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Abstract. For a cuspidal Hecke eigenform F for Spn(Z) and a Dirichlet character
χ let L(s, F, χ, St) be the standard L-function of F twisted by χ . In [3], Böcherer showed
the boundedness of denominators of the algebraic part of L(m,F, χ, St) at a critical point
m when χ varies. In this paper, we give a refined version of his result. We also prove a
similar result for the products of Hecke L-functions of primitive forms for SL2(Z).

1. Introduction

Let Γ (n) = Spn(Z) be the Siegel modular group of genus n. For a cuspidal Hecke
eigenform F for Γ (n) and a Dirichlet character χ let L(s, F, χ, St) be the standard L-
function of F twisted by χ . In [3], Böcherer showed the boundedness of denominators of
the algebraic part of L(m,F, χ, St) at a critical point m when χ varies (cf. Remark 2.5).
To prove this, Böcherer used congruence of Fourier coefficients of modular forms. In this
paper, we give a refined version of the above result without using congruence. We state
our main results more precisely. Let Mk(Γ

(n)) be the space of modular forms of weight k

for Γ (n), and Sk(Γ
(n)) its subspace consisting of cusp forms. We suppose that k ≥ n +

1. Let F1, . . . , Fe be a basis of the space Mk(Γ
(n)) consisting of Hecke eigenforms such

that F1 = F . Let Ln,k be the composite field of Q(F1), · · · ,Q(Fe−1) and Q(Fe). Let Ẽ′
F

be the ideal of Ln,k generated by all
∏e

i=2(λF (Ti−1) − λFi (Ti−1))’s (T1, . . . , Te−1 ∈ L′
n)

and put ẼF = Ẽ′
F ∩Q(F ), where L′

n is the Hecke algebra for the Hecke pair (GSp+
n (Q) ∩

M2n(Z), Γ (n)). Then, by Theorem 2.2, Ẽ′
F is a non-zero ideal, and therefore ẼF is a non-

zero ideal of Q(F ). Let I(l, F, χ) be a certain fractional ideal of Q(F, χ) associated with
the value L(l, F, χ, St) as defined in Section 2, where Q(F, χ) is the field generated over
the Hecke field Q(F ) of F by all the values of χ . Then we prove that we have

I(m,F, χ) ⊂ 〈(Cn,kẼF )−1〉OQ(F,χ) [N−1]

Date: March 24, 2022.
2020 Mathematics Subject Classification. 11F46, 11F67.
Key words and phrases. Standard L-function, Siegel modular form.
The author is partially supported by JSPS KAKENHI Grant Number (B) No.JP16H03919, JP21K03152.

29



30 H. KATSURADA

for any positive integer m ≤ k − n and primitive character χ mod N satisfying a certain
condition, where Cn,k is a positive integer depending only on k and n. (For a precise
statement, see Theorem 2.3). By this we easily see the following result (cf. Corollary 2.4):

Let PF be the set of prime ideals p of Q(F ) such that

ordp(NQ(F,χ)/Q(F )(I(m,F, χ))) < 0

for some positive integer m ≤ k −n and primitive character χ with conductor not divisible
by p satisfying the above condition. Then PF is a finite set. Moreover, there exists a positive
integer r = rn,k depending only on n and k such that we have

ordq(I(m,F, χ)) ≥ −r[Q(F, χ) : Q(F )]
for any prime ideal q of Q(F, χ) lying above a prime ideal in PF and positive integer
m ≤ k −n and primitive character χ with conductor not divisible by q satisfying the above
condition.

We have also similar results for the products of Hecke L functions of primitive forms
for SL2(Z).

The author thanks Siegfried Böcherer, Shih-Yu Chen, Tobias Keller, Takashi Ichikawa,
and Masataka Chida for valuable discussions. He also thanks the referee for many useful
comments.

Notation We denote by Z>0 and Z≥0 the set of positive integers and the set of non-
negative integers, respectively.

For a commutative ring R, let Mmn(R) denote the set of m × n matrices with entries
in R, and especially write Mn(R) = Mnn(R). We often identify an element a of R and the
matrix (a) of size 1 whose component is a. If m or n is 0, we understand an element of
Mmn(R) is the empty matrix and denote it by ∅. Let GLn(R) be the group consisting of all
invertible elements of Mn(R), and Symn(R) the set of symmetric matrices of size n with
entries in R. Let K be a field of characteristic 0, and R its subring. We say that an element
A of Symn(R) is non-degenerate if the determinant det A of A is non-zero. For a subset
S of Symn(R), we denote by Snd the subset of S consisting of non-degenerate matrices.
For a subset S of Symn(R) we denote by S≥0 (resp. S>0) the subset of S consisiting of
semi-positive definite (resp. positive definite) matrices. We say that an element A = (aij )

of Symn(K) is half-integral if aii (i = 1, ..., n) and 2aij (1 ≤ i �= j ≤ n) belong to R. We
denote by Hn(R) the set of half-integral matrices of size n over R. We note that Hn(R) =
Symn(R) if R contains the inverse of 2. For an (m, n) matrix X and an (m,m) matrix A,
we write A[X] = tXAX, where tX denotes the transpose of X. Let G be a subgroup of
GLn(R). Then we say that two elements B and B ′ in Symn(R) are G-equivalent if there
is an element g of G such that B ′ = B[g]. For two square matrices X and Y we write

X⊥Y =
(

X O

O Y

)
. We often write x⊥Y instead of (x)⊥Y if (x) is a matrix of size 1. We

denote by 1m the unit matrix of size m and by Om,n the zero matrix of type (m, n). We
sometimes abbreviate Om,n as O if there is no fear of confusion.
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Let b be a subset of K . We then denote by 〈b〉R the R-sub-module of K generated by
b. For a non-zero integer M , we put

R[M−1] = {aM−s | a ∈ R, s ∈ Z≥0}
Let K be an algebraic number filed, and O = OK the ring of integers in K. For a prime
ideal p of O, we denote by O(p) the localization of O at p in K. Let A be a fractional
ideal in K. If A = peB with a fractional ideal B of K such that O(p)B = O(p) we write
ordp(A) = e. We make the convention that ordp(A) = ∞ if A = {0}. We simply write
ordp(c) = ordp((c)) for c ∈ K. We sometimes say that p divides c if ordp(c) > 0. For an
ideal I of K , let I−1 the inverse ideal of I.

For a complex number x put e(x) = exp(2π
√−1x).

2. Main result

For a subring K of R put

GSp+
n (K) = {γ ∈ GL2n(K) | Jn[γ ] = κ(γ )Jn with some κ(γ ) > 0},

and
Spn(K) = {γ ∈ GSp+

n (K) | Jn[γ ] = Jn},
where Jn =

(
On −1n

1n On

)
. In particular, put Γ (n) = Spn(Z) as in Introduction. We

sometimes write an element γ of GSp+
n (K) as γ =

(
A B

C D

)
with A,B,C,D ∈ Mn(K).

We define subgroups Γ (n)(N) and Γ
(n)

0 (N) of Γ (n) as

Γ (n)(N) = {γ ∈ Γ (n) | γ ≡ 12n mod N},
and

Γ
(n)

0 (N) = {
(

A B

C D

)
∈ Γ (n) | C ≡ On mod N}.

Let Hn be Siegel’s upper half space of degree n. We write γ (Z) = (AZ + B)(CZ +
D)−1 and j (γ,Z) = det(CZ + D) for γ =

(
A B

C D

)
∈ GSp+

n (R) and Z ∈ Hn. We

write F |kγ (Z) = (det γ )k/2j (γ,Z)−kf (γ (Z)) for γ ∈ GSp+
n (R) and a C∞-function F

on Hn. We simply write F |γ for F |kγ if there is no confusion. We say that a subgroup
Γ of Γ (n) is a congruence subgroup if Γ contains Γ (n)(N) with some N . We also say
that a character η of a congruence subgroup Γ is a congruence character if its kernel is a
congruence subgroup. For a positive integer k, a congruence subgroup 	 and its congruence
character η, we denote by Mk(	, η) (resp. M∞

k (Γ, η)) the space of holomorphic (resp. C∞-
) modular forms of weight k and character η for 	. We denote by Sk(Γ, η) the subspace of
Mk(Γ, η) consisting of cusp forms. If η is the trivial character, we abbreviate Mk(Γ, η) and
Sk(Γ, η) as Mk(Γ ) and Sk(Γ ), respectively. Let dv denote the invariant volume element
on Hn defined by

dv = det(Im(Z))−n−1 ∧1≤j≤l≤n (dxjl ∧ dyjl).
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Here for Z ∈ Hn we write Z = (xjl) + √−1(yjl) with real matrices (xjl) and (yjl). For
two elements F and G of M∞

k (Γ, η), we define the Petersson scalar product 〈F,G〉Γ of F

and G by

〈F,G〉Γ =
∫

Γ \Hn

F (Z)G(Z) det(Im(Z))kdv,

provided the integral converges. For i = 1, 2, let Γi be a congruence subgroup with a
congruence character ηi . Then there exists a congruence subgroup Γ contained in Γ1 ∩ Γ2
and its congruence character η such that η1|	 = η2|	 = η. Then we have M∞

k (Γ, η) ⊃
M∞

k (Γi, ηi). For elements F1 and F2 of M∞
k (Γ,η1) and M∞

k (Γ2, η2), respectively, the
value [Γ (n) : Γ ]−1〈F1, F2〉Γ does not depend on the choice of Γ . We denote it by
〈F1, F2〉.

Let F be an element of Mk(Γ, η). Then, F has the following Fourier expansion:

F(Z) =
∑

A∈Hn(Z)≥0

cF

( A

N

)
e
(
tr(

AZ

N
)
)

with some positive integer N , where tr denotes the trace of a matrix. For a subset S of C,
we denote by Mk(Γ, η)(S) the set of elements F of Mk(Γ, η) such that cF ( A

N
) ∈ S for all

A ∈ Hn(Z)≥0, and put Sk(Γ, η)(S) = Mk(Γ, η)(S)∩Sk(Γ, η). If R is a commutative ring,
and S is an R module, then Mk(Γ, η)(S) and Sk(Γ, η)(S) are R-modules.

For a Dirichlet character φ modulo N , let φ̃ denote the character of Γ
(n)

0 (N) defined

by Γ
(n)

0 (N) �
(

A B

C D

)
�→ φ(det D), and we write Mk(Γ

(n)
0 (N), φ) for Mk(Γ

(n)
0 (N), φ̃),

and so on.
We denote by Ln = LQ(GSp+

n (Q), Γ (n)) be the Hecke ring over Q associated with
the Hecke pair (GSp+

n (Q), Γ (n))), and by L′
n = LZ(GSp+

n (Q) ∩ M2n(Z), Γ (n)) be the
Hecke ring over Z associated with the Hecke pair (GSp+

n (Q) ∩ M2n(Z), Γ (n)). For a
Hecke eigenform F , we denote by Q(F ) the field generated over Q by the eigenvalues
of all Hecke operators T ∈ Ln with respect to F , and call it the Hecke field of F . For
Dirichlet characters χ1, . . . , χr , we denote by Q(χ1, . . . , χr) the field generated over Q
by all the values of χ1, . . . , χr , and by Q(F, χ1, . . . , χr ) the composite field of Q(F ) and
Q(χ1, . . . , χr ). For a Hecke eigenform F in Sk(Γ

(n)
0 (N)) and a Dirichlet character χ let

L(s, F, St, χ) be the standard L function of F twisted by χ . For a Dirichlet character χ ,
we put δχ = 0 or 1 according as χ(−1) = 1 or χ(−1) = −1. Assume that χ is primitive,
and for any positive integer m ≤ k − n such that m − n ≡ δχ mod 2 define �(m,F, χ, St)
as

�(m,F, χ, St) = χ(−1)n	(m)
∏n

i=1 	(2k − n − i)L(m,F, St , χ)

〈F,F 〉π−n(n+1)/2+nk+(n+1)m
√−1

m+n
τ (χ)n+1

.

Here, τ (χ) is the Gauss sum of χ . For a Dirichlet character χ let mχ be the conductor of
χ . The following proposition is essentially due to [[4], Appendix, Theorem].

PROPOSITION 2.1. Let F be a Hecke eigenform in Sk(Γ
(n))(Q(F )). Let m be a

positive integer not greater than k−n and χ a primitive character χ satisfying the following
condition:

(C) m − n ≡ δχ mod 2, and m > 1 if n > 1, n ≡ 1 mod 4 and χ2 is trivial.
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Then �(m,F, χ, St) belongs to Q(F, χ).

Let V be a subspace of Mk(Γ
(n)). We say that a multiplicity one holds for V if any

Hecke eigenform in V is uniquely determined up to constant multiple by its Hecke eigen-
values.

THEOREM 2.2. Suppose that k ≥ n + 1. Then a multiplicity one theorem holds for
Sk(Γ

(n)).

Proof. This is essentially due to Chenevier-Lannes [[7], Corollary 8.5.4]. It was
proved under a more stronger assumption without using [[7], Conjecture 8.4.22]. As is
written in the postface in that book, this conjecture has been proved [1], and the same proof
is available at least even when k ≥ n + 1. �

Let F be a Hecke eigenform in Sk(Γ
(n)) with k ≥ n + 1. Then by Theorem 2.2, we

have cF ∈ Sk(Γ
(n))(Q(F )) with some c ∈ C. Hence for A,B ∈ Hn(Z)>0 and an integer l

satisfying (C), the value cF (A)cF (B)�(l, F, St, χ) belongs to Q(F ) and does not depend
on the choice of c. For A and B and an integer l put

IA,B(l, F, χ) = cF (A)cF (B)�(l, F, χ, St).

Let I(l, F, χ) be the OQ(F )-module generated by all IA,B(l, F, χ)’s. Then IF (l, F, χ)

becomes a fractional ideal in Q(F, χ). We note that it is uniquely determined by l and
the system of eigenvalues of F . Let F1, . . . , Fd be a basis of Sk(Γ

(n)) consisting of
Hecke eigenforms such that F1 = F . Let Kn,k be the composite filed Q(F1) · · ·Q(Fd) of
Q(F1), . . . ,Q(Fd). We denote by D̃′

F the ideal of Kn,k generated by all
∏d

i=2(λF (Ti−1)−
λFi (Ti−1))’s (T1, · · · , Td−1 ∈ L′

n), and put D̃F = D′
F ∩ Q(F ). We make the convention

that D̃′
F = OKn,k if d = 1. Moreover, let ẼF be the ideal of Q(F ) defined in Section 1.

Then our first main result is as follows.

THEOREM 2.3. Let F be a Hecke eigenform in Sk(Γ
(n)). Then we have

I(m,F, χ) ⊂ 〈(2α(n,k)An,kẼF )−1〉OQ(F,χ)[N−1]
for any positive integer m ≤ k − n and primitive character χ mod N satisfying the condi-
tion (C), where α(n, k) is a non-negative integer depending only on k and n, and An,k =
LCMn+1≤m≤k{∏n

i=1(2l − 2i)(2l − 2i + 1)!)}. In particular if m ≤ k − n − 1, then

I(m,F, χ) ⊂ 〈(2α(n,k)An,kD̃F )−1〉O
Q(F,χ)[N−1 ]

We will prove the above theorem in Section 5.

COROLLARY 2.4. Let F be a Hecke eigenform in Sk(Γ
(n)). Let PF be the set of

prime ideals p of Q(F ) such that

ordp(NQ(F,χ)/Q(F )(I(m,F, χ))) < 0

for some positive integer m ≤ k −n and primitive character χ with conductor not divisible
by p satisfying (C). Then PF is a finite set. Moreover, there exists a positive integer r such
that we have

ordq(I(m,F, χ)) ≥ −r[Q(F, χ) : Q(F )]
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for any prime ideal q of Q(F, χ) lying above a prime ideal inPF and integer l and primitive
character χ with conductor not divisible by q satisfying the condition (C).

Proof. By Theorem 2.3, we have p|2α(n,k)An,kẼF if p ∈ PF . This proves the first
assertion. Let 2α(n,k)An,kẼF = pe1

1 · · · pes
s be the prime factorization of 2α(n,k)An,kẼF ,

where p1, . . . , ps are distinct prime ideals and e1, . . . , es are positive integers. We note
that for any prime ideal p of Q(F ) and prime ideal q of Q(F, χ) lying above p we have
ordq(p) ≤ [Q(F, χ) : Q(F )]. Hence r = max{ei}1≤i≤s satisfies the required condition in
the second assertion. �

REMARK 2.5. (1) Let

�(F,m, χ) = 	(m)
∏n

i=1 	(2k − n − i)L(m,F, St , χ)

〈F,F 〉π−n(n+1)/2+nk+(n+1)m.

Then, if m and χ satisfy the condition (C), �(F,m, χ) belongs to Q(F, χ, ζN), where
Q(F, χ, ζN) is the field generated over the Hecke field Q(F ) of F by all the values of
χ and the primitive N-th root ζN of unity. In [[3], Theorem], a similar result has been
proved for �(F,m, χ). Our L-value belongs toQ(F, χ), which is included in Q(F, χ, ζN ).
Therefore, our result can be regarded as a refinement of Böcherer’s.
(2) Böcherer [3] excluded the case m = k − n. However, we can include this case. We also
note that we can get a sharper result if we restrict ourselves to the case m < k − n as stated
in the above theorem.
(3) In [3], the main result was formulated without assuming multiplicity one theorem. How-
ever, such a formulation is now unnecessary.

3. Pullback of Siegel Eisenstein series

To prove our main result, first we express a certain modular form as a linear combina-
tion of Hecke eigenforms (cf. Theorem 3.7). We have carried out it in [[12], Appendix],
and here we treat it in a more general setting. We also correct some inaccuracies in [[12],
Appendix] (cf. Remark 3.8). For a non-negative integer m, put

	m(s) = πm(m−1)/4
m∏

i=1

	(s − i − 1

2
).

For a Dirichlet character χ we denote by L(s, χ) the Dirichlet L-function associated to χ,

and put

Ln(s, χ) = 	n(s)π
−nsL(s, χ)

[n/2]∏
i=1

L(2s − 2i, χ2)

×
{

πn/2−s	(s − n/2) if if n is even

1 n is odd.
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Let n, l and N be positive integers. For a Dirichlet character φ modulo N such that
φ(−1) = (−1)l, we define the Eisenstein series E∗

n,l(Z; N,φ, s) by

E∗
n,l(Z; N,φ, s) = (

det Im(Z)
)sLn(l + 2s, φ)

×
∑

γ∈T (n)(N)∞\T (n)(N)

φ∗(γ )j (γ, Z)−l |j (γ,Z)|−2s,

where

T (n)(N) =
{(

A B

C D

)
∈ Γ (n) | A ≡ On mod N

}
,

T (n)(N)∞ =
{(

A B

C D

)
∈ Γ (n) | B ≡ On mod N,C = On

}
,

and φ∗(γ ) = φ(det C) for γ =
(

A B

C D

)
∈ T (n)(N). Then E∗

n,l(Z; N,φ, s) converges

absolutely as a function of s if the real part of s is large enough. Moreover, it has a mero-
morphic continuation to the whole s-plane, and it belongs to M∞

l (Γ
(n)

0 (N), φ). Moreover
it is holomorphic and finite at s = 0, which will be denoted by E∗

n,l(Z; N,φ). In particular,

if E∗
n,l(Z; N,φ) belongs to Ml(Γ

(n)
0 (N), φ), it has the following Fourier expansion:

E∗
n,l(Z; N,φ) =

∑
A∈Hn(Z)≥0

cn,l (A,N, φ)e(tr(AZ)) .

To see the Fourier coefficient of E∗
n,l(Z; N,φ), we define a polynomial attached to local

Siegel series. For a prime number p let Qp be the field of p-adic numbers, and Zp the ring
of p-adic integers. For an element B ∈ Hn(Zp), we define the Siegel series bp(B, s) as

bp(B, s) =
∑

R∈Symn(Qp)/Symn(Zp)

ep(tr(BR))ν(R)−s ,

where ep is the additive character of Zp such that ep(m) = e(m) for m ∈ Z[p−1], and
νp(R) = [RZn

p + Zn
p : Zn

p]. We define χp(a) for a ∈ Q×
p as follows:

χp(a) :=
⎧⎨⎩

+1 if Qp(
√

a) = Qp,

−1 if Qp(
√

a)/Qp is quadratic unramified,
0 if Qp(

√
a)/Qp is quadratic ramified.

For an element B ∈ Hn(Zp)nd with n even, we define ξp(B) by

ξp(B) := χp((−1)n/2 det B).

For a nondegenerate half-integral matrix B of size n over Zp define a polynomial γp(B,X)

in X by

γp(B,X) :=
{

(1 − X)
∏n/2

i=1(1 − p2iX2)(1 − pn/2ξp(B)X)−1 if n is even,

(1 − X)
∏(n−1)/2

i=1 (1 − p2iX2) if n is odd.

Then it is well known that there exists a unique polynomial Fp(B,X) in X over Z with
constant term 1 such that

bp(B, s) = γp(B, p−s )Fp(B, p−s )
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(e.g. [9]). More precisely, we have the following proposition.

PROPOSITION 3.1. Let B ∈ Hm(Zp)nd. Then there exists a polynomial Hp(B, x)

in X over Z such that
Fp(B,X) = Hp(B, p[(m+1)/2]X).

Proof. The assertion follows from [14], Theorem 2. �
For B ∈ Hm(Z)>0 with m even, let dB be the discriminant of Q(

√
(−1)m/2 det B)/Q,

and χB = (dB∗ ) the Kronecker character corresponding to Q(
√

(−1)m/2 det B)/Q. We note
that we have χB(p) = ξp(B) for any prime p. We also note that

(−1)m/2 det(2B) = dB f
2
B

with fB ∈ Z>0. We define a polynomial F ∗
p(T ,X) for any T ∈ Hn(Zp) which is not-

necessarily non-degenerate as follows: For an element T ∈ Hn(Zp) of rank r ≥ 1, there
exists an element T̃ ∈ Hr (Zp)nd such that T ∼Zp T̃ ⊥On−r . We note that Fp(T̃ ,X) does
not depend on the choice of T̃ . Then we put F ∗

p(T ,X) = Fp(T̃ ,X). For an element T ∈
Hn(Z)≥0 of rank r ≥ 1, there exists an element T̃ ∈ Hr (Z)>0 such that T ∼Z T̃ ⊥On−r .

Then χT̃ does not depend on the choice of T̃ . We write χ∗
T = χT̃ if r is even. For a non-

negative integer m and a primitive character φ let Bm,φ be the m-th generalized Bernoulli
number for φ. In the case φ is the principal character, we write Bm = Bm,φ , which is the
m-th Bernoulli number. For a Dirichlet character φ we denote by φ0 the primitive character
associated with φ.

PROPOSITION 3.2. Let n and l be positive integers such that l ≥ n + 1, and
φ a primitive character mod N . Then E∗

2n,l(Z; N,φ) is holomorphic and belongs to

Ml(Γ
(2n)

0 (N), φ) except the following case:
l = n + 1 ≡ 2 mod 4 and φ2 = 1N .
In the case that E∗

2n,l(Z; N,φ) is holomorphic we have the following assertion:

(1) Suppose that N = 1 and φ is the principal character 1, Then for B ∈ H2n(Z)≥0
of rank m, we have

c2n,l(B, 1, 1) = (−1)l/2+n(n+1)/22l−1+[(m+1)/2] ∏
p|det(2B̃)

F ∗
p(B, pl−m−1)

×
{∏n

i=m/2+1 ζ(1 + 2i − 2l)L(1 + m/2 − l, χ∗
B) if m is even,∏n

i=(m+1)/2 ζ(1 + 2i − 2l) if m is odd.

Here we make the convention that F ∗
p (B, pl−m−1) = 1 and Ł(1 + m/2 − l, χ∗

B) =
ζ(1 − l) if m = 0.

(2) Suppose that N > 1. Then, c2n,l(B,N, φ) = 0 if B ∈ H2n(Z)≥0 is not positive
definite. Moreover, for any B ∈ H2n(Z)>0 we have

c2n,l(B,N, φ) = (−1)nl+(l−n−δ(φχB)0 )/22n+l−1
√−1

−δ(φχB )0 |dB |l−n−1/2

× mn−l
(φχB)0

τ ((φχB)0)
∏
p

Fp(B, pl−2n−1φ̄(p))L(1 − l + n, (φχB)0)
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×
∏

p|N |dB |
(1 − pn−l (φχB)0).

Proof. (1) The assertion follows from [[11], Theorem 2.3] remarking that

L2n(l, χ) = ζ(1 − l)

n∏
i=1

ζ(1 − 2l + 2i)(−1)(n(n+1)+l)/22l−1.

(2) The first assertion follows from [[4], Section 5]. Let B ∈ H2n(Z)>0. Then,

c2n,l(B,N, φ) = (−1)nl22n	(l − n)

× (det(2B))l−n−1/2
∏
p

Fp(B, p−lφ(p))
L(l − n, φχB)

πl−n
.

We have
L(l − n, φχB) = L(l − n, (φχB)0)

∏
p|N |dB |

(1 − pn−l (φχB)0),

and
	(l − n)L(l − n, (φχB)0)

πl−n
= (−1)(l−n−δ(φχB

)0)/22l−n−1mn−l
(φχB)0

√−1
−δ(φχB )0

× L(1 − l + n, (φχB)0).

Moreover, by the functional equation of Fp(B,X) (cf. [9]), we have

f2l−2n−1
B

∏
p

Fp(B, p−lφ(p)) =
∏
p

Fp(pl−2n−1φ̄(p), B).

Thus the assertion is proved remarking that det(2B) = |dB |f2B . �
COROLLARY 3.3. Let the notation be as above.

(1) Suppose that N = 1. Then, c2n,l(B, 1, 1) belongs to
〈(∏n

i=1(2l − 2i)(2l − 2i + 1)!)−1〉Z for any B ∈ H2n(Z)≥0.
(2) Suppose that N > 1. Then for B ∈ H2n(Z)≥ 0, c2n,l(B,N, φ) is an algebraic

number. In particular if GCD(det(2B),N) = 1, then τ (φ)−1
√−1

−l
c2n,l(B,N, φ)

belongs to 〈(l − n)−1〉OQ(φ)[N−1].

Proof. (1) By Proposition 3.1, the product
∏

p| det(2B̃) F ∗
p(B, l − m − 1) is an integer

for any m and B ∈ Hn(Z)≥0 with rank m. By Clausen-von-Staudt theorem, ζ(1 − 2l + 2i)

belongs to 〈((2l − 2i)(2l − 2i + 1)!)−1〉Z. By [[2], (5.1), (5.2)] and Clausen-von-Staudt
theorem, for any positive even integer m and B̃ ∈ Hm(Z)>0, L(1 − l + m/2, χB̃) belongs
to 〈((2l − m)(2l − m + 1)!)−1〉Z. This proves the assertion.
(2) It is well known that L(1 − l + n, (φχB)0) is algebraic. This proves the first part of
the assertion. Suppose that det(2B) is coprime to N . Then φχB is a primitive character of
conductor N |dB | and

τ (φχB) = φ(|dB |)χB(N)τ(φ)τ (χB)

= φ(|dB |)χB(N)τ(φ)|dB |1/2
√−1

δχB .
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By [6] or [15], N(l − n)L(1 − l + n, φχB) belongs to OQ(φ), and by Proposition 3.1,∏
p Fp(pl−2n−1φ̄(p), B) is an element of OQ(φ). Thus the assertion has been proved re-

marking that
√−1

l = ±√−1
δχB

−δφχB . �

Let
◦
Dν

n,l be the differential operator in [4], which maps M∞
l (Γ

(2n)
0 (N)) to M∞

l+ν

(Γ
(n)

0 (N)) ⊗ M∞
l+ν(Γ

(n)
0 (N)). Let χ be a primitive character mod N. For a non-negative

integer ν ≤ k, we define a function Ek,ν
2n (Z1, Z2, N, χ) on Hn × Hn as

Ek,ν
2n (Z1, Z2, N, χ) = (2π

√−1)−ντ (χ)−n−1
√−1

−k+ν

×
◦

Dν
n,k−ν

⎛⎝ ∑
X∈Mn(Z)/NMn(Z)

χ(det X)E∗
2n,k−ν(∗, N, χ)|k−ν

(
12n S(X/N)
O 12n

)⎞⎠ (Z1, Z2)

for (Z1, Z2) ∈ Hn×Hn, where S(X/N) =
(

On X/N
tX/N On

)
. Let X be a symmetric matrix

of size 2n of variables. Then there exists a polynomial Pν
n,l(X) in X such that

◦
Dν

n,l

(
e
(
tr
((

A1 R/2
tR/2 A2

) (
Z1 Z12

tZ12 Z2

))))
= (2π

√−1)νP ν
n,l

((
A1 R/2

tR/2 A2

))
e(tr(A1Z1 + A2Z2))

for

(
A1 R/2

tR/2 A2

)
∈ H2n(Z)≥0 with A1, A2 ∈ Hn(Z)≥0 and

(
Z1 Z12

tZ12 Z2

)
∈ H2n with

Z1, Z2 ∈ Hn.

PROPOSITION 3.4. Under the above notation and the assumption, for a non-negative
integer l ≤ k write Ek,k−l

2n (Z1, Z2, N, χ) as

Ek,k−l
2n (Z1, Z2, N, χ) =

∑
A1,A2∈Hn(Z)≥0

c
Ek,k−l

2n (Z1,Z2,N,χ)
(A1, A2)e(tr(A1Z1 + A2Z2)

Then we have

c
Ek,k−l

2n (Z1,Z2,N,χ)
(A1, A2)

=
∑

R∈Mn(Z)

P k−l
n,l

((
A1 R/2

tR/2 A2

))
c2n,l

((
A1 R/2

tR/2 A2

))
χ̄ (det R)τ(χ)−1

√−1
−l

COROLLARY 3.5. For any A1, A2 ∈ Hn(Z)>0, c
Ek,k−l

2n (Z1,Z2,N,χ)
(A1, A2) belongs

to Q̄, and in particular if det
((

2A1 R
tR 2A2

))
is prime to N , then an,lcEk,k−l

2n (Z1,Z2,N,χ)

(A1, A2) belongs OQ(χ)[N−1], where an,l = ∏n
i=1(2l − 2i)(2l − 2i + 1)!.
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Suppose that l ≤ k. Then Ek,k−l
2n (Z1, Z2, N, χ) can be expressed as

Ek,k−l
2n (Z1, Z2, N, χ) =

∑
A∈Ln(Z)>0

Ek,k−l
2n (Z1, A,N, χ)e(tr(AZ2))

with Ek,k−l
2n (Z1, A,N, χ) a function of Z1. Put

Gk,k−l
2n (Z1, A,N, χ) =

∑
γ∈Γ

(n)
0 (N2)\Γ (n)

(Ek,k−l
2n )|kγ (Z1, A,N, χ).

It is easily seen that Ek,k−l
2n (Z1, A,N, χ) belongs to Mk(Γ

(n)
0 (N2)), and therefore Gk,k−l

2n

(Z1, A,N, χ) belongs to Mk(Γ
(n)). In particular, if l < k, then Gk,k−l

2n (Z1, A,N, χ) be-
longs to Sk(Γ

(n)).

PROPOSITION 3.6. Suppose that l ≤ k and let A ∈ Hn(Z)>0. Then an,lGk,k−l
2n (Z1,

N2A,N, χ) belongs to Mk(Γ
(n))(OQ(χ,ζN )[N−1]). In particular, if l < k, it belongs to

Sk(Γ
(n))(OQ(χ,ζN )[N−1]).
Proof. We have

c
Ek,k−l

2n (Z1,Z2,N,χ)
(B,N2A)

=
∑

R∈Mn(Z)

P k−l
n,l

((
B R/2

tR/2 N2A

))
c2n,l

((
B R/2

tR/2 N2A

))
χ̄(det R)τ(χ)−1

√−1
−l

.

We note that det

(
2B R
tR 2N2A

)
is prime to N if and only det R is prime to N . Therefore,

by Corollary 3.3, an,lEk,k−l
2n (Z1, N

2A,N, χ) belongs to Mk(Γ
(n)

0 (N2))(OQ(χ)[N−1]). By

q-expansion principle (cf. [8], [13]), for any γ ∈ Γ (n), an,lEk,k−l
2n |kγ (Z1, N

2A,N, χ)

belongs to Mk(Γ
(n)(N2))(OQ(χ,ζN )[N−1]). Hence, an,lGk,k−l

2n (Z1, N
2A,N, χ) belongs to

Mk(Γ
(n)(N2))(OQ(χ,ζN )[N−1]) ∩ Mk(Γ

(n)) = Mk(Γ
(n))(OQ(χ,ζN )[N−1]). This proves

the first of the assertion. The latter is similar. �
THEOREM 3.7. Let {Fi}di=1 be an orthogonal basis of Sk(Γ

(n)) consisting of Hecke
eigenforms, and {Fi}d+1≤i≤e be a basis of the orthogonal complement Sk(Γ

(n))⊥ of
Sk(Γ

(n)) in Mk(Γ
(n)) with respect to the Petersson product. Then we have

Gk,k−l
2n (Z,N2A,N, χ) =

d∑
i=1

c(n, l)Nnl�(l − n, Fi, χ, St)cFi (A)Fi(Z)

+
e∑

i=d+1

ciFi(Z)

where c(n, l) = (−1)a(n,l)2b(n,l) with a(n, l), b(n, l) integers, and ci is a certain complex
number. Moreover we have ci = 0 for any d + 1 ≤ i ≤ e if l < k.
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Proof. Put

Gk,k−l
2n (Z1, Z2, N, χ) =

∑
γ∈Γ

(n)
0 (N2)\Γ (n)

Ek,k−l
2n (|kγZ1, Z2, N, χ).

Then we have

Gk,k−l
2n (Z1, Z2, N, χ) =

∑
A∈Ln(Z)>0

Gk,k−l
2n (Z1, A,N, χ)e(tr(AZ2))

By [[4],(3.24)], for any γ ∈ Γ (n) we have

〈Fi,G
k,k−l
2n (|kγ ∗,−Z2, N, χ)〉

=〈Fi |kγ,Gk,k−l
2n (|kγ ∗,−Z2, N, χ)〉

=〈Fi,G
k,k−l
2n (∗,−Z2, N, χ)〉

=(−1)a
′(n,l)2b′(n,l)Nnlχ(−1)n[Γ (n) : Γ

(n)
0 (N2)]−1π(l−k)n−(2n+1)l+nπn(n+1)/2

× L(l − n, Fi, χ̄ , St)	(l − n)τ(χ)−n−1
√−1

−l
Fi(N

2Z2)

× 	2n(l)	n(k − n/2)	n(k − (n + 1)/2)

	n(l)	n(l − n/2)
,

with a′(n, l), b′(n, l) ∈ Z. We note that we take the normalized Petersson inner product.
We also note that

	2n(l) = πn2/2	n(l)	n(l − n/2),

and

	n(k − n/2)	n(k − (n + 1)/2) = 2γ ′(n,l)πn2/2
n∏

i=1

	(2k − n − i)

with an integer γ ′(n, l). Hence we have

〈Fi,G
k,k−l
2n (|kγ ∗,−Z2, N, χ)〉

= c(n, l)[Γ (n) : Γ
(n)

0 (N2)]−1Nnl�(l − n, Fi, χ, St)〈Fi , Fi〉Fi(N
2Z2),

where c(n, l) = (−1)a(n,l)2b(n,l) with a(n, l), b(n, l) integers. On the other hand, we have

〈Fi,G
k,k−l
2n (∗,−Z2, N, χ)〉 =

∑
A∈Ln(Z)>0

〈Fi ,Gk,k−l
2n (∗, A,N, χ)〉e(tr(AZ2)).

Hence we have

〈Fi ,Gk,k−l
2n (∗, A,N, χ)〉 = c(n, l)Nnl�(l − n, Fi, χ, St)〈Fi , Fi〉cFi (N

−2A)

for any A. Now Gk,k−l
2n (Z,A,N, χ) can be expressed as

Gk,k−l
2n (Z,A,N, χ) =

e∑
i=1

ciFi(Z)

with ci ∈ C. For 1 ≤ i ≤ d we have

〈Fi,Gk,k−l
2n (∗, A,N, χ)〉 = ci〈Fi, Fi〉.
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Hence we have

ci = c(n, l)Nnl�(l − n, Fi, χ, St)〈Fi , Fi〉cFi (N
−2A).

We note that �(l − n, Fi , χ, St) = �(l − n, Fi , χ, St). This proves the assertion. �
REMARK 3.8. There are errors in [[12], Appendix].

(1) The factor η∗(γ ) is missing in En,l(Z,M, η, s) on [[12], page 125], and it should be
defined as

En,l(Z,M, η, s) = L(1 − l − 2s, η)

[n/2]∏
i=1

L(1 − 2l − 4s + 2i, η2)

× det(Im(Z)))s
∑

γ∈Γ
(n)∞ \Γ (n)

0 (M)

j (γ, Z)−lη∗(γ )|j (γ,Z)|−2s.

Then E∗
n,l(Z,M, η, s) = En,l |lWM(Z,M, η, s) with WM =

(
O −1n

M1n O

)
coincides with

the Eisenstein series E∗
n,l(Z,M, η, s) in the present paper up to elementary factor. How-

ever, to quote several results in [4] smoothly, we define E∗
n,l(Z,M, η, s) as in the present

paper. Accordingly we define Gk,k−l
2n (Z,A,N, χ) as in our paper. With these changes,

Propositions 5.1 and 5.2, and (1) of Theorem 5.3 in [12] should be replaced with Corollary
3.3, Corollary 3.5, and Proposition 3.6, respectively, in the present paper.
(2) In [12], we defined L(m,F, χ, St) as

L(m,F, χ, St) = 	C(m)(

n∏
i=1

	C(m + k − i))
L(m,F, χ, St)

τ (χ)n+1〈F, F 〉 ,

where 	C(s) = 2(2π)−s	(s). However, the factor
√−1

m+n
should be added in the denom-

inator on the right-hand side of the above definition. With this correction, [[12], Theorem
2.2] remains valid. Moreover, we have

L(l − n, F, χ, St)

=
∏n

i=1 	C(l − n + k − i)

Nlnc(n, l)
∏n

i=1 	(2k − n − i)π−n(n+1)/2+nk+(n+1)m
�(l − n, F, χ, St).

We note that
n∏

i=1

	C(l − n + k − i)

Nlnc(n, l)

n∏
i=1

	(2k − n − i)π−n(n+1)/2+nk+(n+1)m

is a rational number, and for a prime number p not dividing N(2k − 1)!, it is p-unit.
Therefore, (2) of Theorem 5.3 in [12] should be corrected as follows:

Put

G̃k,k−l
2n (Z,N2A,N, χ)
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=
∏n

i=1 	C(l − n + k − i)

Nlnc(n, l)
∏n

i=1 	(2k − n − i)π−n(n+1)/2+nk+(n+1)m

× Gk,k−l
2n (Z,N2A,N, χ).

Then G̃k,k−l
2n (Z,N2A,N, χ) belongs to Sk(Γ

(n))(OQ(F,χ,ζN ))P for any prime ideal P of
Q(F, χ, ζN) not dividing N(2k − 1)!, and we have

G̃k,k−l
2n (Z,N2A,N, χ) =

d∑
i=1

L(l − n, Fi , χ, St)cFi (A)Fi(Z).

4. Proof of the main result

LEMMA 4.1. Let r ≥ 2 and let {F1, . . . , Fr } be Hecke eigenforms Mk(Γ
(n); λi)

linearly independent over C, and G an element of Mk(Γ
(n)). Write

Fi(Z) =
∑
A

cFi (A)e(tr(AZ))

for i = 1, ...r and
G(Z) =

∑
A

cG(A)e(tr(AZ)).

Let K be the composite field of Q(F1), . . . ,Q(Fr), and L a finite extension of K . Let N be
a positive integer. Assume that

(1) there exists an element α ∈ K such that cG(A) belongs to αOL[N−1] for any A ∈
Hn(Z)>0

(2) there exist ci ∈ L (i = 1, ..., r) and A ∈ Hn(Z)>0 such that

G(Z) =
r∑

i=1

ciFi(Z).

Then for any elements T1, . . . , Tr−1 ∈ L′
n and A ∈ Hn(Z)>0 we have

r−1∏
i=1

(λF1(Ti) − λFi+1(Ti))c1cF1(A) ∈ αOL[N−1].

Proof. We prove the induction on r . The assertion clearly holds for r = 2. Let r ≥ 3
and suppose that the assertion holds for any r ′ such that 2 ≤ r ′ ≤ r − 1. We have

G|Tr−1(Z) =
r∑

i=1

λFi (Tr−1)ciFi(Z),

and we have

G|Tr−1(Z) − λFr (Tr−1)G(Z) =
r−1∑
i=1

(λFi (Tr−1) − λFr (Tr−1))ciFi(Z).
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By Theorem 4.1 and Proposition 4.2 of [10], we have

G|Tr−1(Z) − λTr−1G(Z) ∈ αSk(Γ
(n))(OL[N−1])

Hence, by the induction assumption we prove the assertion. �
Proof of Theorem 2.3. Let b(n, l) be the integer in Theorem 3.7, and put α(n, k) =

max 2≤l≤k−n−2
l≡0 mod 2

b(n,l). Then, an,lGk,k−l
2n (Z,N2A,N,χ)∈2−α(n,k)Mk(Γ

(n))(OQ(χ,ζN )[N−1]).
Thus, by Theorem 3.7 and Lemma 4.1, for any B ∈ Hn(Z)>0, and T1, . . . , Te ∈ L′

n, the
value

e−1∏
i=1

(λF1(Ti) − λFi+1(Ti))�(l − n, F, χ, St)c̄F (A)cF (B)

belongs to (2α(n,k)An,k)
−1OLn,k(χ,ζN )[N−1], where e = dimC Mk(Γ

(n)), and Ln,k is the
field stated in Section 1. In particular for any v ∈ ẼF , the value v�(l − n, F, χ, St)c̄F (A)

cF (B) belongs to (2α(n,k)An,k)
−1OLn,k(χ,ζN )[N−1]. On the other hand, by Proposition 2.1,

the value �(l − n, F, χ, St)c̄F (A)cF (B) belongs to Q(F, χ), and hence we have

v�(l − n, F, χ, St)c̄F (A)cF (B) ∈ (2α(n,k)An,k)
−1OQ(F,χ)[N−1].

This implies that we have

I(l − n, F, χ) ⊂ 〈(2α(n,k)An,kẼF )−1〉OQ(F,χ)[N−1].

REMARK 4.2. Let the notation be as in Lemma 4.1. Then we have the following.
Let p be a prime ideal of K . Assume that c1cF1(A) belongs to K and that

ordp(c1cF1(A)) < 0 for some A ∈ Hn(Z)>0. Then there exists i �= 2 such that we
have

λFi (T ) ≡ λF1(T ) mod p for any T ∈ L′
n.

This is a generalization of [[10], Lemma 5.1], and it can be proved in the same way. Let
Kn,k be the field defined in Section 2. Then, applying the above result to L = Kn,k(χ, ζN),
and using a corrected version of [[12], Theorem 5.3] in Remark 3.8 (2), we can remedy the
proof of [[12], Theorem 3.1].

We also remark that the M(2l − 1)! in [[12], Theorem 3.1] should be M(2k − 1)!.

5. Boundedness of special values of products of Hecke L-functions

For an element f (z) = ∑∞
m=1 cf (m)e(mz) ∈ Sk(SL2(Z)) and a Dirichlet character

χ , we define Hecke’s L function L(s, f, χ) as

L(s, f, χ) =
∞∑

m=1

cf (m)

ms
.

Let f be a primitive form. Then, for two positive integers l1, l2 ≤ k − 1 and Dirichlet
characters χ1, χ2 such that χ1(−1)χ2(−1) = (−1)l1+l2+1, the value

	C(l1)	C(l2)L(l1, f, χ1)L(l2, f, χ2)√−1
l1+l2+1

τ ((χ1χ2)0)〈f, f 〉
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belongs to Q(f, χ1, χ2) (cf. [17]). We denote this value by L(l1, l2; f ; χ1, χ2). In particu-
lar, we put

L(l1, l2; f ) = L(l1, l2; f ; χ1, χ2)

if χ1 and χ2 are the principal characters.

THEOREM 5.1. Let f be a primitive form in Sk(SL2(Z)). Then we have

L(l1, l2; f ; χ1, χ2) ∈ 〈(2bk ζ(1 − k)(k!)2D̃f )−1〉OQ(f,χ1 ,χ2)[(N1N2)−1]
with some non-negative integer bk for any integers l1 and ł2 and primitive characters χ1
and χ2 of conductors N1 and N2, respectively, satisfying the following conditions:

(χ1χ2)(−1) = (−1)l1+l2+1.(D1)

k − l1 + 1 ≤ l2 ≤ l1 − 1 ≤ k − 2(D2)

Either l1 ≥ l2 + 2, or l1 = l2 + 1 and χ1 or χ2 is non-trivial(D3)

Proof. The proof will proceed by a careful analysis of the proof of [[17], Theorem
4] combined with the argument in Theorem 2.3. For a positive integer λ ≥ 2 and a
Dirichlet character ω mod N such that ω(−1) = (−1)λ we define the Eisenstein series
Gλ,N(z, s, ω) (z ∈ H1, s ∈ C) by

Gλ,N(z, s, ω) =
∑

γ∈Γ∞\Γ (1)
0 (N)

ω(d)(cz + d)−λ|cz + d|−2s γ =
(

a b

c d

)
,

where Γ∞ = {±
(

1 m

0 1

) ∣∣∣ m ∈ Z}. It is well known that Gλ,N(z, s, ω) is finite at s = 0

as a function of s, and put

Gλ,N(z, ω) = Gλ,N(z, 0, ω).

Gλ,N(z, ω) is a (holomorphic) modular form of weight λ and character ω̄ for Γ
(1)

0 (N) if
λ ≥ 3 or ω is non-trivial. In the case λ = 2 and ω is trivial, G2,N(z, ω) is a nearly
automorphic form of weight 2 for Γ

(1)
0 (N) in the sense of Shimura [18]. We also put

G̃λ,N(z, ω) = 2	(λ)

(−2π
√−1)λτ (ω0)

LN(λ, ω)Gλ,N (z, ω),

where LN(s, ω) = L(s, ω)
∏

p|N(1 − p−sω(p)). Now let Ni be the modulus of χi for i =
1, 2. Then, by [[16], Theorem 4.7.1] there exists a modular form g of weight l1 − l2 + 1
and character χ1χ2 for Γ

(1)
0 (N1N2) such that

cg (0) =

⎧⎪⎨⎪⎩
0 if χ1 is non-trivial
−1(1−N1N2)

24 if l1 − l2 = 1 and both χ1 and χ2 are trivial
−Bl1−l2+1,χ1χ2

2(l1−l2+1)
otherwise,

cg(m) =
∑

0<d |m
χ1(m/d)χ2(d)dl1−l2 (m ≥ 1),

and
L(s, g) = L(s, χ1)L(s − l1 + l2, χ2).
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Since we have k ≥ l2, l1, all the Fourier coefficients of g belong to (k!)−1OQ(χ1,χ2)

[(N1N2)
−1]. Let δ

(r)
λ be the differential operator in [17], page 788. Then, [[17], Lemma 7]

we have

gδ
(k−l1−1)
−k+l1+l2+1G̃−k+l1+l2+1,N1N2(z, χ1χ2) =

r∑
ν=0

δ
(ν)
k−2νhν(z)

with some r < k/2, and hν ∈ Mk−2ν(Γ
(1)

0 (N1N2)). By [[17], (3.3) and (3.4)] and the
assumption, all the Fourier coefficients of G̃−k+l1+l2+1,N1N2(z, χ1χ2) belongs to (k!)−1

OQ(χ1χ2)[(N1N2)
−1] if −k + l1 + l2 + 1 ≥ 3, or χ1χ2 is non-trivial. Moreover, by [[17],

page 795], G̃2,N1N2(z, χ1χ2) is expressed as

G̃2,N1N2(z, χ1χ2) = c

4πy
+

∞∑
n=0

cne(nz),

with c, cn ∈ 2−1OQ(χ1χ2)[(N1N2)
−1] if −k + l1 + l2 + 1 = 2 and χ1χ2 is trivial. Hence,

by the construction of h0, all the Fourier coefficients of h0 belong to ((k!)2)−1OQ(χ1,χ2)

[(N1N2)
−1]. Let f1, . . . , fd be a basis of Sk(SL2(Z)) consisting of primitive forms such

that f1 = f . Then, by [[17], Theorem 2, Lemmas 1 and 7], we have

L(l1, l2, fi; χ1, χ2)〈fi, fi〉 = d0[SL2(Z) : Γ
(1)

0 (N1N2)]〈f, h0〉
for any i = 1, . . . , d , where d0 = (−1)a(k,l1,l2)2b(k,l1,l2) with some a(k, l1, l2), b(k, l1, l2) ∈
Z. (We note that the Petersson product 〈∗, ∗〉 in our paper is π

3 times that in [17]). Define
h0(z) by

h0 = d0

∑
γ∈Γ

(1)
0 (N1N1)\SL2(Z)

h0|γ (z).

Then, h0 belongs to Mk(SL2(Z)). We have

〈fi , h0|γ 〉 = 〈fi, h0〉,
for any γ ∈ SL2(Z), and hence

L(l1, l2, fi; χ1, χ2)〈fi, fi〉 = 〈fi , h0〉,
and hence we have

h0(z) = αG̃k(z) +
d∑

i=1

L(l1, l2, fi; χ1, χ2)fi(z)

with α ∈ C and G̃k(z) = G̃k,1(z, 1). Put bk = min{minl1,l2 b(k, l1.l2), 0} and ak =
2bk (k!)2, where l1 and l2 run over all integers satisfying the conditions (D2) and (D3). By
q expansion principle, for any γ ∈ SL2(Z), h0|γ belongs to
Mk(Γ

(1)(N1N2))(〈a−1
k 〉OQ(χ1,χ2 ,ζN )[(N1N2)

−1]). Therefore h0 belongs to

Mk(Γ
(1)(N1N2))(〈a−1

k 〉OQ(χ1,χ2 ,ζN )[(N1N2)
−1]) ∩ Mk(SL2(Z)). Put h = h0 − αG̃k . Then all

the Fourier coefficients of h belong to 〈(2bkk!2ζ(1 − k))−1〉OQ(χ1,χ2 ,ζN )[(N1N2)−1]. We note
that L(l1, l2; f ; χ1, χ2) belongs to Q(f, χ1, χ2). Thus, using Lemma 4.1, we can prove the
assertion in the same way as Theorem 2.3. �
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COROLLARY 5.2. Let f be a primitive form in Sk(SL2(Z)). Let Qf be the set of
prime ideals p of Q(f ) such that

ordp(NQ(f,χ1,χ2)/Q(f )(L(l1, l2; f ; χ1, χ2))) < 0

for some positive integers l1, l2 and primitive characters χ1, χ2 with p � mχ1,mχ2 satisfying
the condition (D1), (D2), (D3). Then Qf is a finite set. Moreover, there exists a positive
integer r such that we have

ordq(L(l1, l2; f ; χ1, χ2)) ≥ −r[Q(f, χ1, χ2) : Q(f )]
for any prime ideal q of Q(f, χ) lying above a prime ideal in Qf and integer l1, l2 and
primitive characters χ1, χ2 satisfying the above conditions.

For a prime ideal p of an algebraic number field, let p = pp be a prime number such
that (pp) = Z∩ p. Let K a number field containing Q(F ). Then there exists a semi-simple
Galois representation ρf = ρf,p : Gal(Q̄/Q) −→ GL2(Kp) such that ρf is unramified at
a prime number l �= p and

det(12 − ρf,p(Frob−1
l )X) = Ll(X, f ),

where Frobl is the arithmetic Frobenius at l, and

Ll(X, f ) = 1 − cf (l)X + lk−1X2.

For a p-adic representation ρ let ρ̄ denote the mod p representation of ρ. To prove our last
main result, we provide the following lemma.

LEMMA 5.3. Let p = pp. Let k be a positive even integer such that k < p. Let f

be a primitive form in Sk(SL2(Z)). Let a, b be integers such that −p + 1 < a < b < p −
1. Suppose that

ρ̄ss
f = χ̄a ⊕ χ̄b,

where χ is the p-cyclotomic character. Then (a, b) = (1 − k, 0).

Proof. By [[5], Theorem 1.2] and its remark, ρss
f |Ip should be

χ1−k ⊕ 1

or
ω1−k

2 ⊕ ω
p(1−k)

2

with ω2 the fundamental character of level 2, where Ip denotes the inertia group of p in
Gal(Q̄/Q). Thus the assertion holds. �

Let f1, . . . , fd be a basis of Sk(SL2(Z)) consisting of primitive forms with f1 = f

and let Df be the ideal of Q(f ) generated by all∏d
i=2(λfi (T (m)) − λf (T (m)))’s (m ∈ Z>0).

THEOREM 5.4. Let f be a primitive form in Sk(SL2(Z)). Let χ1 and χ2 be primi-
tive characters of conductors N1 and N2, respectively, and let l1 and l2 be positive integers
such that k − l1 + 1 ≤ l2 ≤ l1 − 1 ≤ k − 2. Let p be a prime ideal of Q(f, χ1, χ2) with
po > k. Suppose that p divides neither Df N1N2 nor ζ(1 − k). Then L(l1, l2; f ; χ1, χ2) is
p-integral.
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Proof. The assertion follows from Theorem 5.1 if l1, l2 and χ1, χ2 satisfy the condi-
tions (D1),(D2), (D3). Suppose that l1 = l2 + 1 and χ1 and χ2 are trivial. By Lemma 5.3,
there exists a prime number q0 such that q0 is p unit and

1 − cf (q0)q
−l1+1
0 + q

k−2l1+1
0 �≡ 0 mod p.

As stated in the proof of Theorem 5.1, there exists a modular form g ∈ M2(Γ0(q0))(Z(pp))

such that
L(s, g) = ζ(s)ζ(s − 1)(1 − q−s+1

0 ).

We can construct a modular form h0 ∈ Mk(Γ
(1)

0 (q0)) in the same way as in the proof of
Theorem 5.1. Then

(1 − cfi (q0)q
−l1+1
0 + q

k−2l1+1
0 )L(l1, l2; fi)〈fi , fi〉

= d0[SL2(Z) : Γ
(1)

0 (q0)]〈fi, h0〉
with some integer d0 prime to p for any i = 1, . . . , d . Then by using the same argument as
above, we can prove that

ordp(L(l1, l2; f )(1 − cf (q0)q
−l1+1
0 + q

k−2l1+1
0 )) ≥ 0.

This proves the assertion. �
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