \to V(G), \quad f_E: E(G') \to E(G)$$

satisfying

$$\partial_i f_E = f_V \partial_i, \quad i = 0, 1.$$

Suppose that G and G' are connected. If there is a positive integer d such that $|f_V^{-1}(v)| =$ $|f_E^{-1}(e)| = d$ for any $v \in V(G)$ and $e \in E(G)$, f is mentioned as a covering map of degree d.

3. A construction of a Ramanujan graph

Although there are several ways to construct a Ramanujan graph (eg. [17] [18]), we adopt the construction due to Pizer([20]), which is most suited to our program. Let p be a prime, and B the quaternion algebra over \mathbb{Q} ramified at two places p and ∞ . Let R be a fixed maximal order in B and $\{I_1, \dots, I_n\}$ be the set of left R-ideals representing the distinct ideal classes. We choose $I_1 = R$ and say *n* the class number of *B*. For $1 \le i \le n$, R_i denotes the right order of I_i , and let w_i be the order of $R_i^{\times}/\{\pm 1\}$. The product

$$W = \prod_{i=1}^{n} w_i$$

is independent of the choice of R and is equal to the exact denominator of $\frac{p-1}{12}$ ([8] p.117) and Eichler's mass formula states that

$$\sum_{i=1}^{n} \frac{1}{w_i} = \frac{p-1}{12}.$$

Let \mathbb{F} be an algebraic closure of \mathbb{F}_p . There are *n* distinct isomorphism classes $\{E_1, \dots, E_n\}$

of supersingular elliptic curves over \mathbb{F} such that $\operatorname{End}(E_i) \simeq R_i$. Now we assume that p-1 is divisible 12. Then $\frac{p-1}{12}$ is an integer and $W = \prod_{i=1}^n w_i = 1$, namely $w_i = 1$ for all *i*. Hence by Eichler's mass formula

$$(4) n = \frac{p-1}{12}.$$

We fix an odd prime l different from p and let $\mathcal{N}_{p,l}$ denote the set of square free positive integers prime to lp. For $N \in \mathcal{N}_{p,l}$, an enhanced supersingular elliptic curve of *level N* is defined to be a pair $\mathbf{E} = (E, C_N)$ of a supersingular elliptic curve E and its

cyclic subgroup C_N of order N. A homomorphism ϕ from $\mathbf{E} = (E, C_N)$ to $\mathbf{E}' = (E', C'_N)$ is defined by a homomorphism $\phi : E \to E'$ satisfying

$$\phi(C_N) = C'_N.$$

Let Σ_N be the set of isomorphism classes of enhanced supersingular elliptic curve of level N defined over \mathbb{F} . Then the cardinality $\nu(N)$ of Σ_N is

(5)
$$\nu(N) = \frac{(p-1)\sigma_1(N)}{12}, \quad \sigma_1(N) = \sum_{d \mid N} d.$$

Here $\sigma_1(N)$ counts the number of cyclic subgroups of *E* of order *N*. Let Hom($\mathbf{E}_i, \mathbf{E}_j$)(*l*) denote the set of homomorphisms from \mathbf{E}_i to \mathbf{E}_j of degree *l*. We define *the Brandt matrix* $B_n^{(l)}(N)$ is defined to be a $v(N) \times v(N)$ -matrix whose (i, j)-entry is

(6)
$$b_{ij} = \frac{1}{2} |\text{Hom}(\mathbf{E}_j, \, \mathbf{E}_i)(l)|.$$

The following result is proved in [25] **Proposition 3.1**.

PROPOSITION 3.1. Let $N \in \mathcal{N}_{p,l}$. Then the Brandt matrix $B_p^{(l)}(N) = (b_{ij})_{1 \le i,j \le v(N)}$ satisfies the following.

(1) Every entry is a non-negative integer and $B_p^{(l)}(N)$ is symmetric;

$$b_{ij} = b_{ji}$$

(2) The diagonal entires $\{b_{ii}\}_i$ are even for all *i*.

(3) For any $i = 1, \dots, \nu(N)$,

$$\sum_{j=1}^{n} b_{ij} = l+1.$$

By **Proposition 2.1** there is a regular graph $G_p^{(l)}(N)$ of degree l + 1 whose adjacency matrix is $B_p^{(l)}(N)$. In **Theorem 5.1** we will show that it is a connected non-bipartite Ramanujan graph.

REMARK 3.1. We compare our construction of a Ramanujan graph with another one (eg. [12][16][17][28]). Let Z be the center of B^{\times} and set $D = B^{\times}/Z$. Let l be a prime different from p. Since B is unramified at l, $D(\mathbb{Q}_l)/D(\mathbb{Z}_l) = \text{PGL}_2(\mathbb{Q}_l)/\text{PGL}_2(\mathbb{Z}_l)$ which is the (l + 1)-regular tree with the action of the Hecke operator T_l as adjacency operator. Let \mathcal{K} be an open subgroup of $\prod_{q \neq l, \infty} D(\mathbb{Z}_q)$ and let

$$\Gamma_{\mathcal{K}} = D(\mathbb{Q}) \cap D(\mathbb{R})D(\mathbb{Q}_l)\mathcal{K}.$$

Then

$$G_n^{(l)}(\mathcal{K}) = \Gamma_{\mathcal{K}} \setminus D(\mathbb{Q}_l) / D(\mathbb{Z}_l)$$

is an (l + 1)-regular Ramanujan graph (possibly with multiple edges). For example let us take $N \in \mathcal{N}_{p,l}$ and we choose $\mathcal{K} = \prod_{q \neq l,\infty} \mathcal{K}_q$ to be

$$\mathcal{K}_q = \left\{ \begin{array}{ccc} a & b \\ c & d \end{array} \right\} a, b, c, d \in \mathbb{Z}_q, c \equiv 0 \pmod{q}, & if \quad q \mid N \\ a \text{ maximal compact subgroup of } D(\mathbb{Q}_q) & if \quad q \nmid lN, \end{array} \right.$$

where $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in PGL_2(\mathbb{Z}_q)$ is the equivalent class of $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbb{Z}_q)$. We let $\mathcal{K}_0(N)$ denote the defined compact subgroup. Then $G_p^{(l)}(\mathcal{K}_0(N))$ is $G_p^{(l)}(N)$ under our notation. Hashimoto shows that $G_p^{(l)}(\mathcal{K})$ has no multiple edge if $p \equiv 1 \pmod{12}$, which coincides with **Proposition 3.1** (cf. (7.14) of [9]). More precisely, in (7.14) of [9], he has shown that $G_p^{(l)}(1)$ is a quotient of the regular tree of degree l + 1 by a torsion free group. He also proved that the class number of the function field of the modular curve $X_0(p)_{\mathbb{F}_l}$ over \mathbb{F}_l equals $(g + 1)\kappa(G_p^{(l)}(1))$. Here g is the genus of $X_0(p)_{\mathbb{F}_l}$ and $\kappa(G_p^{(l)}(1))$ denotes the complexity of $G_p^{(l)}(1)$.

THEOREM 3.1. Let M and N be elements of $\mathcal{N}_{p,l}$ such that M is a divisor of N. Then there is a covering map

$$\pi_{N/M} : G_{p}^{(l)}(N) \to G_{p}^{(l)}(M)$$

of degree $\sigma_1(N/M)$

Proof. Although this is clear from **Remark 3.1** since $\mathcal{K}_0(N)$ is a subgroup of $\mathcal{K}_0(M)$ with index $\sigma_1(N/M)$, we will show another geometric (and elementary) proof. Since N is square free M and N/M are coprime. Thus a cyclic subgroup C_N is written by

$$C_M = C_M \oplus C_{N/M}$$

and we define

$$(\pi_{N/M})_V : V(G_p^{(l)}(N)) \to V(G_p^{(l)}(M)), \quad (\pi_{N/M})_V(E, C_M \oplus C_{N/M}) = (E, C_M).$$

Since the number of cyclic subgroups of *E* of order *N/M* is $\sigma_1(N/M)$, $|\pi_{N/M}^{-1}(v)| = \sigma_1(N/M)$ for any $v \in V(G_p^{(l)}(M))$. By definition an edge of $G_p^{(l)}(N)$ from $\mathbf{E} = (E, C_M \oplus C_{N/M})$ to $\mathbf{E}' = (E', C'_M \oplus C'_{N/M})$ is a homomorphism *f* from *E* to *E'* satisfying

$$f(C_M) = C'_M, \quad f(C_{N/M}) = C'_{N/M}.$$

Forget the homomorphism of cyclic subgroups of order N/M and we have

$$\operatorname{Hom}(\mathbf{E}, \mathbf{E}')(l)/\{\pm 1\} \to \operatorname{Hom}(\pi_{N/M}(\mathbf{E}), \pi_{N/M}(\mathbf{E}'))(l)/\{\pm 1\},$$

which defines a map of the set of edges

$$(\pi_{N/M})_E : E(G_p^{(l)}(N)) \to E(G_p^{(l)}(M))$$

satisfying

$$\partial_i \circ (\pi_{N/M})_E = (\pi_{N/M})_V \circ \partial_i, \quad i = 0, 1$$

One finds that this map has degree $\sigma_1(N/M)$. In fact let *g* be an element of Hom $(\pi_{N/M}(\mathbf{E}), \pi_{N/M}(\mathbf{E}'))(l)$. Thus *g* is a homomorphism from *E* to *E'* of degree *l* satisfying

$$g(C_M) = C'_M$$

Let $C_{N/M}$ be a cyclic subgroup of *E* of order N/M and we set $C'_{N/M} = g(C_{N/M})$. Then we have a homomorphism of enhanced supersingular elliptic curve of level *N*

$$g: (E, C_M \oplus C_{N/M}) \to (E', C'_M \oplus C'_{N/M})$$

30

which defines an edge of $G_p^{(l)}(N)$. The number of cyclic subgroups of order N/M (i.e. choices of $C_{N/M}$) is $\sigma_1(N/M)$ and the claim has been proved.

4. A spectral decomposition of the character group

In this section we will establish a geometric version of Jacquet-Langlands correspondence (**Theorem 4.2**) and its real version (**Theorem 4.3**).

For a positive integer N, let $S_2(\Gamma_0(N))$ denote the space of cusp forms of weight 2 for the Hecke congruence subgroup

$$\Gamma_0(N) := \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) : \quad c \equiv 0 \pmod{N} \}.$$

Let $Y_0(N)$ be the modular curve which parametrizes isomorphism classes of a pair $\mathbf{E} = (E, C_N)$ of an elliptic curve E and its cyclic subgroup C_N of order N. It is a smooth curve defined over \mathbb{Q} and the set of \mathbb{C} -valued points is the quotient of the upper half plane by $\Gamma_0(N)$. Let $X_0(N)$ be the compactification of $Y_0(N)$. It is a smooth projective curve defined over \mathbb{Q} and has the canonical model over \mathbb{Z} which has been studied by [7] and [13] in detail. The space of cusp forms $S_2(\Gamma_0(N))$ is naturally identified with the space of holomorphic 1-forms $H^0(X_0(N), \Omega)$ and in particular with the cotangent space $\operatorname{Cot}_0(J_0(N))$ at the origin of the Jacobian variety $J_0(N)$ of $X_0(N)$.

For a prime p with (p, N) = 1, $X_0(N)$ is furnished with the p-th Hecke operator defined by

(7)
$$T_p(E, C_N) := \sum_C (E/C, (C_N + C)/C),$$

where C runs through all cyclic subgroup schemes of E of order p. If p is a prime divisor of N, an operator U_p is defined by

(8)
$$U_p(E, C_N) := \sum_{C \neq D} (E/C, (C_N + C)/C)$$

where *D* is the cyclic subgroup of C_N of order *p*. By the functoriality, Hecke operators act on $J_0(N)$ and $\operatorname{Cot}_0(J_0(N)) = S_2(\Gamma_0(N))$ and the resulting action coincides with the usual one on $S_2(\Gamma_0(N))$ (see [23]). We define the Hecke algebra as $\mathbb{T}_0(N) := \mathbb{Z}[\{T_p\}_{(p,N)=1}, \{U_p\}_{p|N}\}]$, which is a commutative subring of $\operatorname{End}(J_0(N))$. The effects of T_p and U_p on $f = \sum_{n=1}^{\infty} a_n q^n \in S_2(\Gamma_0(N))$ are

(9)
$$f|U_p = \sum_{n=1}^{\infty} a_{pn}q^n$$

and

(10)
$$f|T_p = \sum_{n=1}^{\infty} (a_{pn} + pa_{n/p})q^n.$$

Here $a_{n/p} = 0$ if n/p is not an integer.

DEFINITION 4.1. For a positive integer M, we define a subalgebra $\mathbb{T}_0(N)^{(M)}$ of $\mathbb{T}_0(N)$ to be the omitting of Hecke operators from $\mathbb{T}_0(N)$ whose indices are prime divisors of M, that is

$$\mathbb{T}_0(N)^{(M)} = \mathbb{Z}[[\{T_p\}_{(p,NM)=1}, \{U_p\}_{p|N,(p,M)=1}\}.$$

We call an algebraic homomorphism from $\mathbb{T}_0(N)^{(M)}$ to \mathbb{C} as *a character*. If the image is contained in \mathbb{R} it is referred as *real*.

Let *M* be a positive integer and *f* an element of $S_2(\Gamma_0(M))$. For a positive integer *d* we set

$$f^{(d)}(z) = f(dz) \in S_2(\Gamma_0(dM))$$

DEFINITION 4.2. Let N be a square free positive integer and let M be a divisor of N. For a divisor d of N/M we define

$$S_2(\Gamma_0(M))^{(d)} = \{ f^{(d)}(z) \mid f \in S_2(\Gamma_0(M)) \} \subset S_2(\Gamma_0(N)).$$

The space of old forms of level N is defined to be

$$S_2(\Gamma_0(N))_{old} = \sum_{M|N, M \neq N} \sum_{d|(N/M)} S_2(\Gamma_0(M))^{(d)} \subset S_2(\Gamma_0(N))$$

and the orthogonal complement of $S_2(\Gamma_0(N))_{old}$ for the Petersson product is called by the space of *new forms* and denoted by $S_2(\Gamma_0(N))_{new}$.

Let N be a square free positive integer and let q be a prime not dividing N. Since the action of T_q on $S_2(\Gamma_0(N))$ is self-adjoint for the Petersson product and since $S_2(\Gamma_0(N))_{old}$ is stable by T_q , $S_2(\Gamma_0(N))_{new}$ is stable by $\mathbb{T}_0(N)^{(N)}$. This implies that $S_2(\Gamma_0(N))_{new}$ admits a spectral decomposition by $\mathbb{T}_0(N)^{(N)}$. We will show that $S_2(\Gamma_0(N))$ has an irreducible decomposition of multiplicity one by the action of the full Hecke algebra $\mathbb{T}_0(N)$ (**Theorem 4.1**), which plays a key role in our story. Although this fact should be fairly well-known, we will show a proof since we could not find appropriate references. In proving the theorem, a key fact is the following, which is mentioned as *multiplicity one* ([3] [14]).

FACT 4.1. Let N be a positive integer (which may not be square free) and $f = \sum_{n=1}^{\infty} a_n q^n$ an element of $S_2(\Gamma_0(N))$. Suppose that $a_n = 0$ for all n with (n, t) = 1, where t is a fixed positive integer. Then $f \in S_2(\Gamma_0(N))_{old}$.

This fact yields an irreducible decomposition as a $\mathbb{T}_0(N)$ -module

$$S_2(\Gamma_0(N))_{new} = \bigoplus_{\alpha} S_2(\Gamma_0(N))_{new}(\alpha)$$

by real characters such that every irreducible component has dimension one. Here $S_2(\Gamma_0(N))_{new}(\alpha)$ denotes the isotypic component of α

$$S_2(\Gamma_0(N))_{new}(\alpha) = \{ f \in S_2(\Gamma_0(N))_{new} \mid f \mid T = \alpha(T) f, \quad \forall T \in \mathbb{T}_0(N) \},\$$

which is spanned by the normalized Hecke eigenform. Moreover since N is square free $\alpha_q = \pm 1$ for $q \mid N$ ([10] Lemma 3.2). By the definition of the space of new forms we have

(11)
$$S_2(\Gamma_0(N)) = \bigoplus_{M|N} (\bigoplus_{d|(N/M)} S_2(\Gamma_0(M))_{new}^{(d)}).$$

Fix a divisor M of N and let us consider the subspace

$$\mathbb{S}_M = \bigoplus_{d \mid (N/M)} S_2(\Gamma_0(M))_{new}^{(d)}.$$

< 1)

Let $N/M = l_1 \cdots l_m$ be the prime decomposition. Then there is an isomorphism as vector spaces

(12)
$$\mathbb{S}_M \simeq S_2(\Gamma_0(M))_{new}^{\oplus 2^m}.$$

We will explicitly describe this isomorphism.

PROPOSITION 4.1. Let N be a square free positive integer and M a divisor of N. Let $f \in S_2(\Gamma_0(M))_{new}$ be a normalized Hecke eigenform. Then for $\epsilon = (\epsilon_{l_1}, \dots, \epsilon_{l_m})$ $(\epsilon_{l_i} = \pm)$ there is a normalized Hecke eigenform f_{ϵ} of level N satisfying the following conditions.

(1) If q is a prime not dividing N/M

$$a_q(f_\epsilon) = a_q(f).$$

(2)

$$a_{l_i}(f_{\epsilon}) = \alpha_{l_i}^{\epsilon_{l_i}}$$

where

$$\alpha_{l_i}^+ = \frac{a_{l_i}(f) + \sqrt{\Delta_i}}{2}, \quad \alpha_{l_i}^- = \frac{a_{l_i}(f) - \sqrt{\Delta_i}}{2}, \quad \Delta_i = a_{l_1}(f)^2 - 4l_i(<0).$$

Moreover the 2^m complex numbers { $\alpha_{l_1}^{(\pm)}, \cdots, \alpha_{l_m}^{(\pm)}$ } are mutually different.

Proof. In general let p be a prime and F a square free positive integer prime to p. We have two degeneracy maps α_p , $\beta_p : X_0(pF) \to X_0(F)$ defined by

$$\alpha_p(E, C_p \oplus C_F) = (E, C_F), \quad \beta_p(E, C_p \oplus C_F) = (E/C_p, (C_p \oplus C_F)/C_p),$$

which induces linear maps

(13)
$$\alpha_p^*, \beta_p^*: S_2(\Gamma_0(F)) \to S_2(\Gamma_0(pF))$$

whose effects on $f = \sum_{n=1}^{\infty} a_n q^n \in S_2(\Gamma_0(F))$ are

(14)
$$\alpha_p^*(f) = f = \sum_{n=1}^{\infty} a_n q^n, \quad \beta_p^*(f) = f^{(p)} = \sum_{n=1}^{\infty} a_n q^{pn}.$$

Let *T* be T_r ($r \nmid pF$) or U_l ($l \mid F$). Then *T* commutes with α_p and β_p and

(15)

$$S_{2}(\Gamma_{0}(F)) \oplus S_{2}(\Gamma_{0}(F)) \xrightarrow{\alpha_{p}^{*} + \beta_{p}^{*}} S_{2}(\Gamma_{0}(pF))$$

$$(T, T) \downarrow \qquad T \downarrow$$

$$S_{2}(\Gamma_{0}(F)) \oplus S_{2}(\Gamma_{0}(F)) \xrightarrow{\alpha_{p}^{*} + \beta_{p}^{*}} S_{2}(\Gamma_{0}(pF)).$$

Using (14) and (15) we will inductively construct
$$f_{\epsilon}$$
 by the number of prime divisors m .
We set $M_m = M l_1 \cdots l_m$ ($m \ge 1$) and $M_0 = M$. Suppose that we have constructed a desired normalized Hecke eigenform $f_{\epsilon} \in S_2(\Gamma_0(M_{m-1}))$ of character χ_{ϵ} . For a prime r

different from l_m , we let T be T_r or U_r according to $r \nmid M_m$ or $r \mid M_{m-1}$, respectively. Then (15) implies

(16)
$$S_{2}(\Gamma_{0}(M_{m-1})) \oplus S_{2}(\Gamma_{0}(M_{m-1})) \xrightarrow{\alpha_{l_{m}}^{*} + \beta_{l_{m}}^{*}} S_{2}(\Gamma_{0}(M_{m}))$$
$$T \downarrow \qquad T \downarrow$$

$$S_2(\Gamma_0(M_{m-1})) \oplus S_2(\Gamma_0(M_{m-1})) \xrightarrow{\alpha_{l_m}^* + \beta_{l_m}^*} S_2(\Gamma_0(M_m))$$

Hence

$$\alpha_{l_m}^*(f_{\epsilon})|T = \alpha_{l_m}^*(f_{\epsilon}|T) = \chi_{\epsilon}(T)\alpha_{l_m}^*(f_{\epsilon})$$

and

$$\beta_{l_m}^*(f_\epsilon)|T = \beta_{l_m}^*(f_\epsilon|T) = \chi_\epsilon(T)\beta_{l_m}^*(f_\epsilon).$$

Define a character

$$\chi_{\epsilon}^{(l_m)}:\mathbb{T}_0(M_m)^{(l_m)}\to\mathbb{C}$$

by

$$\chi_{\epsilon}^{(l_m)}(T) = \chi_{\epsilon}(T),$$

and $\alpha_{l_m}^*(f_{\epsilon})$ and $\beta_{l_m}^*(f_{\epsilon})$ are $\mathbb{T}_0(M_m)^{(l_m)}$ -eigenforms of the same character $\chi_{\epsilon}^{(l_m)}$. Let us investigate the action of U_{l_m} . By (9), (10) and (14)

$$\begin{pmatrix} \alpha_{l_m}^*(f_{\epsilon})|U_{l_m} \\ \beta_{l_m}^*(f_{\epsilon})|U_{l_m} \end{pmatrix} = \begin{pmatrix} a_{l_m}(f_{\epsilon}) & -l_m \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \alpha_{l_m}^*(f_{\epsilon}) \\ \beta_{l_m}^*(f_{\epsilon}) \end{pmatrix}.$$

Use the assumption (1) and the characteristic polynomial of U_{l_m} is

$$\Phi(t) = t^2 - a_{l_m}(f_{\epsilon})t + l_m = t^2 - a_{l_m}(f)t + l_m$$

Since f is a normalized $\mathbb{T}_0(M)$ -eigenform which is new, the discriminant $\Delta_m = a_{l_m}(f)^2 - 4l_m$ is negative ([5]). Therefore the eigenvalue of U_{l_m} are mutually distinct and contained in $\mathbb{C} \setminus \mathbb{R}$. Set

(17)
$$\alpha_{l_m}^+ = \frac{a_{l_m}(f) + \sqrt{\Delta_m}}{2}, \quad \alpha_{l_m}^- = \frac{a_{l_m}(f) - \sqrt{\Delta_m}}{2}$$

and let f_{ϵ}^+ and f_{ϵ}^- be the corresponding normalized cusp form of level M_m satisfying

$$f_{\epsilon}^+ \mid U_{l_m} = \alpha_{l_m}^+ f_{\epsilon}^+, \quad f_{\epsilon}^- \mid U_{l_m} = \alpha_{l_m}^- f_{\epsilon}^-.$$

Extend $\chi_{\epsilon}^{(l_m)}$ to a character χ_{ϵ}^+ and χ_{ϵ}^- of $\mathbb{T}_0(M_m) = \mathbb{T}_0(M_m)^{(l_m)}[U_{l_m}]$ by

$$\chi_{\epsilon}^+(U_{l_m}) = \alpha_{l_m}^+, \quad \chi_{\epsilon}^-(U_{l_m}) = \alpha_{l_m}^-.$$

Then f_{ϵ}^+ and f_{ϵ}^- are $\mathbb{T}_0(M_m)$ -eigenforms whose characters are χ_{ϵ}^+ and χ_{ϵ}^- , respectively. Observe that $\alpha_{l_m}^+$ and $\alpha_{l_m}^-$ are different from each of $\{\alpha_{l_i}^+, \alpha_{l_i}^-\}_{1 \le i \le m-1}$, where

$$\alpha_{l_i}^+ = \frac{a_{l_i}(f) + \sqrt{\Delta_i}}{2}, \quad \alpha_{l_i}^- = \frac{a_{l_i}(f) - \sqrt{\Delta_i}}{2}, \quad \Delta_i = a_{l_i}(f)^2 - 4l_i.$$

In fact if $\alpha_{l_m}^+ = \alpha_{l_i}^+$ $(1 \le i \le m - 1)$, comparing their real and imaginary part we conclude

$$a_{l_m}(f) = a_{l_i}(f), \quad \Delta_m = \Delta_i$$

34

which implies $l_m = l_i$. Thus we have constructed normalized 2^m Hecke eigenforms of level M_m from f whose characters are mutually different.

Proposition 4.1 yields a spectral decomposition of multiplicity one

(18)
$$\mathbb{S}_M = \bigoplus_{\beta} \mathbb{C} f_{\beta}$$

where f_{β} is the normalized Hecke eigenform of character β . Let M' be a divisor of N different from M and we consider the decomposition (18) for M',

(19)
$$\mathbb{S}_{M'} = \bigoplus_{\beta} \mathbb{C} f_{\beta'}.$$

The following lemma shows that every character β in (18) is different from each of β' in (19).

LEMMA 4.1. Let $f \in S_2(\Gamma_0(N_f))_{new}$ (resp. $g \in S_2(\Gamma_0(N_g))_{new}$) be a normalized Hecke eigenform. If there is a positive integer t such that

$$a_l(f) = a_l(g)$$

for any prime
$$l$$
 with $l \nmid t$, then $f = g$.

Proof. Let K_f (resp. K_g) be the number field generated by Fourier coefficients of f and (resp. g) over \mathbb{Q} and let K be the minimal extension of \mathbb{Q} that contains K_f and K_g . We fix a prime l satisfying $l \nmid N_f N_g$ and that completely splits in K. Corresponding to f and g, there are absolutely irreducible representations

$$\rho_{f,l} : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{Q}_l), \quad \rho_{g,l} : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{Q}_l)$$

of the conductor N_f and N_q respectively which satisfy

$$\det(t - \rho_{f,l}(Frob_q)) = t^2 - a_q(f)t + q, \quad (q, lN_f) = 1$$

and

$$\det(t - \rho_{g,l}(Frob_q)) = t^2 - a_q(g)t + q, \quad (q, lN_g) = 1.$$

([6] **Theorem 3.1**). Here $Frob_q$ is the Frobenius at a prime q. Let S be a finite set of primes. Since a semi-simple representation $\rho_l : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{Q}_l)$ is determined by values $\operatorname{Tr}\rho_l(Frob_q)$ on the primes $q \notin S$ at which ρ_l is unramified ([6] **Proposition 2.6** (3)), the assumption implies that $\rho_{f,l} = \rho_{g,l}$ and in particular $N_f = N_g$. Now we deduce that f = g from **Fact 4.1**.

REMARK 4.1. Here is an another way to see that any β in (18) is different from each of β' in (19). If necessary changing M and M', let r be a prime divisor of M' not dividing M. By the construction $\beta'(U_r) \in \mathbb{R}$ and $\beta(U_r) \in \mathbb{C} \setminus \mathbb{R}$ and therefore β and β' are different.

For a character α of $\mathbb{T}_0(N)$, let $S_2(\Gamma_0(N))(\alpha)$ denote the isotypic component of α ,

$$S_2(\Gamma_0(N))(\alpha) = \{ f \in S_2(\Gamma_0(N)) \mid f \mid T = \alpha(T)f, \quad \forall T \in \mathbb{T}_0(N) \}$$

THEOREM 4.1. (Strong multiplicity one) Let N be a square free positive integer. Then there is an isomorphism as $\mathbb{T}_0(N)$ -modules

$$S_2(\Gamma_0(N)) = \bigoplus_{\alpha} S_2(\Gamma_0(N))(\alpha)$$

such that every irreducible component has dimension one and is spanned by the normalized Hecke eigenform f_{α} . The index α in the decomposition runs through the set of closed points $\text{Spec}(\mathbb{T}_0(N))(\mathbb{C})$ and there is an isomorphism

$$\Phi: \mathbb{T}_0(N) \otimes \mathbb{C} \simeq \prod_{\alpha \in \operatorname{Spec}(\mathbb{T}_0(N))(\mathbb{C})} \mathbb{C}$$

such that the composition with the projection π_{α} to the α -factor is α :

$$\pi_{\alpha} \circ \Phi = \alpha$$

Proof. The previous argument and (11) show that $S_2(\Gamma_0(N))(\alpha)$ is a \mathbb{C} -linear space generated by a normalized Hecke eigenform f_{α} and we have an irreducible decomposition of multiplicity one

(20)
$$S_2(\Gamma_0(N)) = \bigoplus_{\alpha} S_2(\Gamma_0(N))(\alpha).$$

The linear isomorphism

$$\operatorname{Hom}_{\mathbb{C}}(\mathbb{T}_0(N),\mathbb{C}) \simeq S_2(\Gamma_0(N)), \quad \rho \mapsto \sum_{m=1}^{\infty} \rho(T_m)q^m$$

implies that $\{\alpha\}$ in the right hand side of (20) is the set of closed points $\text{Spec}(\mathbb{T}_0(N))(\mathbb{C})$ and $\{f_{\alpha}\}_{\alpha\in\text{Spec}(\mathbb{T}_0(N))(\mathbb{C})}$ is a basis of $S_2(\Gamma_0(N))$. Now the desired decomposition of $\mathbb{T}_0(N)\otimes\mathbb{C}$ is obvious.

Let *p* be any prime (*not necessary* $p \equiv 1 \pmod{12}$) and *N* a square free positive integer prime to *p*. We define *the space of p-new forms* $S_2(\Gamma_0(pN))_{pN/N}$ to be the orthogonal complement of $\alpha_p^*(S_2(\Gamma_0(N))) + \beta_p^*(S_2(\Gamma_0(N)))$ in $S_2(\Gamma_0(pN))$ for the Petersson inner product. Then (11) and (14) imply

(21)
$$S_2(\Gamma_0(pN))_{pN/N} = \bigoplus_{M|N} \bigoplus_{d|(N/M)} S_2(\Gamma_0(pM))_{new}^{(d)}$$

and by **Theorem 4.1** we have a decomposition of $\mathbb{T}_0(N)$ -module of multiplicity one

(22)
$$S_2(\Gamma_0(pN))_{pN/N} = \bigoplus_{\chi} \mathbb{C} f_{\chi}$$

Here f_{χ} is a normalized Hecke eigenform whose character is χ . Let $\mathbb{T}_0(pN)_{pN/N}$ be the restriction of $\mathbb{T}_0(N)$ to this space. Then the set of characters in (22) coincides with $\text{Spec}(\mathbb{T}_0(pN)_{pN/N})(\mathbb{C})$ and there is an isomorphism

(23)
$$\Phi: \mathbb{T}_0(pN)_{pN/N} \otimes \mathbb{C} \simeq \prod_{\chi \in \operatorname{Spec}(\mathbb{T}_0(pN)_{pN/N})(\mathbb{C})} \mathbb{C}$$

such that the composition with the projection π_{χ} to χ -factor is χ :

$$\pi_{\chi} \circ \Phi = \chi$$

Using [21] we will clarify a relationship between $S_2(\Gamma_0(pN))_{pN/N}$ and the Ramanujan graph $G_p^{(l)}(N)$.

By the functoriality α_p and β_p induce a homomorphism

(24)
$$\alpha_p^*, \beta_p^*: J_0(N) \to J_0(pN)$$

and we define a subvariety

$$J_0(pN)_{p-old} = \alpha_p^* J_0(M) + \beta_p^* J_0(N) \subset J_0(pN)$$

which is called as *p-old subvariety*. We define *p-new subvariety* to be the quotient

$$J_0(pN)_{pN/N} = J_0(pN)/J_0(pN)_{p-old}$$

Now we consider the actions of Hecke operators. Let *T* be T_r ($r \nmid pN$) or U_l ($l \mid N$). Then *T* commutes with α_p and β_p and

(25)
$$J_{0}(N) \times J_{0}(N) \xrightarrow{\alpha_{p}^{*} \times \beta_{p}^{*}} J_{0}(pN)$$
$$(T, T) \downarrow \qquad T \downarrow$$
$$J_{0}(N) \times J_{0}(N) \xrightarrow{\alpha_{p}^{*} \times \beta_{p}^{*}} J_{0}(pN).$$

and $J_0(pN)_{p-old}$ is $\mathbb{T}_0(pN)^{(p)}$ -stable. By [21] **Remark 3.9** $J_0(pN)_{p-old}$ is also preserved by U_p and it is $\mathbb{T}_0(pN) = \mathbb{T}_0(pN)^{(p)}[U_p]$ -stable. Therefore $J_0(pN)_{pN/N}$ admits the action of $\mathbb{T}_0(pN)$ and the image of $\mathbb{T}_0(pN)$ in $\operatorname{End}(J_0(pN)_{pN/N})$ is temporary denoted by \mathbb{T}' . Having identified the holomorphic cotangent space of $J_0(pN)_{pN/N}$ at the origin with $S_2(\Gamma_0(pN))_{pN/N}$ let us consider the representation of $\operatorname{End}(J_0(pN)_{pN/N})$ on $S_2(\Gamma_0(pN))_{pN/N}$. Then the image of \mathbb{T}' in $\operatorname{End}(S_2(\Gamma_0(pN))_{pN/N})$ is $\mathbb{T}_0(pN)_{pN/N}$. Since representation of $\operatorname{End}(J_0(pN)_{pN/N})$ on $S_2(\Gamma_0(pN))_{pN/N}$ faithful, \mathbb{T}' and $\mathbb{T}_0(pN)_{pN/N}$ are isomorphic and we identify them.

It is known that the Néron model of $J_0(pN)_{pN/N}$ over SpecZ has purely toric reduction \mathcal{T} at p. Let us describe its character group. $X_0(pN)_{\mathbb{F}_p}$ has two irreducible components Z_F and Z_V , which are isomorphic to $X_0(N)_{\mathbb{F}_p}$. Over Z_F (resp. Z_V) the parametrized cyclic group C_p of order p is the kernel of the Frobenius F (resp. the Verschiebung V). Z_F and Z_V transversally intersect at enhanced supersingular points of level N, that is $\Sigma_N = {\mathbf{E}_1, \dots, \mathbf{E}_{\nu(N)}}$. Set

$$X_N = \bigoplus_{i=1}^{\nu(N)} \mathbb{Z}\mathbf{E}_i$$

and we adopt $\{\mathbf{E}_1, \dots, \mathbf{E}_{\nu(N)}\}\$ as a base. We define the action of Hecke operators on X_N by (7) and (8) and let \mathbb{T} denote a commutative subring of $\operatorname{End}_{\mathbb{Z}}(X_N)$ generated by Hecke operators. Let us consider the boundary map of the dual graph of $X_0(pN)_{\mathbb{F}_p}$,

$$\partial: X_N \to \mathbb{Z}Z_F \oplus \mathbb{Z}Z_F, \quad \partial(\mathbf{E}_i) = Z_F - Z_V.$$

Being $X_N^{(0)}$ the kernel of ∂ , we have the exact sequence of Hecke modules

(26)
$$0 \to X_N^{(0)} \to X_N \xrightarrow{\partial} \mathbb{Z} \epsilon \to 0, \quad \epsilon = Z_F - Z_V.$$

For brevity let us write E_i by [i]. Then

$$\partial([i]) = \epsilon, \quad 1 \le \forall i \le n$$

and

$$X_N^{(0)} = \{\sum_{i=1}^n a_i[i] \mid a_i \in \mathbb{Z}, \sum_{i=1}^n a_i = 0\}.$$

The the restriction \mathbb{T}_0 of \mathbb{T} to $X_N^{(0)}$ has the following description. By [21] **Proposition 3.1**, $X_N^{(0)}$ is the character group of the connected component of the torus \mathcal{T} . By the Néron property, \mathcal{T} admits the action of $\mathbb{T}_0(pN)_{pN/N} (= \mathbb{T}')$ and the induced action on $X_N^{(0)}$ is \mathbb{T}_0 . Therefore \mathbb{T}_0 is the image of $\mathbb{T}_0(pN)_{pN/N}$ in $\operatorname{End}_{\mathbb{Z}}(X_N^{(0)})$. Since the action of $\mathbb{T}_0(pN)_{pN/N}$ on $X_N^{(0)}$ is faithful ([21] **Theorem 3.10**), \mathbb{T}_0 and $\mathbb{T}_0(pN)_{pN/N}$ are isomorphic and they will be identified from now on. The following theorem is a geometric version of Jacquet-Langlands correspondence.

THEOREM 4.2. Let N be a square free positive integer. There is an isomorphism as $\mathbb{T}_0(pN)_{pN/N}$ -modules

$$X_N^{(0)} \otimes \mathbb{C} \simeq S_2(\Gamma_0(pN))_{pN/N}$$

Proof. As we have mentioned before, the action of $\mathbb{T}_0(pN)_{pN/N}$ on $X_N^{(0)}$ is faithful ([21] **Theorem 3.10**). Since the characters $\{\chi\}$ in (22) are mutually different and by (23) we see every irreducible component of (22) should appear as irreducible factor of $X_N^{(0)} \otimes \mathbb{C}$. Thus $S_2(\Gamma_0(pN))_{pN/N}$ is contained in $X_N^{(0)} \otimes \mathbb{C}$. On the other hand the rank of $X_N^{(0)}$ is equal to dim $\mathcal{T} = \dim J_0(pN)_{pN/N}$. Since the holomorphic cotangent space of $J_0(pN)_{pN/N}$ at the origin is $S_2(\Gamma_0(pN))_{pN/N}$,

$$\dim X_N^{(0)} \otimes \mathbb{C} = \dim S_2(\Gamma_0(pN))_{pN/N},$$

and the claim is proved.

Let us state a real version of **Theorem 4.2**. Since the character of a normalized Heckeeigen newform is real, using (15) and (20), **Theorem 4.2** yields an decomposition as a $\mathbb{T}_0(pN)_{pN/N} \otimes \mathbb{R}$ -module

$$X_N^{(0)} \otimes \mathbb{R} = \bigoplus_{\gamma} V(\gamma),$$

where

$$V(\gamma) = \{ v \in X_N^{(0)} \otimes \mathbb{R} \mid T(v) = \gamma(T)v \quad \forall T \in \mathbb{T}_0(pN)_{pN/N}^{(pN)} \}$$

Here γ is the real character of $\mathbb{T}_0(pN)_{pN/N}^{(pN)}$ which is the restriction of the character of the normalized Hecke eigen newform f_{γ} whose level N_{γ} satisfies

$$N_{\gamma} = pM, \quad M|N.$$

Lemma 4.1 shows that $\{\gamma\}$ are mutually different. Let $N/M = l_1 \cdots l_m$ be the prime decomposition. We write

(27)
$$\mathbb{T}_0(pN)_{pN/N} \otimes \mathbb{R} = (\mathbb{T}_0(pN)_{pN/N}^{(N/M)} \otimes \mathbb{R}) \otimes_{\mathbb{R}} \mathbb{R}[U_{l_1}, \cdots, U_{l_m}]$$

and $V(\gamma)$ is a $\mathbb{R}[U_{l_1}, \dots, U_{l_m}]$ -module. As we have seen in the proof of **Proposition 4.1**, the characteristic polynomial of U_{l_i} is $P_{l_i}(U_{l_i}) = U_{l_i}^2 - a_{l_i}(f_{\gamma})U_{l_i} + l_i$ and $\dim_{\mathbb{R}} V(\gamma) = 2^m$. Therefore

$$V(\gamma) \simeq \mathbb{R}[U_{l_1}, \cdots, U_{l_m}]/I,$$

where *I* is an ideal of $\mathbb{R}[U_{l_1}, \dots, U_{l_m}]$ generated by the polynomials $\{P_{l_i}(U_{l_i})\}_{i=1,\dots,m}$. Viewing $\mathbb{R}f_{\gamma}$ as a $\mathbb{T}_0(pN)_{pN/N}^{(N/M)} \otimes \mathbb{R}$ -module, we write it by $\mathbb{R}f_{\gamma}^{(N/M)}$. Using (27) we see

$$V(\gamma) \simeq \mathbb{R} f_{\gamma}^{(N/M)} \otimes_{\mathbb{R}} (\mathbb{R}[U_{l_1}, \cdots, U_{l_m}]/I).$$

as $\mathbb{T}_0(pN)_{pN/N} \otimes \mathbb{R}$ -modules. Thus we have proved a real version of **Theorem 4.1** and **Theorem 4.2**.

THEOREM 4.3. (Weak multiplicity one) There is an irreducible decomposition

$$X_N^{(0)} \otimes \mathbb{R} = \bigoplus_{\gamma} V(\gamma)$$

as a $\mathbb{T}_0(pN)_{pN/N} \otimes \mathbb{R}$ -module. Here $\{\gamma\}$ runs through the real characters of normalized Hecke eigen newforms $\{f_{\gamma}\}_{\gamma}$ such that the level $N_{f_{\gamma}}$ of f_{γ} satisfies $N_{f_{\gamma}} = pM$ where M is a divisor of N. Let $N/M = l_1 \cdots l_m$ be the prime decomposition. Then a $\mathbb{T}_0(pN)_{pN/N} \otimes \mathbb{R}$ module $V(\gamma)$ is defined to be

$$V(\gamma) \simeq \mathbb{R} f_{\gamma}^{(N/M)} \otimes_{\mathbb{R}} (\mathbb{R}[U_{l_1}, \cdots, U_{l_m}]/I).$$

Here the action of $\mathbb{T}_0(pN)_{pN/N} \otimes \mathbb{R}$ is defined via (27) and I is an ideal generated by polynomials $\{P_{l_i}(U_{l_i})\}_{i=1,\dots,m}$ where

$$P_{l_i}(U_{l_i}) = U_{l_i}^2 - a_{l_i}(f_{\gamma})U_{l_i} + l_i.$$

Moreover the characters $\{\gamma\}$ *are mutually different.*

Let *l* be an odd prime different from *p*. Remember that $N \in \mathcal{N}_{p,l}$ is the set of square free positive integers prime to *lp*.

THEOREM 4.4. (Monotonicity) For $N \in \mathcal{N}_{p,l}$ let $\rho_l^1(N)$ be the largest eigenvalue of the Hecke operator T_l of $X_N^{(0)} \otimes \mathbb{R}$. Then for $M, N \in \mathcal{N}_{p,l}$ such that M|N,

$$\rho_l^1(N) \ge \rho_l^1(M)$$

Proof. **Theorem 4.2** (or **Theorem 4.3**) shows that, under the decomposition (22), $\rho_l^1(N)$ is the maximum of *l*-th coefficients of Hecke eigenform $\{f_{\chi}\}_{\chi}$. By (21) we find $S_2(\Gamma_0(pM))_{pM/M}$ is contained in $S_2(\Gamma_0(pN))_{pN/N}$ and the claim is obtained.

5. Properties of the graphs

Let p be a prime satisfying $p \equiv 1 \pmod{12}$ and l be an odd prime different from p. Let us take $N \in \mathcal{N}_{p,l}$. For brevity we write $\mathbf{E}_i = (E_i, C_N)$ and let Γ_l be the set of cyclic subgroups of E_i of order l. The bijective correspondence

Hom
$$(\mathbf{E}_i, \mathbf{E}_j)(l)/\pm 1 \simeq \Gamma_l, \quad f \mapsto \text{Ker} f.$$

shows that the Brandt matrix $B_p^{(l)}(N)$ is the representation matrix of T_l . Since $B_p^{(l)}(N)$ is symmetric, the eigenvalues are all real. It is easy to check that $\epsilon = Z_F - Z_V$ (cf. (26)) satisfies

$$T_l(\epsilon) = (l+1)\epsilon$$

and since ∂ in (26) commutes with T_l , l + 1 is an eigenvalue of $B_p^{(l)}(N)$. Let δ be a corresponding eigenvector. Using the Eichler-Shimura relation and the Weil conjecture, **Theorem 4.2** (or **Theorem 4.3**) implies that the modulus of other eigenvalues are less than or equal to $2\sqrt{l}$ and

$$X_N \otimes \mathbb{R} = (X_N^{(0)} \otimes \mathbb{R}) \oplus \mathbb{R} \delta,$$

where $\hat{\oplus}$ denotes an orthogonal direct sum. Moreover if $N \in \mathcal{N}_{p,l}$, **Theorem 4.3** and this decomposition yield a spectral decomposition of $X_N \otimes \mathbb{R}$ in terms of eigenspaces of T_l . **Theorem 4.2** implies that

(28)
$$\det[1 - B_p^{(l)}(N)t + lt^2] = (1 - t)(1 - lt)\det[1 - T_lt + lt^2|S_2(\Gamma_0(pN))_{pN/N}].$$

THEOREM 5.1. For any $N \in \mathcal{N}_{p,l}$, $G_p^{(l)}(N)$ is a connected regular Ramanujan graph of degree l + 1 not bipartite.

Proof. By construction $G_p^{(l)}(N)$ is a regular graph of degree l + 1. Let us investigate the eigenvalues of the adjacency matrix $B_p^{(l)}(N)$. As we have seen, l+1 is an eigenvalue of $B_p^{(l)}(N)$ and the modulus of other eigenvalues are less than or equal to $2\sqrt{l}$. Thus $G_p^{(l)}(N)$ is a Ramanujan graph. By the equation (1) (see also (2)), 0 is an eigenvalue of the Laplacian with multiplicity one and we see that $G_p^{(l)}(N)$ is connected. In general a connected finite regular graph of degree d is bipartite if and only if $\pm d$ are eigenvalues of the adjacency matrix ([27]). Therefore $G_p^{(l)}(N)$ is not bipartite.

Now Theorem 1.1 is a direct consequence of the equation (1) (see also (2)), Theorem 4.4 and Theorem 5.1.

Proof of Theorem 1.2. Set N = q and we use the decomposition (21). Since $S_2(\Gamma_0(p))^{(q)}$ is isomorphic to $S_2(\Gamma_0(p))$ as a $\mathbb{T}_0(pq)^{(pq)}$ -module, we see

$$S_2(\Gamma_0(pq))_{pq/q} = S_2(\Gamma_0(pq))_{new} \oplus S_2(\Gamma_0(p))^{\oplus 2}$$

as $\mathbb{T}_0(pq)^{(pq)}$ -modules and

$$\frac{\det(1-B_p^{(l)}(q)t+lt^2)}{\det(1-B_p^{(l)}(1)t+lt^2)^2} = \frac{\det(1-T_lt+lt^2\mid S_2(\Gamma_0(pq))_{new})}{(1-t)(1-lt)} = \frac{\det(1-B_q^{(l)}(p)t+lt^2)}{\det(1-B_q^{(l)}(1)t+lt^2)^2}$$

by (28). On the other hand Fact 2.2 implies,

$$\chi(G_p^{(l)}(q)) - 2\chi(G_p^{(l)}(1)) = \frac{(p-1)(q-1)(1-l)}{24} = \chi(G_q^{(l)}(p)) - 2\chi(G_q^{(l)}(1))$$

the claim follows from **Fact 2.1**.

and the claim follows from Fact 2.1.

Proof of Theorem 1.3. Let us recall the decomposition (22)

$$S_2(\Gamma_0(pN))_{pN/N} = \bigoplus_{\chi} \mathbb{C} f_{\chi},$$

where f_{χ} is a normalized Hecke eigenform. Then the second largest eigenvalue $\rho_l^1(N)$ of $B_p^{(l)}(N)$ is the maximum of $\{a_l(f_\chi)\}_{\chi}$ by **Theorem 4.2** and satisfies $\rho_l^1(N) \leq 2\sqrt{l}$ by **Theorem 5.1.** Let $\{r_i\}_{i=1}^{\infty}$ be the set of primes and $N_k = \prod_{i=1}^k r_i$. Then by **Theorem 4.4**, $\rho_l^1(N_k)$ is monotone increasing for k. In general let $\{G_i\}_i$ be an infinite family of connected *d*-regular graphs satisfying

$$\lim_{i \to \infty} |V(G_i)| = \infty.$$

Then it is known that

$$\liminf_{i \to \infty} \rho^1(G_i) \ge 2\sqrt{d-1}$$

by Alon and Boppana ([1][2][28]). We will use this fact. Since $\{G_p^{(l)}(N_k)\}_k$ is an infinite family of connected regular Ramanujan graphs of degree l + 1 with

$$\lim_{k \to \infty} |V(G_p^{(l)}(N_k))| = \lim_{k \to \infty} \frac{(p-1) \prod_{i=1}^k (1+r_i)}{12} = \infty,$$

we see

$$\lim_{k \to \infty} \rho_l^1(N_k) = 2\sqrt{l},$$

and

$$\lim_{k\to\infty} \operatorname{Max}\{a_l(f_{\chi}) : S_2(\Gamma_0(pN_k))_{pN_k/N_k} = \bigoplus_{\chi} \mathbb{C}f_{\chi}\} = 2\sqrt{l}.$$

Since $S_2(\Gamma_0(pN_k))_{pN_k/N_k}$ is a subspace of $S_2(\Gamma_0(pN_k))$, the remaining claim immediately follows from this result and the decomposition in **Theorem 4.1**.

The proof implies the following corollary.

COROLLARY 5.1. Let p be a prime satisfying $p \equiv 1 \pmod{12}$ and l an odd prime with $l \neq p$. Then for any set of mutually distinct primes $\{r_i\}_{i=1}^{\infty}$ which are different from l and p, there is a sequence of normalized Hecke eigenforms $\{f_i\}_i$ of weight 2 such that $f_i \in S_2(\Gamma_0(pr_1 \cdots r_i))_{new}$ and

$$\lim_{i \to \infty} a_l(f_i) = 2\sqrt{l}.$$

References

- [1] N. Alon, Eigenvalues and expanders, Combinatrica 6, No. 2: 83–96, 1986.
- [2] N. Alon and V. Milman, λ₁, isoperimetric inequalities for graphs, and superconcentrations, J. Combin. Theory, Ser B 38: 73–88, 1985.
- $\begin{bmatrix} 3 \end{bmatrix}$ A.O.L. Atkin and J. Lehner, Hecke operators on $\Gamma_0(m)$, Math. Ann., 185: 134–160, 1970.
- [4] H. Bass, The Ihara-Selberg zeta functions of a tree lattice, Intern. J. Math., 3: 717–797, 1992.
- [5] R.F. Coleman and B. Edixhoven, On the semi-simplicity of the Up-operator on modular forms, Math. Ann., 310 no.1: 119–127, 1998.
- [6] H. Darmon, F. Diamond and R. Taylor, Fermat's Last Theorem, *Currents Developments in Mathematics*, 1995, Intenational Press: 1–154, 1994.
- P. Deligne and M. Rapoport, Les schémas de modules de courbes elliptiques, Modular Function of One Variables II, Springer Lecture Notes 349: 143–316, 1979.
- [8] B. H. Gross, Heights and the special values of *L*-series, C.M.S. Conf. Proc. 7: 115–187, 1987.
- [9] K. Hashimoto, Zeta functions of finite graphs and representations of p-adic group, Adv. Stud. in Pure Math. 15: 211–280, 1989.
- [10] H. Hida, A p-adic measure attached the zeta functions associated with two elliptic modular forms I, Inventiones Math. 79: 159–195, 1985.
- [11] J. W. Hoffman, Remarks on the zeta function of a graph, Proc. Fourth Inter. Conf. Dynam. Sys. and Diff. Eq. 413–422, 2003.
- [12] Y. Ihara, On discrete subgroups of the two by two projective linear group over *p*-adic fields, J. Math. Soc. Japan, 18: 219–235, 1966.
- [13] N. Katz and B. Mazur, Arithmetic Moduli of Elliptic curves, Ann. of Math. Stud., Princeton Univ. Press, 1985.
- [14] W. C. Li, New forms and functional equations, Math. Ann. 212: 285–315, 1975.
- [15] W. W. Li, Character sums and abelian Ramanujan graphs, J. Number Theory 41: 199–217, 1992.
- [16] W. W. Li, Zeta and L-functions in Number Theory and Combinatorics, CBMS Regional Conference series in Math. 129, AMS 2019.

- [17] A. Lubotzky, R. Phillips and P. Sarnak, Ramanujan graphs, Combinatorica 8: 261–277, 1988.
- [18] J.-M. Mestre, La méthod des graphes. Examples et applications, Proc. Int. Conf. on class numbers and fundamental units of algebraic number fields, Katata, Japan, 217–242, 1986.
- [19] M.R. Murty, Ramanujan graphs, J. Ramanujan Math. Soc. 1, 1–20, 2001.
- [20] A.K. Pizer, Ramanujan graphs, Computational perspectives on number theory (Chicago, H. 1995), AMS/IP Stud. Adv. Math. 7, Amer. Math. Soc. Providence, RI: 159–178, 1998,
- [21] K.A. Ribet, On modular representation of Gal(Q/Q) arising from modular forms, *Inventiones Math.*, 100: 431–476, 1990.
- [22] J.H. Silverman, The Arithmetic of Elliptic Curves, 2nd edition GTM 106, Springer, 2008, ISBN 9780387094936.
- [23] G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, *Princeton*, Princeton Univ. Press, 1971.
- [24] H.M. Stark and A.A. Terras, Zeta functions of finite graphs and coverings, Advanced in Math., 121: 124–165, 1996.
- [25] K. Sugiyama, Zeta functions of Ramanujan graphs and modular forms, Comment. Math. Univ. Sanct. Pauli 66, 1–2: 29–43, 2017.
- [26] R.M. Tanner, Explicit construction from a generalized N-gons, SIAM. J. Alg. Discr. Math. 5: 287–294, Press 1984.
- [27] A. Terras, Fourier analysis on finite groups, London Math. Soc., Cambridge Univ. Press, 1999.
- [28] A. Valette, Graphs de Ramanujan et application, Sém. Bourbaki 1996-97, n° 829, Astérisque: 247–276, 1997.

Department of Mathematics, Faculty of Science, Rikkyo University, 3–34–1 Nishi-Ikebukuro, Toshima, Tokyo 171–8501, Japan e-mail: kensugiyama@rikkyo.ac.jp