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Abstract. In the study of hyperelliptic curve cryptography, presentations of semi-
reduced divisors on a hyperelliptic curve play important roles. In this note, we give an
interpretation for such presentations from viewpoints of Gröbner bases. We then apply it to
construct plane curves with infinitely many quasi-toric relations of type (2, n, 2).

Introduction

Let C be a hyperelliptic curve of genus g defined over a field K , char(K) �= 2 given
by an affine equation

C : y2 = f (x), f (x) = x2g+1 + c1x
2g + . . .+ c2g , ci ∈ K (1 ≤ i ≤ 2g)

where f (x) = 0 has no multiple roots inK , an algebraic closure ofK . We denote the point
at infinity by O . In the study of hyperelliptic curve cryptography ([2, 4, 7, 12]), a pair of
two polynomials (u, v) (u, v ∈ K[x]) is used in order to describe semi-reduced divisors on
C (See Section 1 for semi-reduced divisors) and to consider the addition in the Jacobian of
C. Such a pair was first considered in [15] and is called the Mumford representation of a
semi-reduced divisor. For a semi-reduced divisor d, d is given by zeros of the ideal 〈u, y −
v, y2 − f 〉 generated by u, y − v, y2 − f in K[x, y] with multiplicities. In [13], another
description for semi-reduced divisors was given. We call it the Leitenberger representation.

In this article, we give interpretations concerning these two representations from view-
points of Gröbner bases (Propositions 2.8 and 2.13). Namely we consider reduced Gröbner
bases of 〈u, y− v, y2 −f 〉 with respect to two monomial orders given in Section 2.3.1. We
then give a description for the addition law on Pic0(C) along this line in Section 2.3.4. We
hope that our approach by using Gröbner bases may make the addition procedure simple at
least from conceptual viewpoint.

As a geometric application of our observation on the two representations of semi-
reduced divisors, we study plane curves with quasi-toric relations and give a method for
explicit construction of such curves in Proposition 3.1. Here, following [3, Definition 2.13],
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we say that a plane curve B in P2 satisfies a quasi-toric relation of type (p, q, r) if there
exist a sextuple (F1, F2, F3, h1, h2, h3) of non-zero homogeneous polynomials such that

• it satisfies the following relation

h
p
1F1 + h

q
2F2 + hr3F3 = 0 ,

and
• the curve B is given by F1F2F3 = 0.

Plane curves that satisfy quasi-toric relations of certain types have been studied in [3, 9, 10]
in terms of the embedded topology of plane curves. We apply Proposition 3.1 to the case of
g = 1 and construct new explicit examples of curves satisfying infinitely many quasi-toric
relations of type (2, n, 2) n = 3, 5, 7 in Section 4.

REMARK 1. (i) Note that the cases of (2, 5, 2) and (2, 7, 2) were not considered
since such cases are not of elliptic type in the terminology of [3], i.e., of types
(2, 3, 6), (3, 3, 3), (2, 4, 4).

(ii) If a plane curve satisfies a quasi-toric relation of type (2, 3, 6), it satisfies infin-
itely many countable such relations by [3, Theorem 4.7]. On the other hand, our
examples in this article contain a continuous parameter, which makes a difference.

(iii) After the previous version of this article was uploaded in arXiv, Kloosterman
extended our result ([11]). Yet, as he comments in the Introduction in [11], we
hope that our examples are still worthwhile to be published.

In Section 4, we also apply our method to construct weak n-contact curves to a smooth
cubic. For a smooth cubic E, a plane curve D is said to be a weak n-contact curve to E if

the divisorD|E onE defined byD is of the formD|E = n
(∑d

i=1 Pi

)
+ sO for some non-

negative integer s. As we have seen in [16], a weak n-contact curve to a cubic satisfying
D|E = nP + sO , i.e., D meets at a torsion point of order n and meets at O plays a key
role to construct examples of certain Zariski tuples. In Examples 4.4 and 4.5, we construct
5- (resp. 7-) contact curves to E which intersect at a torsion point of order 5 (resp. 7) on
E and meets at O . Note that these examples are new as we only treat the cases of n =
3, 4, 6, 8 in [16],.

This article consists of 4 sections. In Section 1, we introduce semi-reduced divisors on
a hyperelliptic curve and explain their presentations. In Section 2, we give our interpretation
for two different representations of semi-reduced divisors from a viewpoint of Gröbner
bases. In Section 3 and 4, we apply our observation in Section 2 to study plane curves with
quasi-toric relations and weak n-contact curves.

1. Semi-reduced divisors on hyperellitpic curves

Let C be a hyperelliptic curve defined over K given by the affine equation in the
Introduction. We give a summary for semi-reduced divisors considered in hyperelliptic
cryptography [4, 7, 12, 14] and our previous article [16]. Our notation here are those in
[16].
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Let d be a divisor on C and Supp(d) denotes its supporting set. Let ι : (x, y) �→
(x,−y) be the hyperelliptic involution on C. For any divisor d on C with d = ∑

P∈C mPP ,
by considering points of the form P + ι(P ) contained in d, we have a decomposition d =
dsr + do such that

(i) the divisor do is of the form d̄ + ι(d̄) for some divisor d̄, and
(ii) if we write dsr = ∑

P∈C m′
PP , then m′

P satisfies the following conditions:
(a) m′

P = 1 if m′
P > 0 and P = ι(P ), and

(b) m′
ι(P ) = 0 if m′

P > 0 and P �= ι(P ).

We here define a semi-reduced divisor on C following to [7].

DEFINITION 1.1. Let d be a divisor on a hyperelliptic curve C .

(i) The divisor d is said to be affine divisor if Supp(d) ⊂ Caff := C \ {O}.
(ii) An effective affine divisor d is said to be semi-reduced if do is empty.

(iii) A semi-reduced divisor
∑
i miPi is said to be h-reduced if

∑
i mi ≤ g .

REMARK 1.2. In [7, 14], a h-reduced divisor is simply called a reduced divisor.
Here, in order to avoid confusion for the terminology reduced divisor used in standard
textbooks in algebraic geometry e.g., [8], we use the terminology ‘h-reduced.’

Here are some properties for semi-reduced divisors:

LEMMA 1.3. (a) For any divisor d = ∑
P mPP with Supp(d) �= ∅, there exists

a semi-reduced divisor sr(d) such that (i) d − (deg d)O ∼ sr(d) − (deg sr(d))O
and (ii) |d| ≥ | sr(d)|(= deg sr(d)). Here we put deg d := ∑

P mP and |d| :=∑
P |mP |.

(b) Let d be any semi-reduced divisor on C with deg d > g . Then there exists a unique
h-reduced divisor r(d) such that d − (deg d)O ∼ r(d)− (deg r(d))O .

(c) With two statements as above, we see that for any element d ∈ Div0(C), there
exists a unique h-reduced divisor r(d) such that d ∼ r(d)− (deg r(d))O .

As for proofs, see [7, 14].

2. Representations for semi-reduced divisors

We keep our notation and terminologies as in Section 1. Let 〈y2 − f 〉 ⊂ K[x, y] be
the ideal generated by y2 − f , where f is the polynomial in the Introduction. The quotient
ringK[x, y]/〈y2 − f 〉 is said to be the coordinate ring of C and we denote it byK[C]. The
quotient field ofK[C] is the rational function field K(C) of C. An element ofK[C] is called
a polynomial function, i.e., a rational function with poles only at O . For g ∈ K[x, y], its
class in K[C] gives a polynomial function on C, which we denote by [g].

For our later use, we define a K[x]-submodule Rem(y2) ofK[x, y] as follows:

Rem(y2) = {b0(x)+ b1(x)y | b0(x), b1(x) ∈ K[x]}
Since any element in K[C] can be represented by the class of an element in Rem(y2)

uniquely ([14, §2]), we use elements in Rem(y2) as normal forms of polynomial functions
in K[C]. Also we denote the local ring at P by OP (C) and its valuation by ordP .
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2.1. The Mumford representation
In [15], Mumford gave a description of Pic0(C) by two polynomials of one variable,

from which we have a semi-reduced divisor. In the study of hyperelliptic cryptography it is
called the Mumford representation. We explain it briefly.

Let d = ∑r
i=1 eiPi(ei > 0) be a semi-reduced divisor on C and put Pi = (xi, yi) (i =

1, . . . , r).

LEMMA 2.1. There exist unique polynomials u(x), v(x) ∈ K[x] such that

(i) u(x) := ∏r
i=1(x − xi)

ei ,

(ii) deg v(x) < degu(x), ordPi ([y − v(x)]) ≥ ei, and
(iii) v(x)2 − f is divisible by u.

In particular, degu = deg d.

For a proof, see [7, Lemma 10.3.5].

DEFINITION 2.2. Let d be a non-zero semi-reduced divisor on a hyperelliptic curve
C. The pair of polynomials (u, v) is said to be the Mumford representation of d. By d(u, v),
we mean a non-zero semi-reduced divisor with the Mumford representation (u, v). For d =
0, we take u(x) = 1 and v(x) = 0 as its Mumford representation.

Note that if u and v as above exist, we recover d:

d = (gcd(div([u]), div([y − v])))aff ,

where, for gi ∈ K[x, y] (i = 1, 2) and divisors, div([gi]), of functions [gi](i = 1, 2), we
define

gcd(div([g1]), div([g2]))

:=
∑
P∈Caff

min(ordP ([g1]), ordP ([g2]))P −
(∑

P

min (ordP ([g1]), ordP ([g2]))
)
O ,

and (gcd(div([g1]), div([g2])))aff := ∑
P∈Caff

min(ordP ([g1]), ordP ([g2]))P .

As it is shown in [2, 7, 14], one can compute the addition law on Pic0(C) in terms
of Mumford representations of two semi-reduced divisors. Also if we are given a semi-
reduced divisor d(u, v), we have an algorithm to compute the h-reduced divisor r(d(u, v))
as in Lemma 1.3 in terms of u, v.

2.2. The Leitenberger representation
In this subsection, we recall another representation of a non-zero semi-reduced divisor

d considered in [13], which is based on Jacobi’s interpolation functions. Let d = ∑r
i=1 Pi

be a non-zero semi-reduced divisor on C. By Lemma 1.3, there exists a unique h-reduced
divisor, r(d), such that

d − (deg d)O ∼ r(d)− (deg r(d))O .

Hence we have

d + ι∗ r(d)− (deg d + deg r(d))O ∼ r(d)+ ι∗ r(d)− 2(deg r(d)) ∼ 0 ,



Representations of Divisors on Hyperelliptic Curves and Plane Curves with Quasi-toric Relations 15

and there exists ψ ∈ K[C], unique up to constants, such that

div(ψ) = d + ι∗ r(d)− (deg d + deg r(d))O .

Thus we have

LEMMA 2.3. deg r(d) = min{r | L(−d+(deg d+r)O) �= {0}}. Here for a divisor d,
L(d) denotes vector space consisting of rational functions ξ such that div(ξ)+d is effecitve
and 0.

By choosing b = b0 + b1y ∈ Rem(y2) such that ψ = [b], we have

LEMMA 2.4. The effective divisor d+ι∗r(d) is semi-reduced if and only if gcd(b0, b1)

= 1.

Proof. Suppose that d + ι∗r(d) is not semi-reduced. We then infer that d + ι∗r(d) is
of the form d1 + P + ι∗P for some effective divisor d1 and P = (xP , yP ). As P + ι∗P −
2O ∼ 0, d1 − (deg(d + ι∗r(d)) − 2)O ∼ 0. This implies that there exists b̃ ∈ Rem(y2)

such that div([b̃]) = d1 − (deg(d + ι∗r(d)) − 2)O , and we have div((x − xP )b̃) = d +
ι∗r(d) − (deg(d + ι∗r(d))O . As (x − xP )b̃ ∈ Rem(y2), b = c(x − xP )b̃ for some c ∈
K\{0}. This means x − xP | gcd(b0, b1). Conversely, if gcd(b0, b1) is not constant, the
divisor (gcd(div([b0]), div([b1)]))aff is contained in d + ι∗r(d). Therefore d + ι∗r(d) is not
semi-reduced. �

LEMMA 2.5. Let d = ∑r
i=1 eiPi be a semi-reduced divisor such that d + ι∗r(d)

is semi-reduced. Let u be as in Lemma 2.1 and let b ∈ Rem(y2) as above. Then d :=
(gcd(div([u]), div([b])))aff.

Proof. Since div([u]) = ∑r
i=1 ei(Pi + ι∗Pi) − (2 degd)O , div([b]) = d + ι∗ r(d) −

(deg d + deg r(d))O and Supp(d) ∩ Supp(r(d)) = ∅, our statement follows.
�

DEFINITION 2.6. Let d be a semi-reduced divisor on C and let r(d) be the corre-
sponding reduced divisor. Assume that

(♣) d + ι∗r(d) is semi-reduced.

The pair of polynomials (u, b), u ∈ K[x], b ∈ Rem(y2) (up to K\{0}) in Lemma 2.5 is
called the Leitenberger representation of d.

REMARK 2.7. (i) If r(d) = O , the condition ♣ is satisfied as d is an affine divisor.
In particular we have div([b]) = d − (deg d)O .

(ii) If ♣ is not satisfied, i.e., d + ι∗r(d) is not semi-reduced, Jacobi’s interpolation
rational function considered in [13] does not seem to give the desired polynomial
function b as gcd(b0, b1) in Lemma 2.4 is not 1. Here is such an example. Let C
be a hyperelliptic curve over C given by

C : y2 = x5 − x3 + 2x2 + 2

Let d0 = d(u0, v0) be a semi-reduced divisor of degree 4 given by

u0 = x4 − x3 − (t2 − 2)x − t2 − 3t − 2

v0 = t (x + 1)+ 2 ,
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t ∈ C. By the reduction algorithm for semi-reduced divisors we have r(d0) =
(−1,−2). Put d = (1, 2)+ d0. Then we have r(d) = (1, 2)+ (−1,−2). Hence
d+ ι∗ r(d) is not semi-reduced as d+ ι∗ r(d) contains (1, 2)+(1,−2). In this case,
we have u = (x − 1)u0 and

b = (x − 1)(tx + t + 2 − y) .

In particular, d �= (gcd(div([u]), div([b])))aff.

2.3. Ideals arising from the two representations of semi-reduced divisors and their
bases

Let d = ∑
P eP P be a semi-reduced divisor on C. We define ideals I (d) ⊂ K[C] and

Ĩ (d) ⊂ K[x, y].
I (d) := {[g] ∈ K[C] | ordP ([g]) ≥ eP , for ∀P ∈ Supp(d)} ,
Ĩ (d) := {g ∈ K[x, y] | [g] ∈ I (d)}

Let (u, v) and (u, b) be its Mumford and Leitenberger representation, respectively. By
their definition, we infer that u, y − v, b ∈ Ĩ (d). In this section, we give characterization
of these polynomials in terms of Gröbner bases of Ĩ (d) with respect to certain monomials
orders. Let us introduce two monomial orders which we use for our purpose.

2.3.1. Two monomial orders on K[x, y] and K[x, y]
As for general facts on monomial orders and Gröbner bases, we refer to [5]. In this

note, we consider two monomial orders>1 and >2 as follows:

• >1 is the pure lexicographic order with y > x.
• >2 is a weighted lexicographic order as follows: For a monomial ymxn, we put

wdeg(ymxn) = (2g + 1)m+ 2n. We say ym1xn1 >2 y
m2xn2 if and only if

(i) wdeg(ym1xn1) > wdeg(ym2xn2) or
(ii) (2g + 1)m1 + 2n1 = (2g + 1)m2 + 2n2 and n1 < n2

The monomial order>2 is nothing but a weighted reverse lexicographic order for y, x
with weight (2g + 1, 2). It coincides with the Cab-order considered in [1] for (a, b) =
(2g + 1, 2).

By LMi (g), LCi (g) and LTi (g), we denote the leading monomial, coefficient and term
of g with respect to >i , respectively. Also we denote the multidegree with respect to >i by
multidegi . Note that if g ∈ K[x] (resp. K[x]), LMi (g), LCi (g) and LTi (g) (i = 1, 2) are
the leading monomial, coefficient and term of g , respectively in K[x] (resp. K[x]).

In [1], a description on the ideal class group for Cab curves was given via Gröbner
bases. This article can be considered as a hyperelliptic curve version of [1]. In the following
two subsections, we will give descriptions for the divisor class group via Gröbner bases of
Ĩ (d).

2.3.2. The Mumford representation and the reduced Gröbner basis of Ĩ (d) with
respect to >1

Let us start the following proposition:
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PROPOSITION 2.8. Let (u, v) be the Mumford representation of d. Then Ĩ (d) =
〈u, y− v〉 and v2 −f ∈ 〈u〉 inK[x]. In particular, {u, y− v} is the reduced Gröbner basis
of Ĩ (d) with respect to >1.

Proof. Since (u, v) is the Mumford representation of d, by definition, we have u, y−
v ∈ Ĩ (d) and u|(v2 − f ). In particular, 〈u, y − v〉 ⊆ Ĩ (d) and {y − v, u} is the reduced
Gröbner basis of 〈u, y − v〉 by computing the S-polynomial of u and y − v with respect to
>1. We now show that Ĩ (d) ⊆ 〈u, y − v〉. Choose any g ∈ Ĩ (d), we apply [5, Chapter 2,
Theorem 3 (Division Algorithm)] to our case: g and F = (y − v, u) with respect to >1.
Then we have

g = q1(y − v)+ q2u+ r, r ∈ K[x], deg r < degu if r �= 0, q1, q2 ∈ K[x, y] .
As r ∈ Ĩ (d),

ordPi ([r]) ≥ ePi (∀Pi = (xPi , yPi ) ∈ Supp(d)) ,

and r(xPi ) = 0 for Pi = (xPi , 0) ∈ Supp(d). Since K[x] can be regarded as a subset of
K[C], we infer that u|r , i.e., r = 0. Hence Ĩ (d) = 〈u, y − v〉.

�
REMARK 2.9. Our proof of Proposition 2.8 implies that any element g ∈ K[x] ∩

Ĩ (d) is divisible by u, i.e., K[x] ∩ Ĩ (d) = 〈u〉. For v1 ∈ K[x] such that y − v1 ∈ Ĩ (d),
(y − v)− (y − v1) = v − v1 ∈ 〈u〉. Hence if deg v1 < degu, v1 = v.

REMARK 2.10. If d is a semi-reducd divisor defined over K , the two polynomials
of its Mumford representation can be chosen from K[x] by [7, Lemma 10.3.10].

2.3.3. The Leitenberger representation and the reduced Gröbner basis of Ĩ (d) with
respect to >2

We next consider an interpretation for the Leitenberger representation. To this pur-
pose, we use the monomial order>2. We first remark that for b = b0 + b1y ∈ Rem(y2) we
have wdeg(LT2(b))=− ordO([b]). In fact, as multideg2(b)=max{(0, deg b0), (1, deg b1)},
we have wdeg(LT2(b)) = max{2 deg b0, 2g + 1 + degb1}. On the other hand, ordO([b]) =
− max{2 deg b0, 2g + 1 + deg b1} (see [14, Definition 3.3], for example).

LEMMA 2.11. Let d be a semi-reduced divisor and r(d) denotes the unique reduced
divisor as in Section 1. Put wo = min{wdeg(LM2(g)) | g ∈ Ĩ (d), [g] �= 0}. Then

deg d + deg r(d) = wo

holds.

Proof. Our proof consists of 2 steps.
Step 1. We show that wdeg := min{multideg2(g) | g ∈ Ĩ (d), [g] �= 0} is attained by

some elements in Ĩ (d) ∩ Rem(y2). In particular ,

wo = min{wdeg(LM2(b)) | b ∈ Ĩ (d) ∩ Rem(y2), [b] �= 0} .
Choose g ∈ Ĩ (d) arbitrary. Note that g can be expressed uniquely as follows:

g = qg(y
2 − f )+ bg , qg ∈ K[x, y], bg = b0,g + b1,gy ∈ Rem(y2) ∩ Ĩ (d) .
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As multideg2(qg(y
2−f ))=multideg2(qg)+(2, 0) and multideg2(bg)=max{(0, deg b0,g),

(1, deg b1,g)}, by [5, Lemma 8, Ch.2, §2],

multideg2(g)= max{multideg2(qg(y
2 − f )),multideg2(bg)}

≥ multideg2(bg) .

Hence wdeg is attained by some element b in Ĩ (d) ∩ Rem(y2) with [b] �= 0.
Step 2. Choose bmin := b0,min + b1,miny such that wdeg = multideg2 bmin. As bmin ∈

Ĩ (d),
div([bmin]) = d + d′ − (deg d + deg d′)O

for some effective divisor d′ and wo = (deg d + deg d′). Choose b̃ ∈ Rem(y2) such that

div([bmin]) = d + ι∗ r(d)− (deg d + deg r(d))O .

By Lemmas 2.3,wo = deg d+ deg r(d) and we have [b̃] = [cbmin] for some c ∈ K× by the
uniqueness of such rational functions up to constant. Hence our statement follows. �

Choose bd = b0 + b1y ∈ Rem(y2)∩ Ĩ (d) as in Lemma 2.11 with LC2(bd) = 1. Note
that bd is unique and ordO([bd]) = −wo. Let G2 be the reduced Gröbner basis of Ĩ (d) with
respect to >2. By our proof of Lemma 2.11, we infer that go ∈ Rem(y2) for any go ∈ G2
with [go] �= 0.

LEMMA 2.12. The polynomial bd is a member of G2 such that multideg2 is minimum
in the set {g ∈ G2 | [g] �= 0}.

Proof. Choose go ∈ G2 so that multideg2 is minimum in {g ∈ G2 | [g] �= 0}. By our
choice of bd, multideg2(bd) ≤ multideg2(go). On the other hand, LT2(bd) is divisible by
LT2(g) for some g ∈ G2 with [g] �= 0 as bd ∈ Rem(y2) ∩ Ĩ (d). Hence multideg2(bd) ≥
multideg2(go) and this implies multideg2(bd) = multideg2(go). Since bd, go ∈ Rem(y2)

and both leading coefficients of bd and go is 1, if bd �= go, then we have bd − go ∈ Ĩ (d),
[bd − go] �= 0 and multideg2(bd − go) < multideg(bd). This contradicts to our choice of
bd. Hence bd = go ∈ G2. �

Let d be a semi-reduced divisor satisfying ♣. Let (u, v) be the Mumford representation
of d and let bd be as above. Then (u, bd) is the Leitenberger representation of d and we
have the following proposition:

PROPOSITION 2.13. The ideal Ĩ (d) coincides with 〈u, bd, y2 − f 〉. In particular,
I (d) = 〈[u], [bd]〉

Proof. Put bd = b0 +b1y. As d satisfies ♣, gcd(b0, b1) = 1. If gcd(u, b1) �= 1, there
exists P = (xP , yP ) ∈ C such that u(xP ) = 0 and b1(xP ) = 0. As bd ∈ Ĩ (d), we infer
that bd(xP , yP ) = 0 or bd(xP ,−yP ) = 0, i.e., b0(xP ) = 0 also holds. This contradicts
to gcd(b0, b1) = 1. Hence gcd(u, b1) = 1. By choosing h1, h2 ∈ K[x] such that h1u +
h2b1 = 1, we have

h1uy + h2bd = y + h2b0 .

Take v1 so that −v1 ≡ h2b0(modu). As y−v, y−v1 ∈ Ĩ (d), we infer that v1 −v ∈ Ĩ (d)∩
K[x]. By Remark 2.9, v1 − v is divisible by u, which implies v = v1. Hence 〈u, y − v〉 ⊆
〈u, bd, y2 − f 〉 and our statement follows from Proposition 2.8. �
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REMARK 2.14. If the semi-reduced divisore d as above is defined over K , u, y −
v ∈ K[x, y] by Remark 2.10. Hence we infer that bd ∈ K[x, y] since computation to
obtain G2 can be done in K[x, y].
2.3.4. Remark on the addition on Pic0(C)

Let us recall that that both of the Mumford and Leitenberger representations have
been used in order to compute the ‘addition’ on Pic0(C), explicitly, in [7, 12, 13, 14]. In
this subsection we give a remark about the addition from our viewpoint.

Suppose that two h-reduced divisors d1 and d2 are given. The addition on Pic0(C)
consists of two steps:

• Step 1. To find a semi-reduced divisor d3 such that d1 + d2 − deg(d1 + d2)O ∼
d3 − deg(d3)O .

• Step 2. To find r(d3).

We first consider the Step 1. Assume that d1 +d2 can be rewritten of the form do+ d̄+
ι∗d̄, where do is a non-zero semi-reduced divisor and d̄ is an effective divisor. Then we can
take do as d3. Let (u3, v3) be the Mumford representation of d3. Write d̄ = ∑

j ejPj , Pj =
(xPj , yPj ) and put uo = ∏

j (x−xPj )ej . Then we see that div([uo]) = d̄+ ι∗d̄−2(deg d̄)O
holds. Under these notation, we have

PROPOSITION 2.15. Assume that d3 �= 0. Both uou3 and uo(y − v3) are contained

in the reduced Gröbner basis of ˜I (d1 + d2) with respect to >1.

Proof. If d̄ = 0, we can take 1 as uo. Hence our statement follows from Proposi-

tion 2.8. Now we assume d̄ �= 0. Put I3 = ˜I (d1 + d2). Since K[C] is a Dedekind domain,
we have I (d̄ + ι∗d̄) = 〈[uo]〉 and

I (d1 + d2) = I (d3)I (do + ι∗do) = 〈[uo][u3], [uo][y − v3]〉 .
Hence I3 = 〈uou3, uo(y − v3), y

2 − f 〉. Since d3, d̄ �= 0, for any element g in I3,
div([g])aff − d̄ − ι∗d̄ is effective, where div([•])aff := ∑

P∈Caff
ordP ([•])P for • ∈ K[C].

Therefore no polynomial of the form y − b, b ∈ K[x], is contained in I3. As y2 − f ∈
I3, by [5, Chapter 5, §3], the reduced Gröbner basis G(I3) of I3 is of the form {g1, g2, g3}
such that LT1(g1) = xn1,LT1(g2) = xn2y,LT1(g3) = y2. We first show that g1 = uou3,
i.e., I3 ∩ K[x] = 〈uou3〉. As g1 ∈ I3 and div([g1])aff − div([uo][u3])aff is effective, g1 =
uou3g

′
1 + h(y2 − f ) for some g ′

1 ∈ Rem(y2), h ∈ K[x, y]. Since g1 ∈ K[x], we infer that
g ′

1 ∈ K[x] and h = 0. On the other hand, as uou3 ∈ I3 ∩ K[x], xn1 divides LT1(uou3).
Hence we have LT1(g1) = LT1(uou3) and g1 = uou3. We next consider g2. As g2 ∈ I3,
g2 −uog ′

2 ∈ 〈y2 −f 〉 for some g ′
2 ∈ Rem(y2)\K[x]. This means that y2 divides LT1(g2 −

uog
′
2). As g2 ∈ Rem(y2), we infer that g2 = uog

′
2. This implies LT1(uo(y − v3)) =

xdeguoy divides LT1(g2) = xn2y. On the other hand, since uo(y − v3) ∈ I3, xn2y divides
LT1(uo(y − v3)). This implies that LT1(uo(y − v3)) = LT1(g2) and we have uo(y − v3)−
g2 ∈ I3 ∩ K[x]. Hence we have uo(y − v3) = g2 + rg1 for some r ∈ K[x]. As g1, g2 ∈
G(I3) and deg v3 < degu3, we infer that deg rg1 < deg g1 if r �= 0. Thus we have r = 0
and g2 = uo(y − v3). �

By our proof of Proposition 2.15, we have the following corollary.
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COROLLARY 2.16. If we let f ≡ fo mod uou3, then {uou3, uo(y − v3), y
2 − fo}

is the reduced Gröbner basis of ˜I (d1 + d2) with respect to >1.

Now the Step 1 can be summarized in the following way:
By Proposition 2.15, if d1 and d2 are given by the Mumford representations (u1, v1)

and (u2, v2), respectively, the Mumford representation of d3 can be obtained in the follow-
ing way:

(i) Compute the reduced Gröbner basis G of 〈u1u2, u1(y − v2), u2(y − v1), (y −
v1)(y − v2), y

2 − f 〉 with respect to >1.
(ii) If G consists of two elements, it means d3 = 0 or G = {u3, y − v3} where the pair

{u3, v3} is the Mumford representation of d3.
(iii) If G consists of three elements, we put G = {g1, g2, g3} such that g1 ∈ K[x], g2 is

of the form b0(x)+ b1(x)y ∈ Rem(y2) and g3 = y2 + . . .. By Proposition 2.15,
the Mumford representation of d3 is (g1/b1,−b0/b1).

As for the Step 2, it can be summarized as follows:

PROPOSITION 2.17. Suppose that d3 satisfies ♣ and let (u, bd3) be its Leitenberger
representation as in Proposition 2.13. The Leitenberger representation of r(d3) is given by
(u1, bd3) where u1 ∈ K[x] is a monic polynomial obtained as follows: u1 := u′/LC2(u

′),
where bd3 = b0 + b1y and u′ := (b2

0 − b2
1f )/u.

Proof. By the definition of the Leitenberger representation, our statement is straight-
forward. �

REMARK 2.18. One of the remaining questions may be how our approach is effi-
cient from computational point of view. It may be interesting, but we do not go on this
direction further as our main interest in this article is to study curves with quasi-toric rela-
tions.

3. Plane curves with quasi-toric relations of type (2, n, 2)

Let us start with explaining how we apply our previous consideration to obtain curves
with quasi-toric relation of type (2, n, 2). Let C be a hyperelliptic curve of genus g defined
over K as in the Introduction. Let do be a non-zero semi-reduced divisor defined over K
such that (i) k(do − (deg do)O) �∼ 0, 1 ≤ k < n and (ii) n(do − (deg do)O) ∼ 0, i.e., do −
(deg do)O gives rise to a torsion element of order n in Pic0(C). Assume that do is given by

a Mumford representation (uo, vo). Then we have I (do) = 〈[uo], [y − vo]〉 and Ĩ (ndo) =
Ĩ (do)n = 〈uno, un−1

o (y − vo), . . . , (y − vo)
n, y2 − f 〉. We compute the reduced Gröbner

basis G2 of Ĩ (ndo) with respect to>2. Let gn be an element of G2 \{y2 −f } with minimum
multidegree. By Remark 2.7, our proof of Lemma 2.12 and Remark 2.14, gn ∈ Rem(y2) ∩
K[x, y] and div([gn]) = n(do − (deg do)O). Hence we can choose gn as bndo . Now put
bndo = b0 + b1y. We have [bndo ι∗bndo] = [b2

0 − b2
1y

2] = [b2
0 − b2

1f ] = [r(uo)n], r ∈
K\{0} as div([bndo ι∗bndo]) = ndo +nι∗do− 2n(deg do)O = div([(uo)n]). In particular, as
do is defined overK , we have bndo ∈ K[x, y]. Hence b2

0 − b2
1f, uo ∈ K[x] and

(∗) b2
0 − b2

1f = r(uo)
n, r ∈ K\{0}
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holds in K[x].
Now assume that K = C(t) and a, b, c ∈ C[t]. In this case, f (x) ∈ C[t, x] and we

have a plane curve Bo in P2 given by the affine equation f (x) = 0. Then we have the
following:

PROPOSITION 3.1. Under the above setting, put B = Bo+L∞, where L∞ denotes
the line at infinity. If r ∈ C\{0} and undo , bndo are also in C[t, x], then either Bo or B
satisfies a quasi-toric relation of type (2, n, 2).

Proof. By homogenizing (∗), our statement is straightforward. �
Based on this approach, we construct examples of plane curves satisfying quasi-toric

relations of type (2, n, 2) with continuous parameter in Section 4.

4. Examples for the case of g = 1

In this section, we consider the case of g = 1 and apply our results on Leitenberger
representations in Section 2 to study explicit construction of plane curves. In this case, C is
an elliptic curve and we denote it by

E : y2 = f (x) = x3 + ax2 + bx + c, a, b, c ∈ K O = [0, 1, 0] .
Let T = (xT , yT ) be a torsion point of order n and assume that T ∈ E(K). By the
definition of the addition law on E, r(nT ) = O . Let l[−1]T be a line given by y = r(x −
xT )− yT , r ∈ K\{0}. Put l[−1]T ∩ E = {[−1]T , P1, P2} and dT := P1 + P2. Then dT is
a semi-reduced divisor defined overK of degree 2 whose Mumford representation is given
by

udT = f (x)− {r(x − xT )− yT }2

x − xT
, vdT = r(x − xT )− yT .

As n(dT −2O) ∼ n(T −O) ∼ 0, r(ndT ) = 0. Hence ♣ is satisfied for ndT by Remark 2.7.
Now we apply our consideration in Section 3 to some explicit cases.

REMARK 4.1. (i) In the case of K = C, by applying our argument in Section 3 to
nT , we see that the curve given by bnT = 0 is an n-contact curve to E.

(ii) By [6, Theorem 5.1], our method by using the cases of genus 1 works for n ≤
12( �= 11). In particular, if n is odd prime, n = 3, 5, 7 are all possible cases.

REMARK 4.2. In the examples below,K = C(t) and we consider families of semi-
reduced divisors d(r) given by the Mumford representations (u(r), v(r)), where u(r), v(r)
∈ K[r, x] and the value of r is chosen from C so that d(r) is a semi-reduced divisors on
E. Let

I (r) := 〈u(r)n, u(r)n−1(y − v(r)), . . . (y − v(r))n, y2 − f (x)〉 ⊂ K(r)[x, y] .
We first compute the reduced Gröbner basis, G2(r) of I (r) with respect to >2. Choose
g(r) ∈ G2(r). As g(r) ∈ I (r), g(r) has an expression

g(r) = h0(r)u(r)
n + h1(r)u(r)

n−1(y − v(r))(∗)

+ . . .+ hn(r)(y − v(r))n + hn+1(r)(y
2 − f (x)) ,
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where hi(r) ∈ K(r)[x, y]. Assume that (∗) can be well-defined for a fixed value ro ∈ C.

Then, as I (ro) = ˜I (nd(ro)), g(ro) ∈ ˜I (nd(ro)). If [g(ro)] �= 0 and wdeg(LM2(g(ro)) is

the minimum value wo, then we see g(ro) = gnd(ro) ∈ G2( ˜I (nd(ro))) by Lemmas 2.11

and 2.12, where G2( ˜I (nd(ro))) is the reduced Gröbner basis of ˜I (nd(ro)) with respect to
>2. In particular, if d(ro) − (deg d(ro))O is a torsion of order n, then r(nd(ro)) = 0 and
wo = n deg d(ro). Hence if wdeg(LM2(g(ro))) = n deg d(ro), g(ro) = gnd(ro). The above
observation does not necessarily mean that G2(r) is a comprehensive Gröbner basis as we
only check one element of G2(r) and need to choose r so that (∗) is defined (see [17] for
comprehensive Gröbner bases). As for more general treatment for G2(d(ro)), we refer to
[5, Section 3, Exercise 7, Ch. 6]. Note that by Remark 2.9, for an element of the form y −
v, a similar argument holds between the reduced Gröbner basis, G1(r), with respect to >1

and that of ˜I (nd(ro)) with respect to >1, G1( ˜I (nd(ro))).

4.1. Explicit examples
We consider examples for n = 3, 5, 7. Our computation and argument are based on

Remark 4.2. We use Maple for our computation.

EXAMPLE 4.3. LetE3 be an elliptic curve defined overC(t) given by y2 =f3, f3(x)

=x3 + (x + t)2. T := (0, t) is a point on E3 of order 3. Note that the tangent line at T is
a weak 3-contact curve to E.

Plane curves with quasi-toric relation of type (2, 3, 2). Let l[−1]T be a line through
[−1]T . We may assume that l[−1]T is given by y = rx − t (r ∈ C\{0}). Put l[−1]T ∩
E3 = {[−1]T , P1, P2} and dT := P1 + P2, Pi = (xi, yi). The Mumford representation of
dT is (udT , vdT ), where

udT = x2 + (1 − r2)x + 2t (1 + r), vdT = rx − t .

Now we apply our argument in Section 3 to Ĩ (3d). Then we have b3dT = b0 + b1y

where

b0 = x3 + (2 + 3r + 3r2)x2 + (1 + 3r + 3r2 + r3 + t − 3tr)x

+t + 3rt + 3r2t + r3t + 2t2 ,

b1 = x(−1 − 3r)− 1 − 3r − 3r2 − r3 + 2t ,

and
b2

0 − b2
1(x

3 + (x + t)2) = (x2 + (1 − r2)x + 2(1 − r)t)3 .

By Proposition 3.1, we make use of the above equality to find curves satisfying in-
finitely many quasi-toric relations of type (2, 3, 2) with a continuous parameter r . By
homogenizing both hand side [T ,X,Z], t = T/Z, x = X/Z, we have

(Z3b0(T /Z,X/Z))
2 + (Z(b1(T /Z,X/Z))

2(Z(X3 + (X + T )2Z))

= (X2 + (1 − r2)XZ + 2(1 − r)T Z)3 .

Since we can choose r from a suitable Zariski open set of C, B given by Z(X3 + (X +
T )2Z) = 0 satisfies infinitely many quasi-toric relations of type (2, 3, 2) such that F1 =
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1, F2 = −1, F3 = Z(X3 +(X+T )2Z), h1 = Z3b0(T /Z,X/Z), h2 = X2 +(1−r2)XZ+
2(1 − r)T Z, and h3 = Z(b1(T /Z,X/Z).

EXAMPLE 4.4. Let E5 be the elliptic curve over C(t) given by

E5 : y2 = f5(t, x) = x3 + 1

4
(t2 + 4t − 4)x2 + 1

2
t (t − 1)x + 1

4
(t − 1)2 .

Put T :=
[

0,
t − 1

2

]
. T is a point on E5 of order 5.

Weak 5-contact curves. Since Ĩ (5T ) = 〈x5, x4(y− t−1
2 ), x3(y− t−1

2 )2, x2(y− t−1
2 )3,

x(y− t−1
2 )4, (y− t−1

2 )5, y2 −f5〉, we have the reduced Gröbner basis G2(Ĩ (5T )) of Ĩ (5T )
with respect to >2 and b5T is as follows:

G2(Ĩ (5T )) = {g1, g2, g3} ,
where

2g1 = (−t − 2)x2 + 2xy + (−2t + 1)x + 2y + 1 − t ,

g2 = y2 − f5 ,

2g3 = 2x4 − 2x3 + tx + 2x2 + t − 2y − 1 .

Since multideg2(g1) = (1, 1),wdeg(LM2(g1)) = 5 and multideg2(g3) = (4, 0),
wdeg(LM2(g3)) = 8, we have b5T = g1. Hence b5T := b0 + b1y, b0 := (−t − 2)x2 +
(−2t + 1)x + 1 − t, b1 := 2x + 2 and we have

b2
0 − b2

1f5 = −4x5 .

For a general t ∈ C, the curveD5T given by b5T = 0 is a weak 5-contact curve to E5 such
that D5T |E5 = 5T +O .

Plane curves with quasi-toric relations of type (2, 5, 2). We choose any semi-reduced
divisor dT of degree 2 such that vdT in the Mumford representation (udT , vdT ) is of the
form r(x − xT )− yT , r ∈ C\{0}. We infer that udT and vdT satisfy

v2
dT

− f = −(x − xT )udT ,

udT = x2 − (r2 − 1

4
t2 − t + 1)x + rt − r + t2

2
− t

2
, vdT = rx − 1

2
(t − 1) .

Now we apply our argument to Ĩ (5dT ). G2(Ĩ (5dT )) contains a polynomial g = x5 +
lower terms and [g] �= 0. As deg 5dT = 10, we choose g as b5dT and put 64b5dT = b0 +
b1y where

b0 = 32 − 128t + 32r5t + 80r4t2 + 80r3t3 + 40r2t4 + 10rt5 − 80r4t − 80r3t2

− 40r2t3 − 10rt4 − 128t3 + 32t4 − 32r5 − t5 + 64x5 + t6

+ (640r2 + 160rt + 48t2 + 320r + 192t − 128)x4

+ (320r4 + 320r3t + 320r2t2 + 80rt3 + 12t4 + 640r3 + 1280r2t + 480rt2 + 96t3

− 640r2 + 160t2 − 160r − 368t + 160)x3 + (32r5t + 80r4t2 + 80r3t3 + 40r2t4
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+ 10rt5 + t6 + 64r5 + 320r4t + 480r3t2 + 320r2t3 + 100rt4 + 12t5 + 320r3t

+ 800r2t2 + 240rt3 + 56t4 − 320r3 − 1120r2t − 400rt2 + 8t3 + 320r2 + 320rt

− 208t2 − 160r + 208t − 64)x2 + (64r5t + 160r4t2 + 160r3t3 + 80r2t4 + 20rt5

+ 2t6 − 32r5 + 80r4t + 240r3t2 + 200r2t3 + 70rt4 + 9t5 − 160r4 − 320r3t

− 240r2t2 − 240rt3 + 6t4 + 480rt2 − 16t3 − 480rt − 48t2 + 160r + 80t − 32)x

+ 192t2 ,

b1 = (−320r − 32t − 64)x3 + (−640r3 − 320r2t − 160rt2 − 16t3 − 640r2 − 640rt

− 96t2 + 320r + 32t)x2 + (−64r5 − 160r4t − 160r3t2 − 80r2t3 − 20rt4 − 2t5

− 320r4 − 640r3t − 480r2t2 − 160rt3 − 20t4 − 320rt2 − 32t3 + 640rt + 128t2

− 320r − 160t + 64)x − 64r5 − 160r4t − 160r3t2 − 80r2t3 − 20rt4 − 2t5 + 64t3

− 192t2 + 192t − 64 ,

and
b2

0 − b2
1f5 = −4(4udT )

5 .

By homogenizing both hand side [T ,X,Z], t = T/Z, x = X/Z, we have

(Z8b0(T /Z,X/Z))
2 + (Z6b1(T /Z,X/Z))

2(Z4f5(T /Z,X/Z))

= 4Z(−4XZ2r2 + 4TZ2r − 4Z3r + T 2X

+ 2T 2Z + 4TXZ − 2T Z2 + 4X2Z − 4XZ2)5 .

Since we can choose r from a suitable Zariski open set of C, B given by −4Z5(f5(T /Z,

X/Z)) = 0 satsifies infinitely many quasi-toric relations of type (2, 5, 2) such that

h1 =Z8b0(T /Z,X/Z) ,

h2 = −4XZ2r2 + 4TZ2r − 4Z3r + T 2X + 2T 2Z + 4TXZ − 2TZ2 + 4X2Z − 4XZ2 ,

h3 =Z6b1(T /Z,X/Z) ,

F1 = 1, F2 = −4Z, F3 = Z4f5(T /Z,X/Z) .

EXAMPLE 4.5. Let E7 be the elliptic curve over C(t) given by

E7 : y2 = f7(t, x) = x3+ 1

4
(t4−6t3+3t2+2t+1)x2+ 1

2
(t5−2t4+t2)x+ 1

4
(t6−2t5+t4) .

Put T :=
[

0,
t3 − t2

2

]
. T is a point on E5 of order 7.

Weak 7-contact curves. Since Ĩ (7T ) = 〈x7, x6(y − t3−t2
2 ), x5(y − t3−t2

2 )2, x4(y −
t3−t2

2 )3, x3(y − t3−t2
2 )4, x2(y − t3−t2

2 )5, x(y − t3−t2
2 )6, (y − t3−t2

2 )7, y2 − f7〉, have the

reduced Gröbner basis G2(Ĩ (7T )) of Ĩ (7T ) with respect to >2 and b7T is as follows:

G2(Ĩ (7T )) = {g1, g2, g3} ,
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where

g1 = y2 − f7 ,

2g2 = (−t2 + 3t + 3)x3 + 2x2y + (−3t3 + 4t2 + 3t + 1)x2 + (4t + 2)yx

+ (−3t4 + 2t3 + 2t2)x + 2yt2 − t5 + t4 ,

2g3 = 2x5 + (−4t − 2)x4 + (6t2 + 8t + 2)x3 + (−t5 − 3t4 + 8t3 + 12t2 + 6t + 1)x2

+ (2t3 + 12t2 + 10t + 2)yx + (−2t6 − 7t5 + 4t4 + 8t3 + 2t2)x

+ (2t4 + 6t3 + 2t2)y − t7 − 2t6 + 2t5 + t4 .

Since multideg2(g2) = (2, 1),wdeg(LM2(g2)) = 7 and multideg2(g3) = (5, 0),
wdeg(LM2(g3)) = 10, we have b7T = g2. Hence b7T := b0 + b1y, b0 := (−t2 +
3t + 3)x3 + (−3t3 + 4t2 + 3t + 1)x2 + (−3t4 + 2t3 + 2t2)x − t5 + t4, b1 := 2x2 + (4t +
2)x + 2t2 and we have

b2
0 − b2

1f7 = −4x7 .

For a general t ∈ C, the curveD7T given by b7T = 0 is a weak 7-contact curve to E7 such
that D7T |E7 = 7T + 2O .

Plane curves with quasi-toric relations of type (2, 7, 2). We first choose any semi-re-
duced divisor dT of degree 2 such that vdT in the Mumford representation (udT , vdT ) is of
the form r(x − xT )− yT , r ∈ C\{0}. We infer that udT and vdT satisfy

f − v2
dT

= (x − xT )udT ,

udT = x2 − (r2 − 1

4
t4 + 3

2
t3 − 3

4
t2 − 1

2
t − 1

4
)x + rt3 − rt2 + t5

2
− t4 + t2

2
,

vdT = rx − 1

2
t3 + 1

2
t2 .

Now we apply our argument to Ĩ (7d). G2(Ĩ (7dT )) contains a polynomial g = x7 +
lower terms and [g] �= 0. As deg 7dT = 14, we choose g as b7dT and put 256b7dT =
b0 + b1y. Then we have

b2
0 − b2

1f7 = −4(−4udT )
7 .

We here omit explicit forms of b0 and b1 as they are too long. By homogenizing both hand
side [T ,X,Z], t = T/Z, x = X/Z, we have

(Z19b0(T /Z,X/Z))
2 + (Z16b1(T /Z,X/Z))

2(Z6f7(T /Z,X/Z))

= 4Z3(−4XZ4r2 + 4T 3Z2r − 4T 2Z3r + 2T 5 + T 4X − 4T 4Z − 6T 3XZ + 3T 2XZ2

+2T 2Z3 + 2TXZ3 + 4X2Z3 + XZ4)7 .

Since we can choose r from a suitable Zariski open set of C, B given by −4Z9f7(T /Z,

X/Z) = 0 satisfies infinitely many quasi-toric relations of type (2, 7, 2) such that

h1 =Z19b0(T /Z,X/Z) ,

h2 = −4XZ4r2 + 4T 3Z2r − 4T 2Z3r + 2T 5 + T 4X − 4T 4Z − 6T 3XZ + 3T 2XZ2

+2T 2Z3 + 2TXZ3 + 4X2Z3 +XZ4 ,
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h3 =Z16b1(T /Z,X/Z) ,

F1 = 1, F2 = −4Z3, F3 = Z6f7(T /Z,X/Z) .

5. An explicit example for the case of g = 2

In this section, we will give an example of a plane curve satisfying infinitely many
quasi-toric relations of type (2, 3, 2) based on a hyperelliptic curve of genus 2 over C(t).
Again our computation are argument based on Remark 4.2. Let us consider the hyperelliptic
curve C of genus 2 given by C : y2 = f (t, x), where

f (t, x)= −(x2 − x − t2)3 + (x3 − t3 − 1)2

= 3x5 + 3(t2 − 1)x4 − (2t3 + 6t2 + 1)x3 + 3(−t4 + t2)x2 + 3t4x + 2t6 + 2t3 + 1 .

In order to make the equation simple, we set the coefficient of x5 in f (t, x) is 3 and it
produced no effect on our result for the existence of quasi-toric relations. Consider the
h-reduced divisor do given by

uo = x2 − x − t2, vo = (x3 − t3 − 1)(moduo) = (1 + t)x − t3 + t2 − 1 .

By our our definition of C, do − 2O gives rise to a torsion of order 3 in Pic0(C). In fact, by
our argument as before, we see that I (3do) = 〈[y − (x3 − t3 − 1)]〉, i.e., 3(do − 2O) =
div([y − (x3 − t2 − 1)]). Now for r ∈ C, put

v1 := r(x2 − x − t2)− vo ,

u1 := 1

3

f − v2
o

uo

= x3 + 3t2 − r2

3
x2 + (−2t3 + 2rt2 + r2 + 2r − 1)

3
x

− t
4

3
− 2

3
(r + 1)t3 + 1

3
(r2 + 2r + 1)t2 − 2

3
r − 2

3
.

Let d1 be the divisor given by the Mumford representation (u1, v1). By Remark 2.7, the

divisor 3d1 satisfies ♣ for general r as r(3d1) = 0. Now we apply our argument to Ĩ (3d1).
We see that a polynomial such that g = (x2 + lower terms)y + lower terms and [g] �= 0 is

contained in G2(Ĩ (3d1)). As deg 3d1 = 9, we can choose g as b3d1 . Then we have 3b3d1 =
b0 + b1y where

b0 = (−9r − 9)x4 + (−9t2r − r3 − 9t2 − 9r2 − 9r)x3

+ (6t3r − 6t2r2 + 3t3 + 9t2 + 3r2 + 12r + 6)x2

+ (−3t5 + 6t4r + 3t3r2 + 9t4 + 3t3r + 6t2r2 + 12t2r + 3t2 + 3r2 + 3r)x

+ 3t6 − 3t5r + 3t4r2 + t3r3 − 3t5 + 6t4r + 3t3r2

+ 3t4 + 3t3r + 5t3 − 3t2r + r3 − 3t2 + 3r2 + 3r + 3 ,

b1 = 3x2 + (3t2 + 3r2 + 9r + 6)x + (−2t3 + 3t2r + r3 + 3t2 + 3r2 + 3r − 1) .

and b2
0 − b2

1f = −(3u1)
3. Put h1 = Z6b0(T /Z,X/Z), h2 = Z4u1(T /Z,X/Z), h3 =

Z3b1(T /Z,X/Z), F1 = 1, F2 = 1 and F3 = Z6f (T /Z,X/Z). Then the curve Bo given



Representations of Divisors on Hyperelliptic Curves and Plane Curves with Quasi-toric Relations 27

by F2 = 0 satisfies infinitely many quasi-toric relations as we can choose r from a suitable
Zariski open set of C.
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