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Abstract

We study black hole perturbations and cosmological perturbations in modified the-

ories of gravity. In particular, we study odd parity perturbations of spherically

symmetric black holes with time-dependent scalar hair in shift-symmetric higher-

order scalar-tensor theories. We derive the quadratic Lagrangian for the odd parity

mode of gravitational waves without imposing the degeneracy conditions. We find

that even though the theory contains higher-order derivatives of the scalar field, the

quadratic Lagrangian for the odd parity mode of gravitational waves is free from the

Ostrogradsky ghost. From the quadratic Lagrangian, we define the effective metric

for the graviton, which determines the causal structure of the gravitational waves.

We derive the generalized Regge-Wheeler equation and compute the quasinormal

modes of a particular solution of black holes.

We also study cosmological perturbations in an inhomogeneous universe in spa-

tially covariant theories with luminal propagation of gravitational waves in a ho-

mogeneous and isotropic universe. We find that some terms in this theory change

the propagation speed of gravitational waves. According to the result of GW170817

and GRB170817A, we demand that gravitational waves propagate at the speed of

light even in an inhomogeneous universe. From this requirement, we put a severe

constraint on the spatially covariant theories.
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Chapter 1

Introduction

General relativity has been established as the standard theory of gravity. However,

there are several motivations to modify general relativity.

• Since general relativity is a low-energy effective theory, it should be modified

for extreme environments such as the early universe and inside black holes.

• According to cosmological observations, the expansion of the universe is accel-

erating. To explain the accelerating expansion with general relativity, we must

consider the exotic energy component such as dark matter and dark energy.

Is this natural?

• Purely theoretical interest. To understand gravity more deeply.

From these motivations, there have been many theoretical and observational studies

on modified gravity. Recently, the first detection of gravitational waves (GWs) from

binary black holes allows us to test the theory of gravity in a strong field regime

[1]. If we are going to test general relativity by observations of GWs, we need to

construct a comparative theory and have to understand it deeply.

In this thesis, we study black hole perturbations and cosmological perturbations

in modified gravity. The dynamics of GWs around black holes are well described

by black hole perturbation theory. In particular, the Quasi Normal Mode(QNM) of

a black hole is relevant for the test of the modified theories of gravity. QNM is the

solution of the master equation with a physically natural boundary condition and

well describes waveforms of GWs emitted just after a merger. In general relativity,

QNM is characterized by the mass and the angular momentum of a black hole. In

contrast, in modified gravity, QNM may also depend on some additional parameters.
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Since the differences in the QNM depend on the theory of gravity, we can test gravity

from the observation of the QNM. From the theoretical point of view, we can check

whether a black hole solution is stable or not by the black hole perturbation theory.

Even if we find a black hole solution in modified gravity, it must be stable for it to

exist in the universe. Therefore, black hole perturbation theory in modified gravity

is relevant for theoretical and observational tests of gravity.

The cosmological perturbation theory is useful to investigate the propagation

of GWs. In particular, one can predict how the GWs propagate in the universe.

One can put the constraint on gravitational theories requiring the observational

constraint on the propagation speed of GWs. In standard cosmology, spacetime

is assumed to be homogeneous and isotropic. We will take into account the inho-

mogeneities of the universe, which are caused by the galaxies, and will study how

inhomogeneities affect the propagations of GWs.

This thesis is organized as follows. In chapter 2, we review the modified the-

ories of gravity. In particular, we introduce the Horndeski theory and Degenerate

Higher-Order Scalar-Tensor(DHOST) theories. Horndeski theory is the most gen-

eral scalar-tensor theory whose equations of motion become up to second order.

DHOST theory contains higher derivative terms in the Lagrangian but its equations

of motion become up to second order by imposing the degeneracy condition.

In chapter 3, we review the black hole perturbation theory in general relativity.

We derive the master equations for odd parity perturbations, the Regge-Wheeler

equation, and for even parity perturbations, the Zerilli equation. From the master

equations, we can calculate the quasinormal mode of black holes. We see that we

can test gravity from observations of ringdown GWs which are characterized by the

quasinormal mode of black holes.

In chapter 4, we see black hole solutions in scalar-tensor theories. There is a no-

hair theorem of shift-symmetric scalar-tensor theories. This theorem implies that if

the spacetime and the scalar field are static and spherically symmetric, black holes

cannot have a non-trivial configuration of the scalar field. We also review hairy

black hole solutions with a time-dependent scalar field.

In chapter 5, we study odd parity perturbations of black holes with linearly

time-dependent scalar hair in shift-symmetric scalar-tensor theories. We consider

the higher-order scalar-tensor theories without imposing the degeneracy condition.

Even though no degeneracy condition is imposed, the Lagrangian of odd parity

perturbations does not contain higher derivatives terms. From the master equation,



7

we can define the effective metric which determines the causal structure of the

graviton. We show that the horizon for the graviton can be different from that for

the photon in general. From this analysis, we improve the previous result of stability

conditions.

In chapter 6, we study cosmological perturbations in an inhomogeneous universe

in spatially covariant theories of gravity. We review the spatially covariant theories,

which contain a wide class of gravitational theories, e.g., Horndeski theory. We

also review cosmological perturbations in a homogeneous and isotropic universe and

specify the theories with the propagation speed of GWs being equal to that of light.

We investigate how GWs propagate in an inhomogeneous universe in this theory

and constrain the theory using the event GW170817 and GRB170817A.



Chapter 2

Modification of gravity

In this chapter, we review some important theories of modified gravity.

2.1 Lovelock’s theorem

When we would like to modify gravity from general relativity, we should start with

Lovelock’s theorem [2].

Theorem 1 In a (pseudo) Riemannian manifold, a tensor field, Aµν, satisfying the

following assumptions that

1. Aµν is symmetric, i.e. , Aµν = Aνµ,

2. Aµν contains the metric and its first two derivatives,

i.e. , Aµν = Aµν(gµν , gµν,λ, gµν,λρ),

3. Aµν is divergence free, i.e. , Aµν;ν = 0,

4. the dimension of the (pseudo) Riemannian manifold is 4,

has the unique form

Aµν = aGµν + bgµν , (2.1.1)

where a, b is a constant.

This theorem states the uniqueness of general relativity under some assumptions.

Lovelock’s theorem tells us that we have to violate at least one of the assumptions

in order to modify gravity. The ways to modify the general relativity are as follows.

8



2.2. SCALAR-TENSOR THEORIES OF GRAVITY 9

• Consider n(> 4)-dimensional pseudo-Riemannian manifold.

• Adding new degrees of freedom other than the metric.

• Breaking the symmetry of the diffeomorphism.

• Consider non-Riemannian manifold.

Gravitational theories can be classified according to which assumption of Lovelock’s

theorem they violate.

There are many theories that add new degrees of freedom to general relativity.

One of the most simple and relevant gravitational theories is the scalar-tensor theory

which contains a metric and a single scalar field. We will explain this type of theory

in the next section.

We will see the theory that breaks four-dimensional diffeomorphism but have

three-dimensional diffeomorphism.

2.2 Scalar-tensor theories of gravity

2.2.1 Ostrogradsky’s theorem

As an example, let us start with a simple Lagrangian that contains the second

derivatives

L =
1

2
ẍ2. (2.2.1)

The Euler-Lagrange equation for this Lagrangian is

....
x = 0. (2.2.2)

To solve this fourth-order differential equation, we need four initial conditions unlike

in the case of second-order differential equations. This implies this system contains

two degrees of freedom because two initial conditions are required to determine the

motion of a single degree of freedom. We will see that this redundant degrees of

freedom is a ghost. By introducing an auxiliary variable, y, we can rewrite the

Lagrangian as

L = ẍy − 1

2
y2. (2.2.3)
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Varying with respect to y yields

y = ẍ (2.2.4)

and the original Lagrangian is reproduced. Performing the integration by part, the

Lagrangian (2.2.3) can be written as

L = −ẋẏ − 1

2
y2. (2.2.5)

We define new fields by

w =
1√
2
(x− y) , (2.2.6)

z =
1√
2
(x+ y) , (2.2.7)

and rewrite the Lagrangian in terms of these fields. After that, we obtain

L = −1

2
ż2 +

1

2
ẇ2 − 1

4
(z − w)2. (2.2.8)

This Lagrangian contains the wrong sign kinetic term −ż2/2. Therefore the higher

derivative terms in the Lagrangian produce the redundant degrees of freedom which

becomes a ghost. This ghost due to the existence of the higher derivative term is

called “Ostrogradsky’s ghost”

Let us consider more general situation. We suppose that the Lagrangian contains

second derivative terms,

L = L(q, q̇, q̈). (2.2.9)

The Euler-Lagrange equation is

∂L

∂q
− d

dt

∂L

∂q̇
+
d2

dt2
∂L

∂q̈
= 0. (2.2.10)

Here, we assume that ∂L
∂q̈

depends on q̈. This is known as “non-degeneracy condi-

tion”. We choose the canonical variables as

Q1 = q, P1 =
∂L

∂q̇
− d

dt

∂L

∂q̈
, (2.2.11)

Q2 = q̇, P2 =
∂L

∂q̈
. (2.2.12)

From the assumption of non-degeneracy, we can write q̈ in terms of Q1, Q2 and P2.

The Hamiltonian is obtained by Legendre transformation,

H(Q1, Q2, P1, P2) = P1q̇(Q2) + P2q̈(Q1, Q2, P2)− L(q(Q1), q̇(Q2), q̈(Q1, Q2, P2))

(2.2.13)
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The canonical equations which gives the time evolution are given by,

Q̇i =
∂H

∂Pi
, Ṗi = − ∂H

∂Qi

. (2.2.14)

One can easily check that these canonical equations reproduce the original Euler-

Lagrange equations and if the Hamiltonian does not depend on time explicitly, it

is conserve. The problem is that the Hamiltonian (2.2.13) depends on P1 linearly.

This implies that the Hamiltonian is not bounded below and the motion described

by this Hamiltonian is unstable. The origin of this instability is the higher derivative

term in the Lagrangian. It has been shown that this instability is not resolved by

adding n(> 2)th-order derivative terms. Ostrogradsky showed a theorem about

these instabilities caused by higher derivative terms.

Theorem 2 If a Lagrangian is non-degenerate, i.e., ∂L
∂q̈

̸= 0, and contains higher

derivative terms, the Hamiltonian is unbounded below and the system is unstable.

Let us consider the Lagrangian for coupled point particles ϕ(t), qi(t), (i = 1, · · · , n)

L =
1

2
aϕ̈2 +

1

2
k0ϕ̇

2 +
1

2
kij q̇

iq̇j + biϕ̈q̇
i + ciϕ̇q̇

i − V (ϕ, q), (2.2.15)

where a, bi, ci, k0 and kij are constant. The Euler-Lagrange equations for ϕ and qi

are, respectively,

aϕ̈− k0ϕ̈+ bi
...
q i − ciq̈

i − Vϕ = 0, (2.2.16)

kij q̈
j + biϕ̈+ ciϕ̈+ Vi = 0, (2.2.17)

where Vi = ∂L/∂qi and Vϕ = ∂L/∂ϕ. These equations are a fourth-order differential

equations with respect to ϕ and we need 2n + 4 initial conditions to determine the

dynamics of n + 1 variables. This means that there are n + 2 degrees of freedom

and Ostrogradsky’ ghost appears due to the higher derivative term of ϕ in the

Lagrangian. Here we define the new variables by Q = ϕ̇, and rewrite the Lagrangian

as

L =
1

2
aQ̇2 +

1

2
kij q̇

iq̇j +
1

2
k0Q

2 − V (ϕ, q) +
(
biQ̇+ ciQ

)
q̇i − λ(Q− ϕ̇). (2.2.18)

where λ is a Lagrange multiplier. The Euler-Lagrange equations for this new La-

grangian are given by

aQ̈+ biq̈
i = ciq̇

i + k0Q− λ, (2.2.19)

biQ̈+ kij q̈
j = −Vi − ciQ̇, (2.2.20)

ϕ̇ = Q, (2.2.21)

λ̇ = −Vϕ. (2.2.22)
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One can easily check that these equations reproduce the original equations. Now we

introduce a kinetic matrix, K, defined by

K =

(
∂2L
∂Q̇∂Q̇

∂2L
∂Q̇∂q̇j

∂2L
∂q̇i∂Q̇

∂2L
∂q̇i∂q̇j

)
=

(
a bj

bi kij

)
. (2.2.23)

The Euler-Lagrange equations can be written as

K

(
Q̈

q̈i

)
=

(
ciq̇

i + k0Q− λ

−Vi − ciQ̇

)
. (2.2.24)

If the kinetic matrix is invertible, i.e., detK ̸= 0, we can express Q̈ and q̈i in terms

of up to first order derivative terms. In this case, we need initial conditions for

Q̇, Q, q̇i, qi, λ and ϕ. Therefore we need 2n+4 initial conditions if the kinetic matrix

is invertible and Ostrogradsky’s ghost appears. On the other hand, if the kinetic

matrix is degenerate, i.e.,

0 = detK = det(k)
(
a− bibj

(
k−1
)ij)

, (2.2.25)

the higher derivative terms can be removed from the Euler-Lagrange equations and

we can avoid the Ostrogradsky’ ghost. When a = bi = 0, Q̈ is removed from the

Euler-Lagrange equations (2.2.19) and (2.2.20) and Eq.(2.2.19) becomes a constraint

equation. Thus, we need only 2n+2 initial conditions and the Ostrogradsky’s ghost

does not appear. When bi ̸= 0, it is convenient to introduce the vector

v =

(
v0

vi

)
=

(
−1

(k−1)
ij
bj

)
. (2.2.26)

Projecting the Euler Lagrange equations (2.2.24) with the vector v gives

vTK

(
Q̈

q̈i

)
= vT

(
ciq̇

i + k0Q− λ

−Vi − ciQ̇

)
. (2.2.27)

The left hand side of this equation becomes zero and we can write this equation as

ci

(
q̇i + viQ̇

)
+ k0Q+ viVi = λ. (2.2.28)

From this equation, it is convenient to introduce the new variables xi = qi + viQ

instead of qi. The Euler-Lagrange equations can be written in terms of xi as

ciẋ
i + k0Q+ viVi = λ, (2.2.29)

kijẍ
j + ciQ̇+ Vi = 0. (2.2.30)
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Here we take the time derivative of Eq.(2.2.29) and express Q and λ̇ in terms of the

original variable ϕ. The Euler-Lagrange equations becomes(
k0 − vivjVij

)
ϕ̈+ ciẍ

i = −
(
viVij

)
ẋj −

(
viViϕ

)
ϕ̇− Vϕ, (2.2.31)

ciϕ̈+ kijẍ
j = −Vi. (2.2.32)

where Vij = ∂Vi/∂q
j and Vϕi = Viϕ = ∂Vϕ/∂q

i. Since these equations are second

order differential equation of ϕ and xi, we need 2n+ 2 initial conditions. Therefore

there exits only n+1 degrees of freedom and Ostrogradsky’s ghost can be removed.

We have seen in this section that the Ostrogradsky’s ghosts can be avoided if

the Lagrangian is degenerate. We will see that this trick can be used for extension

of the scalar-tensor theories.

2.2.2 Horndeski theory

Horndeski theory is the most general single scalar-tensor theory whose Euler-Lagrange

equation become at most second-order differential equation [3]. To introduce the

Horndeski theory, let us start with the Galileon theory [4]. The Galileon theory

is most general theory of a scalar field under the assumptions that (1) the theory

have the so called “Galileon symmetry”, i.e., ϕ → ϕ + bµx
µ + c where bµ and c

are constant; (2) the equation of motion for the scalar field is up to second order

differential equation; (3) the spacetime is fixed Minkowski. The Galileon theory is

given by

L =c1ϕ+ c2X − c3X□ϕ+ c4X
[
(□ϕ)2 − ∂µ∂νϕ∂

µ∂νϕ
]

− c5
3
X
[
(□ϕ)3 − 3□ϕ∂µ∂νϕ∂µ∂νϕ+ 2∂µ∂νϕ∂

ν∂λϕ∂λ∂
µϕ
]
, (2.2.33)

where X = −∂µϕ∂µϕ/2, and ci is constant. The covariant version of the Galileon

theory is called “the covariant Galileon theory” whose action is given by [5]

L =c1ϕ+ c2X − c3X□ϕ+
c4
2
X2R + c4X

[
(□ϕ)2 − ϕµνϕµν

]
(2.2.34)

+ c5X
2Gµνϕµν −

c5
3
X
[
(□ϕ)3 − 3□ϕϕµνϕµν + 2ϕµνϕ

νλϕµλ
]

(2.2.35)

This theory has no longer the Galileon symmetry because the Lagrangian contains

the first derivative terms of the scalar field, but has the property that the equations

of motion becomes up to second order. After the further generalization, the general-

ized Galileon theory is discovered [6]. The generalized Galileon in four-dimensional
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spacetime is given by

L = L2 + L3 + L4 + L5, (2.2.36)

L2 = G2(ϕ,X), (2.2.37)

L3 = −G3(ϕ,X)2ϕ, (2.2.38)

L4 = G4(ϕ,X)R +G4X

[
(□ϕ)2 − (∇µ∇νϕ)

2] , (2.2.39)

L5 = G5(ϕ,X)Gµν∇µ∇νϕ− 1

6
G5X

[
(□ϕ)3 − 3□ϕ (∇µ∇νϕ)

2 + 2 (∇µ∇νϕ)
3] ,
(2.2.40)

where X is the kinetic term of the scalar field, X = −∇µϕ∇µϕ/2, and Gi(ϕ,X) is an

arbitrary function of ϕ and X. The generalized Galileon also has the property that

their equations of motion becomes up to second order. Note that the generalized

Galileon theory has been obtained not only four dimensional spacetime but also in

arbitrary dimensional spacetime.

The Horndeski theory is obtained under different assumptions than the gener-

alized Galileon. The assumptions of the Horndeski theory are (1) the Lagrangian

contains higher order derivative terms of the metric and the scalar field, i.e.,

S =

∫
d4x

√
−gL

(
gµν , gµν,λ1 , · · · , gµν,λ1,··· ,λp , ϕ, ϕ,λ1 , · · · , ϕ,λ1,··· ,λq

)
, (2.2.41)

where p, q ≥ 2; (2) the equation of motion for the metric and the scalar field is

up to second order; (3) the spacetime dimension is four. (Of course, the symmetry

of four-dimensional diffeomorphism is also assumed.) Horndeski found the most

general Lagrangian that satisfies these assumptions [3]. Nevertheless the original

Lagrangian found by Horndeski is quite different from the generalized Galileon in

four-dimensional spacetime, the authors of Ref.[7] has shown that these two theories

are equivalent. After that, we use the generalized Galileon (2.2.37)-(2.2.40) as the

Horndeski theory. Note that the scalar-Gauss-Bonnet term such as

f(ϕ)
(
RµνρσRµνρσ − 4RµνRµν +R2

)
, (2.2.42)

is contained in Horndeski theory. We can reproduce equation of motion for the

above term by choosing the arbitrary functions as

G2 = 8f (4)X2(3− lnX), (2.2.43)

G3 = 4f (3)X(7− 3 lnX) (2.2.44)

G4 = 4f (2)X(2− lnX), (2.2.45)

G5 = −4f (1) lnX, (2.2.46)
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where f (n) ≡ dnf/dϕn.

We will see that the coefficients of the second derivative of the scalar field are

tuned to avoid the Ostrogradsky’s ghost.

2.2.3 Degenerate Higher Order Scalar-Tensor theories

Even if the Lagrangian contains higher derivative terms, one can avoid the Os-

trogradsky’s ghost if the Lagrangian is degenerate. From this point of view, the

Degenerate Higher Order Scalar-Tensor(DHOST) theories are constructed. The

DHOST theories contains the quadratic and cubic terms of second derivatives of the

scalar field. The former is called “quadratic DHOST” and the latter is called “cubic

DHOST”. The action of the cubic DHOST theory is given by

S =

∫
d4x

√
−g
[
F0(ϕ,X) + F1(ϕ,X)2ϕ+ F2(ϕ,X)R

+
5∑
I=1

AI(ϕ,X)L
(2)
I + F3(ϕ,X)Gµνϕ

µν +
10∑
I=1

BI(ϕ,X)L
(3)
I

]
, (2.2.47)

where X := −ϕµϕµ/2, ϕµ := ∇µϕ, ϕµν = ∇ν∇µϕ, R is the Ricci scalar, and Gµν is

the Einstein tensor,FI , AI ,andBI are arbitrary functions of ϕ and X. Here, L
(2)
I are

quadratic in the second derivatives of the scalar field and are written explicitly as

L
(2)
1 = ϕµνϕ

µν , L
(2)
2 = (2ϕ)2, L

(2)
3 = (2ϕ)ϕµϕµνϕ

ν ,

L
(2)
4 = ϕµϕµρϕ

ρνϕν , L
(2)
5 = (ϕµϕµνϕ

ν)2. (2.2.48)

Similarly, L
(3)
I are cubic in the second derivatives of the scalar field and are given by

L
(3)
1 = (2ϕ)3, L

(3)
2 = (2ϕ)ϕµνϕ

µν ,

L
(3)
3 = ϕµνϕ

νρϕµρ , L
(3)
4 = (2ϕ)2ϕµϕ

µνϕν ,

L
(3)
5 = 2ϕϕµϕ

µνϕνρϕ
ρ, L

(3)
6 = ϕµνϕ

µνϕρϕ
ρσϕσ,

L
(3)
7 = ϕµϕ

µνϕνρϕ
ρσϕσ, L

(3)
8 = ϕµϕ

µνϕνρϕ
ρϕσϕ

σλϕλ,

L
(3)
9 = 2ϕ(ϕµϕ

µνϕν)
2, L

(3)
10 = (ϕµϕ

µνϕν)
3. (2.2.49)

In order to avoid the Ostrogradsky’s ghost, we need a degeneracy condition that

leads to constraints between arbitrary functions. To find the degeneracy conditions

for DHOST theories, it is convenient to perform ADM decomposition of spacetime

[8]. The structure of the Lagrangian (2.2.47) written by ADM variables are similar

to the example in the section 2.2.1. One can read off the kinetic matrix and the
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degeneracy condition from the ADM formulation of (2.2.47). For the quadratic

DHOST, the degeneracy conditions are given by [9]

D0 = 0, D1 = 0, D2 = 0 (2.2.50)

with

D0 =− 4 (A2 + A1)
[
XF2 (2A1 +XA4 + 4F2X)− 2F 2

2 − 8X2F 2
2X

]
, (2.2.51)

D1 =4
[
X2A1 (A1 + 3A2)− 2F 2

2 − 4XF2A2

]
A4 + 4X2F2 (A1 + A2)A5 + 8XA3

1

− 4 (F2 + 4XF2X − 6XA2)A
2
1 − 16 (F2 + 5XF2X)A1A2 + 4X (3F2 − 4XF2X)A1A3

−X2F2A
2
3 + 32F2X (F2 + 2XF2X)A2 − 16F2F2XA1 − 8F2 (F2 −XF2X)A3 + 48F2F

2
2X

(2.2.52)

D2 =4
[
2F 2

2 + 4XF2A2 −X2A1 (A1 + 3A2)
]
A5 + 4A3

1 + 4 (2A2 −XA3 − 4F2X)A
2
1 + 3X2A1A

2
3,

− 4XF2A
2
3 + 8 (F2 +XF2X)A1A3 − 32F2XA1A2 + 16F 2

2XA1 + 32F 2
2XA2 − 16F2F2XA3.

(2.2.53)

There are several conditions for the arbitrary functions to satisfy this degeneracy

condition, and DHOST theories can be classified according to what type of de-

generacy conditions are imposed. In particular, the subclass which is stable for

perturbations around FLRW background is important to cosmology. This subclass

of the quadratic DHOST is called class Ia which is described by

A2 =− A1, (2.2.54)

A4 =
1

2 (F2 + 2XA1)
2

[
8XA3

1 + (3F2 + 16XF2X)A
2
1 −X2F2A

2
3 + 2X (4XF2X − 3f)A1A3

+2F2X (3F2 + 4XF2X)A1 + 2F2 (XF2X − F2)A3 + 3F2F
2
2X

]
, (2.2.55)

A5 =− (F2X + A1 +XA3) (2F2A3 − F2XA1 − A2
1 + 3XA1A3)

2 (F2 + 2XA1)
2 , (2.2.56)

with

F2 + 2XA1 ̸= 0. (2.2.57)

From these conditions, one can find that class Ia theory contains five independent

arbitrary functions A1, A3, F0, F1 and F2. The Horndeski theory with G5 = 0 can

be reproduced by choosing the arbitrary functions as

F2 = G4, A2 = −A1 = G4X , A3 = A4 = A5 = 0. (2.2.58)

These functions obviously satisfy the degeneracy condition of class Ia. Similarly, the

degeneracy condition for the cubic DHOST is studied in [10].
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2.3 Spatially covariant theory of gravity

In this section, we review the spatially covariant theory of gravity, which has only

three-dimensional diffeomorphism but breaks four-dimensional diffeomorphism. The

action is given by [11, 12]

S =

∫
dt d3xN

√
γL (t, N, γij, Kij, Rij, εijk,∇i) . (2.3.1)

Here, N is the lapse function, γij is the metric of three-dimensional space, Rij

is the Ricci tensor of three-dimensional space, ϵijk is the Levi-Civita tensor with

εijk =
√
γϵijk and ϵijk = 1, ∇i is the covariant derivative compatible with γij and

Kij is the extrinsic curvature which is given by

Kij =
1

2N

(
ḣij −∇iNj −∇jNi

)
, (2.3.2)

where ḣij = ∂thij and Ni is the shift vector. This theory is called a spatially

covariant theory. The argument ∇i means that in general, this theory can contain

higher derivatives of the space. On the other hand, this theory only contains the

time derivative up to the first order in Lagrangian. From this fact, Gao found that

this theory contains up to three degrees of freedom through Hamiltonian analysis

[13]. Nevertheless, this theory breaks the four-dimensional diffeomorphism, one

can always restore it by introducing new fields. These fields are referred to as

Stückelberg fields. Conversely, by gauge fixing, one can always rewrite the four-

dimensional covariant theory into the three-dimensional form. For this reason, this

theory contains various types of modified gravity which are described in the four-

dimensional covariant form. In the next subsection, we show an example contained

in the spatially covariant theory.
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2.3.1 Horndeski theory in the spatially covariant theory

In this subsection, we explain how Horndeski theory can be written in the spatially

covariant theory. The Lagrangian of Horndeski theory is given by

L = L2 + L3 + L4 + L5, (2.3.3)

L2 = G2(ϕ,X), (2.3.4)

L3 = −G3(ϕ,X)2ϕ, (2.3.5)

L4 = G4(ϕ,X)R +G4X

[
(□ϕ)2 − (∇µ∇νϕ)

2] , (2.3.6)

L5 = G5(ϕ,X)Gµν∇µ∇νϕ− 1

6
G5X

[
(□ϕ)3 − 3□ϕ (∇µ∇νϕ)

2 + 2 (∇µ∇νϕ)
3] ,
(2.3.7)

where X = −gµν∂µϕ∂νϕ/2 and ∇µ describes an ordinary four-dimensional covariant

derivatives compatible with the spacetime metric gµν . We can use the scalar field

ϕ to foliate the spacetime and rewrite the theory by the intrinsic and extrinsic

geometric quantities on a hypersurface defined as ϕ = const. For this purpose, we

assume that the gradient of the scalar field is timelike on all points in the spacetime,

i.e., gµν∂µϕ∂νϕ < 0. The normal vector can be defined as

nµ =
∂µϕ√
2X

. (2.3.8)

The extrinsic curvature and the acceleration are defined by the covariant derivative

of the normal vector, and these are defined as

Kµν = γρµ∇ρnν , aµ = nν∇νnµ, (2.3.9)

where γµν = gµν + nµnν is the induced metric on the hypersurface. Note that the

second derivative of the scalar field can be written as

∇µ∇νϕ =
1

N

(
−nµnν£n lnN + 2n(µaν) −Kµν

)
, (2.3.10)

where £n is the Lie derivative with respect to the normal vector. Using these

equations, one can rewrite the Horndeski theory as [14, 15]

SHorndeski =

∫
d4x

√
−g
(
a0K + a1

3RK + a2
3RµνK

µν + b1K
2 + b2KµνK

µν

+c1K
3 + c2KKµνK

µν + c3K
µ
νK

ν
ρK

ρ
µ + d0 + d1

3R
)
,

(2.3.11)
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where 3Rµν and 3R are the Ricci tensor and the Ricci scalar on the hypersurface

respectively. The coefficients are given by

a0 =
∂F3

∂N
− 2

1

N

∂G4

∂ϕ
, 2a1 = −a2 =

1

N
F5, (2.3.12)

−b1 = b2 =
∂ (NG4)

∂N
+

1

2N2

∂G5

∂ϕ
, c1 = −1

3
c2 =

1

2
c3 = −1

6

∂G5

∂N
, (2.3.13)

d0 = G2 +
1

N2

∂F3

∂ϕ
, d1 = G4 −

1

2N2

∂ (G5 − F5)

∂ϕ
, (2.3.14)

with

∂

∂N

(
F3

N

)
= −G3

N2
,

∂

∂N

(
F5

N

)
=

1

N

∂G5

∂N
. (2.3.15)

After taking the unitary gauge ϕ = t, Horndeski action (2.3.11) is contained in the

spatially covariant theory (2.3.1). On the other hand, one can always return to the

original form (2.3.3) by performing the time coordinate transformation. Here, we

show that the Horndeski theory can be contained in the spatially covariant theory.

The spatially covariant theory can contain a wider class of theories such as GLPV

theory [16] and Horava-Lifshitz theory [17] and so on.



Chapter 3

Black hole perturbations in

general relativity

In this chapter, we provide a brief review of the black hole perturbation theory in

general relativity.

3.1 Master equations for odd and even parity per-

turbations

We consider static and spherically symmetric spacetime. In this assumption, the

metric can be written as

gµνdx
µdxν = −A(r)dt2 + dr2

B(r)
+ C(r)r2(dθ2 + sin2 θdφ)2. (3.1.1)

The function C(r) is redundant, however, we introduce this function for later con-

venience. In GR, it is known that the Schwarzschild metric is the unique solu-

tion under static and spherically symmetric spacetime [18]. Therefore we take

A(r) = B(r) = 1− rh/r in this subsection.

We consider the perturbation of the metric, hµν , as

gµν = gµν + hµν . (3.1.2)

In black hole perturbation theory, it is convenient to decompose the perturbations

by their symmetry with respect to parity transformations [19]. Odd parity pertur-

20
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bations can be written as

htt = 0, htr = 0, hrr = 0, (3.1.3)

hta =
∑
ℓ,m

h0,ℓm(t, r)Eab∂
bYℓm(θ, φ), (3.1.4)

hra =
∑
ℓ,m

h1,ℓm(t, r)Eab∂
bYℓm(θ, φ), (3.1.5)

hab =
1

2

∑
ℓ,m

h2,ℓm(t, r) [Ea
c∇c∇bYℓm(θ, φ) + Eb

c∇c∇aYℓm(θ, φ)] (3.1.6)

where we defined Eab =
√
γϵab with complete anti-symmetric tensor satisfying ϵθφ =

1. Here, γab is the metric of 2-dimensional sphere and ∇a is a covariant derivative

compatible with γab. Even parity perturbations can be written as

htt = A(r)
∑
ℓ,m

H0,ℓm(t, r)Yℓm(θ, φ), (3.1.7)

htr =
∑
ℓ,m

H1,ℓm(t, r)Yℓm(θ, φ), (3.1.8)

hrr =
1

B(r)

∑
ℓ,m

H2,ℓm(t, r)Yℓm(θ, φ), (3.1.9)

hta =
∑
ℓ,m

βℓm(t, r)∂aYℓm(θ, φ), (3.1.10)

hra =
∑
ℓ,m

αℓm(t, r)∂aYℓm(θ, φ), (3.1.11)

hab =
∑
ℓ,m

Kℓm(t, r)gabYℓm(θ, φ) +
∑
ℓ,m

Gℓm(t, r)∇a∇bYℓm(θ, φ). (3.1.12)

The ten components of perturbations of the metric hµν are decomposed into the

odd parity perturbations described by three variables (h0, h1, h2), and even parity

perturbations described by seven variables (H0, H1, H2, β, α,K,G). These pertur-

bations include the gauge modes, we perform the gauge transformation to remove

the some of these perturbations. We consider an infinitesimal transformation of the

coordinates

xµ → x̃µ = xµ + ξµ(x). (3.1.13)

From this transformation, the metric transformation up to linear order of ξµ becomes

hµν → h̃µν = hµν − (Dµξν +Dνξµ), (3.1.14)
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where Dµ is a covariant derivative compatible with the background metric gµν .

Here we assume that Dµξν is the same order of hµν . The infinitesimal coordinate

transformation ξµ can also be decomposed into odd parity transformation and even

parity transformation. Odd parity transformation is

ξt = 0, ξr = 0 (3.1.15)

ξa =
∑
ℓ,m

Ξℓm(t, r)Ea
b∇bYℓm(θφ), (3.1.16)

and even parity transformation is

ξt =
∑
ℓ,m

Tℓm(t, r)Yℓm(θ, φ), (3.1.17)

ξr =
∑
ℓ,m

Rℓm(t, r)Yℓm(θ, φ), (3.1.18)

ξa =
∑
ℓ,m

Θℓm(t, r)∂aYℓm(θ, φ). (3.1.19)

Substituting the metric perturbation Eqs. (3.1.3)-(3.1.12) and the infinitesimal dis-

placements Eqs.(3.1.15)- (3.1.19) into Eqs. (3.1.14), we can find the gauge trans-

formations of the metric perturbations in terms of the coefficients h0, h1, etc. The

gauge transformations of the coefficients for odd mode will be

h0 → h0 − Ξ̇, h1 → h1 − Ξ′ +
2

r
Ξ, h2 → h2 − 2Ξ, (3.1.20)

for even mode will be

H0,ℓm(t, r) → H0,ℓm(t, r) +
2

A
Ṫℓm(t, r)−

A′B

A
Rℓm(t, r), (3.1.21)

H1,ℓm(t, r) → H1,ℓm(t, r) + Ṙℓm(t, r) + T ′
ℓm(t, r)−

A′

A
Tℓm(t, r), (3.1.22)

H2,ℓm(t, r) → H2,ℓm(t, r) + 2BR′
ℓm(t, r) + B′Rℓm(t, r), (3.1.23)

βℓm(t, r) → βℓm(t, r) + Tℓm(t, r) + Θ̇ℓm(t, r), (3.1.24)

αℓm(t, r) → αℓm(t, r) + Rℓm(t, r) + Θ′
ℓm(t, r)−

2

r
Θℓm(t, r), (3.1.25)

Kℓm(t, r) → Kℓm(t, r) +
2B

r
Rℓm(t, r), (3.1.26)

Gℓm(t, r) → Gℓm(t, r) + 2Θℓm(t, r), (3.1.27)

where the dot and prime means a derivative with respect to t and r respectively.

From these transformations, we can remove some of the coefficients to simplify the

equations. We choose the gauge such that

h2ℓm = 0, βℓm = 0, Gℓm = 0, Kℓm = 0. (3.1.28)
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For ℓ > 2, the coefficients of the transformation Ξ, T, R,Θ are determined, thus, this

gauge is fixed completely. In what follows, we expand the Einstein-Hilbert action

and derive the master equation in this gauge for ℓ > 2.

We consider the Einstein-Hilbert action,

S =

∫
d4x

√
−gR (3.1.29)

and expand the action up to second order for odd and even parity perturbations.

First, we derive the quadratic action and EoM for the odd parity mode. We

substitute the odd parity perturbations Eqs. (3.1.3)-(3.1.6) into the Einstein-Hilbert

action, and expand it up to second order in perturbations, we obtain the quadratic

action for the odd parity perturbation. After performing the integration for the

angular variables, the quadratic action for the odd parity perturbations is given by

S
(2)
odd =

∞∑
ℓ=2

ℓ∑
m=−ℓ

∫
dt drL(2)

ℓm, (3.1.30)

L(2)
ℓm =

1

2

{[
2

r2
(ra3)

′ + a1

]
|h0|2 + a2 |h1|2 + a3

(∣∣∣ḣ1∣∣∣2 − 2ḣ∗1h
′
0 + |h′0|

2
+

4

r
ḣ∗1h0

)}
+ c.c. .

(3.1.31)

The coefficients are given by

a1 =
cℓ

2r2A

M2
Pl

2
, (3.1.32)

a2 = −cℓ
2

A

r2
M2

Pl

2
, (3.1.33)

a3 =
l(l + 1)

2

M2
Pl

2
, (3.1.34)

where cℓ = (ℓ−1)ℓ(ℓ+1)(ℓ+2). Here, the quadratic action contains the two variables

h0 and h1. However, there must be only one degree of freedom in the odd parity

perturbation which describe the odd mode of the GWs. Thus we can rewrite the

quadratic action with only one variable. By introducing an auxiliary field χℓm(t, r),

we rewrite the quadratic action (3.1.31) as

L(2)
ℓm =

1

2

[
a1 |h0|2 + a2 |h1|2 + a4h

∗
1h0 + 2a3χ

∗
(
−1

2
χ+ ḣ1 − h′0 +

2

r
h0

)]
+ c.c. .

(3.1.35)

From the variation with respect to χ∗, we obtain

χ = ḣ1 − h′0 +
2

r
h0. (3.1.36)



3.1. MASTER EQUATIONS FOR ODD AND EVEN PARITY
PERTURBATIONS 24

We can reproduce the original action (3.1.31) by substituting Eq.(3.1.36) into the

new action (3.1.36), thus the new action (3.1.36) is equivalent to the original one.

From the Variation with respect to h∗0 and h∗1, respectively, we obtain the relations

between h0, h1 and χ,

a1h0 + (a3χ)
′ +

2a3
r
χ = 0, (3.1.37)

a2h1 − a3χ̇ = 0, (3.1.38)

and we solve these constraints for h0 and h1

h0 = −2a3(χ/r) + (a3χ)
′

a1
(3.1.39)

h1 =
a3χ̇

a2
. (3.1.40)

Substituting Eq.(3.1.39) and Eq. (3.1.40) into the new action (3.1.35), we can rewrite

the quadratic action in terms of the only one variable, χ,

L(2)
ℓm =

ℓ(ℓ+ 1)r2

4(ℓ− 1)(ℓ+ 2)

{
b1|χ̇|2 − b2 |χ′|2 −

[
ℓ(ℓ+ 1)

2

M2
Pl

r2
+
V

2

]
|χ|2
}
+ c.c. ,

(3.1.41)

where

b1 =
M2

Pl

2A
, b2 =

M2
PlA

2
, V = −4MPl2

rh
r3
. (3.1.42)

Varying the quadratic action (3.1.41) with respect to χ, we obtain the EoM for χ

b1χ̈− 1

r2
(
r2b2χ

′)′ + [ℓ(ℓ+ 1)

2

H
r2

+
V

2

]
χ = 0. (3.1.43)

Here, we define the tortoise coordinate by

dr∗ =
dr

A
. (3.1.44)

After performing the integration, the tortoise coordinate is given by

r∗ = r + rh log
r − rh
rh

. (3.1.45)

Note that the infinity r = +∞ is correspond to r∗ = +∞ and the horizon r = rh is

correspond to r∗ = −∞. The EoM for χ in this coordinate becomes

(−∂2t + ∂2r∗ − Ṽ )χ = 0 (3.1.46)
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where

Ṽ = A

[
ℓ(ℓ+ 1)

r2
− 3rh

r3

]
. (3.1.47)

Eq. (3.1.46) called the “Regge-Wheeler equation” describes how the odd mode of

the gravitational wave propagate around the Schwarzschild spacetime [19].

Next, we consider the even parity perturbations in the gauge with Gℓm = Kℓm =

βℓm = 0. In this gauge, the even parity perturbations have the four variables

H0, H1, H2 and α. We substitute the even parity perturbations (3.1.17)-(3.1.19) into

the Einstein-Hilbert action and perform the expansion of the action up to second

order. After integration over the angular variables, the quadratic action of the even

parity perturbations is given by

2(ℓ+ 1)

2π
L =H0

[
a3H

′
2 + j2a4α

′ +
(
a7 + j2a8

)
H2 + j2a4α

]
+ j2b1H

2
1 +H1

(
b4Ḣ2 + j2b5α̇

)
+ j2b5H2α + c6H

2
2 + j2d1α̇

2 + j2d4α
2. (3.1.48)

The coefficients are the function of r and background quantities, and given by

a3 = −M2
PlrA, a4 =M2

PlA, a7 = −M2
Pl (rA)

′ , a8 = −MPl

2
, (3.1.49)

b1 =
M2

Pl

2
, b4 = 2M2

Plr, b5 = −M2
Pl, (3.1.50)

c6 =
M2

Pl

2
r2
(
A

r2
+
A′

r

)
, d1 =

M2
Pl

2
, d4 =M2

Pl

A

r
. (3.1.51)

Since H0 is a Lagrange multiplier in the quadratic action (3.1.48), variation with

respect to H0 gives the constraint between two variables, H2 and α,:

a3H
′
2 + j2a4α

′ +
(
a7 + j2a8

)
H2 + j2a4α = 0. (3.1.52)

To simplify this equation, we define a new variable, ψ, as

H2 =
1

a3

(
ψ − j2a4α

)
, (3.1.53)

and we use this new variable instead of H2. Substituting the Eq.(3.1.53) into the

constraint (3.1.52), the differential term of α can be removed and we can solve the

algebraic constraint equation for α as

α =
1

j4a4a8

(
a3ψ

′ + j2a8ψ
)
. (3.1.54)
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Since there are no derivative terms of H1 in the quadratic action, the variation with

respect to H1 gives the constraint equation for H1 as

H1 = − 1

2j2b1

(
b4H2 + j2b5α

)·
. (3.1.55)

From the constraints (3.1.53),(3.1.54) and (3.1.55), we can express all the variables,

H1, H2 and, α in terms of ψ and its derivatives. Finally we define the new variable,

Ψ, as

ψ = j(1 + j2 − 3A)Ψ, (3.1.56)

and we can write the quadratic action for even parity perturbations by only one

variable, Ψ, as

2ℓ+ 1

2π
L =

2 (j2 − 2)

M2
Pl

[
1

A
Ψ̇2 − AΨ′2 − 3 + j2 − j4 + j6 − 3 (1 + j2)

2
A+ 9 (1 + j2)A2 − 9A3

r2 (j2 + 1− 3A)2
Ψ2

]
.

(3.1.57)

This result is expected intuitively. General Relativity has two degrees of freedom

corresponding to the two modes of GWs. One of the degrees of freedom belongs to

the odd parity perturbation and the other belongs to the even parity perturbation.

Therefore the even parity perturbation should be described by only one variable,

even though there are many variables in even parity perturbations. By using of the

tortoise coordinate (3.1.44), we obtain the equation of motion for Ψ

∂2Ψ

∂t2
− ∂2Ψ

∂r2∗
− A

r2 (j2 + 1− 3A)2

(
3 + j2 − j4 + j6 − 3

(
1 + j2

)2
A+ 9

(
1 + j2

)
A2 − 9A3

)
Ψ = 0.

(3.1.58)

This equation called the “Zerilli equation” gives how the even mode of the gravita-

tional wave propagate around the Schwarzschild spacetime [20].

We plot the potential for the odd parity perturbations and for the even parity

perturbations in figure 3.1. From figure 3.1, it is obvious that the potential for the

odd and even parity mode has almost the same form and property. Therefore we

can use the same method to solve the master equation for the both of modes.

3.2 Solution of the master equations and quasi

normal mode of a black hole

We would like to solve the master equation in some physically relevant conditions. As

mentioned in the previous subsection, the Regge-Wheeler equation and the Zerilli
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Figure 3.1: RW and Zerilli potentials are plotted in ℓ = 2 and ℓ = 3 cases. One can

find that the RW and Zerilli potential have almost the same form.

equation are qualitatively equivalent. Thus we only focus on the Regge-Wheeler

equation in this subsection.

At first, we have to set the relevant boundary conditions. We observe how the

master equation (3.1.46) behave at the infinity and near the horizon. At the infinity,

the tortoise coordinate (3.1.45) approximately becomes the original coordinate, r∗ ∼
r. Therefore the RW potential (3.1.47) at the infinity goes to zero as 1/r2∗ Near the

horizon, r ∼ rh, the tortoise coordinate approximately becomes

r∗ ∼ rh + rh log
r − rh
rh

, (3.2.1)

and

A(r) ∼ e
r∗
rh

−1
. (3.2.2)

Therefore the RW potential vanishes exponentially at the horizon. From the above

analysis, the master equation at the infinity and near the horizon becomes a one-

dimensional wave equation and the perturbation propagate freely. The solution of

the master equation (3.1.46) at the infinity is given by the superposition of plane

waves,

χ̃ ∼ χ̃inf =

∫ ∞

−∞
dω
[
Aout(ω)e−iω(t−r∗) + Ain(ω)e−iω(t+r∗)

]
, (3.2.3)
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where Aout(ω) is the amplitude of the outgoing wave and Ain(ω) is the amplitude of

the ingoing wave. Similarly, the solution of the master equation near the horizon is

given by

χ̃ ∼ χ̃h =

∫ ∞

−∞
dω
[
Bout(ω)e−iω(t−r∗) +Bin(ω)e−iω(t+r∗)

]
. (3.2.4)

In the most case of the black hole perturbation theory, one imposes the boundary

condition as,

χ̃ ∼
∫ ∞

−∞
dω
[
Ain(ω)e−iω(t+r∗)

]
(r∗ → +∞), (3.2.5)

χ̃ ∼
∫ ∞

−∞
dω
[
Bout(ω)e−iω(t−r∗)

]
(r∗ → −∞). (3.2.6)

These conditions says that nothing comes from the infinity and nothing comes out

from the horizon.

We assume the time dependence of the master variable as χ̃ = Q(r)e−iωt, the

master equation becomes Schrödinger equation,

d2Q

dr2∗
+
(
ω2 − Ṽ (r)

)
Q = 0. (3.2.7)

Thus how the GWs propagate around the Schwarzschild spacetime is given by solv-

ing the eigenvalue problem. As the case of quantum mechanics, the solution of

Eq.(3.2.7) exists only for some discrete value of ω. This discrete values of ω are

called the “Quasi Normal Modes”(QNMs) of the black hole. We denote the QNMs

as ωQNM . Since ωQNM is complex number in general, the time dependence of the

master variable can be written as

χ̃ = Q(r)e−iωt = Q(r)e−i(Re[ωQNM ]+iIm[ωQNM ])t = Q(r)eIm[ωQNM ]te−iRe[ωQMN ]t.

(3.2.8)

From this equation, we find that the imaginary part of the ωQNM gives the time

evolution of the amplitude and the real part of the ωQNM gives the normal frequency.

In the boundary conditions (3.2.6), one can expect that GWs finally go to infinity

or fall inside of the horizon. Therefore the energy of the GWs will be dissipated and

the amplitude will be damped. Since the imaginary part of the ωQNM describes the

effect of dissipation, Im [ωQNM ] takes a negative number in general.

Here, we note the observational importance of the QNM. The merger of the two

black holes can be decomposed into three phases, i.e., “inspiral”, “merger”, and
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“ringdown” phases. In the inspiral phase, the gravitational field is relatively weak

and one can calculate the time evolution of the wave form of the GWs by linearized

gravity or Post-Newtonian approach. In the merger phase, the gravitational field

is extremely strong and one must include the effects of non-linearity to compute

the time evolution of the GWs and take into account the tidal deformation of the

neutron stars. According to the high non-linearity, in the merger phase, we need a

numerical computation to predict the waveform precisely. After merger of the two

black holes or neutron stars, they may form the one black hole. This black hole

formed by coalescence is “ringing” for a while. The black hole loses its energy by

the GWs emitted by this ringing and finally becomes stationary. This GWs emitted

by ringing of a black hole is called the “ringdown GWs”. It is known that the

ringdown GWs are well described by the QNM of a black hole. The QNM of a black

hole is determined only by the mass and the angular momentum of a black hole

in general relativity. In contrast, the QNM of a black hole may depend on other

parameters in modified gravity. Therefore one can test gravity by observations of the

ringdown GWs. In addition to the test of gravity by ringdown GWs, we can use the

consistency relation between the waveform of the GWs emitted in the inspiral,merger

and ringdown phases [21]. We can determine the mass and the angular momentum

of a black hole from the waveform of the inspiral, merger and ringdown phases. If

the general relativity is correct, there exist some consistency relations between the

three phases. In modified gravity, this consistency relation is different from that of

general relativity. Therefore we can test gravity by combining the information from

the waveforms in the three phases.

As mentioned above, QNM is damped exponentially in general. It is important

for observation of the ringdown GWs to find the least damped mode. This is also

called the fundamental mode. The fundamental mode is one of the QNMs which has

the minimum value of |Im [ωQNM ] |. In the chapter 5, we will find the fundamental

mode of QNMs in a specific scalar-tensor theory.

There are several methods for solving the master equation (3.2.7) and finding

the QNMs such as the numerical calculation which is called “direct integration”,

Leaver’s method [22], and WKB approximation [23, 24]. In the Table 3.2, we show

the QNMs in Schwarzschild black hole derived by the Leaver’s method in Ref.[22]

See Ref.[25] for a review of finding the QNMs. Recent developments of solving the

master equation can be found in Ref.[26].
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ℓ = 2 ℓ = 3

n (Re
[
ωQNMn

]
, Im

[
ωQNMn

]
) (Re

[
ωQNMn

]
, Im

[
ωQNMn

]
)

1 (0.747343,−0.177925) (1.198887,−0.185406)

2 (0.693422,−0.547830) (1.165288,−0.562596)

3 (0.602107,−0.956554) (1.103370,−0.958186)

4 (0.503010,−1.410296) (1.023924,−1.380674)

5 (0.415029,−1.893690) (0.940348,−1.831299)

6 (0.338599,−2.391216) (0.862773,−2.304303)

7 (0.266505,−2.895822) (0.795319,−2.791824)

8 (0.185617,−3.407676) (0.737985,−3.287689)

9 (0.000000,−3.998000) (0.689237,−3.788066)

10 (0.126527,−4.605289) (0.647366,−4.290798)

Table 3.1: The QNMs for the Schwarzschild black hole [22]



Chapter 4

Black hole solutions in

scalar-tensor theories

In general relativity, there exists the no-hair theorem of black holes. The no-hair

theorem states that if the spacetime is stationary and axisymmetric, the Kerr metric

is a unique vacuum solution, and black holes are determined by only two parameters,

the mass and the angular momentum of the black hole [27]. This theorem implies

that if we want to study the phenomenology of black holes in the universe, all

we need is the Kerr solution. Furthermore, if we can find deviations from the Kerr

solution by observation, we can test the theory of gravity. If we consider the modified

gravity, black holes may depend on parameters other than the mass and the angular

momentum. In particular, in scalar-tensor theories, it is important whether a black

hole has scalar hair or not. We will review what kind of scalar-tensor theories can

have scalar hair in the next section.

4.1 No-hair theorem for the shift-symmetric scalar-

tensor theories

When a scalar-tensor theory have a shift-symmetry, ϕ → ϕ + const., there exists

a strong theorem. We will review a theorem that if both of the spacetime and

the scalar field have static and spherical symmetry, the scalar field cannot have a

non-trivial configuration in some classes of the shift-symmetric Horndeski theories.

31
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We consider the shift symmetric Horndeski theory whose Lagrangian is given by

L = L2 + L3 + L4 + L5, (4.1.1)

L2 = G2(X), (4.1.2)

L3 = −G3(X)2ϕ, (4.1.3)

L4 = G4(X)R +G4X

[
(□ϕ)2 − (∇µ∇νϕ)

2] , (4.1.4)

L5 = G5(X)Gµν∇µ∇νϕ− 1

6
G5X

[
(□ϕ)3 − 3□ϕ (∇µ∇νϕ)

2 + 2 (∇µ∇νϕ)
3] , (4.1.5)

where G2, G3, G4, G5 are arbitrary functions of the kinetic term of the scalar field

X = −∇µϕ∇µϕ/2. In Ref. [28], the no-hair theorem for the shift symmetric Horn-

deski theories has shown.

Theorem 3 Shift-symmetric Horndeski theories satisfying the assumptions that

1. the spacetime is static, spherically symmetric and asymptotically flat,

2. the scalar field is also static and spherically symmetric,

3. the derivative of the scalar field vanishes at spatial infinity, i.e., ∇µϕ → 0 at

r → ∞,

4. the Lagrangian has a canonical kinetic term of the scalar field, i.e., L ⊃ X,

5. the norm of the Noether current due to the shift-symmetry is finite on and

outside of the horizon,

6. the arbitrary functions Gi(X) are analytic at X = 0,

cannot have a non-trivial configuration of the scalar field.

The Proof of the no-hair theorem for shift symmetric Horndeski theory is as

follows. The equation of motion for the scalar field can be written as a conservation

law of a Noether current, Jµ, associated with the shift symmetry. Because of the

static and spherical symmetry, the current Jµ has the only non-zero component Jr.

From the assumption, JµJµ must be finite at the horizon. This implies Jµ must be

vanish. Since Jµ is conserve, Jµ must vanish everywhere. Jµ can be written as

Jµ = ϕ′F [ϕ′; g, g′] (4.1.6)

with F is a regular function. ϕ′′ is absent in Jµ because the Horndeski theory

guarantees the equation of motion become up to second order. If the theory contains
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a canonical kinetic term of the scalar field, the function F approaches to some non-

zero constant at spatial infinity which is correspond to ϕ′ → 0 due to the assumption.

Since Jµ must be vanish everywhere, ϕ′ must be zero around ϕ′ = 0. This implies

that ϕ has to be a constant everywhere and black hole cannot have the scalar hair.

Note that if the theory have the scalar-Gauss-Bonnet term such as

S =M2
Pl

∫
d4x

√
−g
(
R

2
− 1

2
∂µϕ∂

µϕ+ αϕR2
BG

)
, (4.1.7)

with α = const, and

R2
GB = RµνρσRµνρσ − 4RµνRµν +R2, (4.1.8)

this theory breaks the assumption 6 of no-hair theorem and can have the scalar hair

[29, 30].

4.2 Hairy black hole with linearly time dependent

scalar field

In the previous section, we have seen that the shift symmetric scalar-tensor theories

cannot have scalar hair if the scalar field is static. The authors of Ref. [31] consider

the linearly time-dependent scalar field and find black hole solution with scalar hair.

This breaks the assumption 2 of the no-hair theorem. Let us consider the action

given by

S =

∫
d4x

√
−g
[
ζR− η(∂ϕ)2 + βGµν∂µϕ∂νϕ− 2Λ

]
, (4.2.1)

where R is the Einstein-Hilbert term, Gµν is the Einstein tensor, Λ is a cosmological

constant, and ζ > 0, η, and β are constants. This theory is in a subclass of shift

symmetric Horndeski theory. Varying this action with respect to the metric, we

obtain

0 = Eµν ≡ ζGµν − η

(
∂µϕ∂νϕ− 1

2
gµν(∂ϕ)

2

)
+ gµνΛ

+
β

2

(
(∂ϕ)2Gµν + 2Pµανβ∇αϕ∇βϕ

+gµαδ
αρσ
νγδ∇

γ∇ρϕ∇δ∇σϕ
)
. (4.2.2)

Varying the action with respect to the scalar field gives

∇µJ
µ = 0, Jµ = (ηgµν − βGµν) ∂νϕ. (4.2.3)
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Because of the shift symmetry, the equation of motion for the scalar field can be writ-

ten as the conservation law of the Noether current. We assume that the spacetime

is static and spherically symmetric, i.e.,

ds2 = −h(r)dt2 + dr2

f(r)
+ r2dΩ2, (4.2.4)

and the scalar field depends on t and r, i.e.,

ϕ = ϕ(t, r). (4.2.5)

In this ansatz, the non-zero components of Jµ are J t and Jr given by, respectively,

J t =
(
ηgtt − βGtt

)
ϕ̇(t, r), (4.2.6)

Jr = (ηgrr − βGrr)ϕ′(t, r), (4.2.7)

where the dot denotes the derivative with respect to t, and the prime denotes the

derivative with respect to r. From the ansatz (4.2.4) and (4.2.5), the tr component

of Eq.(4.2.2) becomes

Etr =
βϕ′

r2

(
rfh′

h
+

(
f − 1− ηr2

β

)
ϕ̇− 2rfϕ̇′

)
= 0. (4.2.8)

If ϕ′ ̸= 0, Etr = 0 gives

ϕ(t, r) = ψ(r) + q1(t)e
X(r), (4.2.9)

where

X(r) =
1

2

∫
dr

(
1

r
− 1

rf
− ηr

βf
+
h′

h

)
. (4.2.10)

Note that this X(r) satisfies the relation,

ηgrr − βGrr = 2β
f 2X ′

r
. (4.2.11)

Here, we will find the solution in the ansatz such that the metric satisfies

ηgrr − βGrr = 0, (4.2.12)

and the configuration of the scalar field is

ϕ(t, r) = qt+ ψ(r). (4.2.13)
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From the ansatz (4.2.12), we obtain

f =
(β + ηr2)h

β(rh)′
. (4.2.14)

According to the ansatz (4.2.12) and Eq.(4.2.11), X becomes a constant, and the

ansatz (4.2.13) is consistent with (4.2.12). One can easily verify that Etr = 0 and the

equation of motion for the scalar field are automatically satisfied in these ansatz.

Substituting (4.2.13) and (4.2.14) into the Err = 0, we obtain

ψ′ = ±
√
r

h (β + ηr2)

(
q2β

(
β + ηr2

)
h′ − λ

2

(
h2r2

)′)1/2

(4.2.15)

where λ = ζη + βΛ. This equation gives the configuration of ψ(r) in terms of h(r).

Substituting (4.2.13), (4.2.14) and (4.2.15) into Ett, and we write h(r) as

h(r) = −µ
r
+

1

r

∫
k(r)

β + ηr2
dr, (4.2.16)

where µ is a constant, Ett gives the third order algebraic equation for k(r)

q2β
(
β + ηr2

)2 − (2ζβ + (2ζη − λ)r2
)
k + C0k

3/2 = 0. (4.2.17)

Here we have obtained the black hole solution with time-dependent scalar field which

is given by (4.2.13), (4.2.15), (4.2.14), (4.2.16) and (4.2.17).

This fact shows that the shift-symmetric scalar-tensor theories can have the

linearly time-dependent scalar-hair. After this solution was discovered, many people

have studied on the hairy black hole solution and its perturbation in scalar-tensor

theories [32, 33, 34]. We will investigate the black hole perturbations around this

type of solution in higher-order scalar-tensor theories.

4.3 Stealth black hole solution in shift-symmetric

cubic DHOST theory

In this section, we consider the shift-symmetric cubic DHOST theory whose action

is given by (2.2.47) and find the stealth black hole solution. Due to the shift-

symmetry ϕ→ ϕ+const., the arbitrary functions in the action are functions of only

X, i.e., Ai = AI(X) and BI = BI(X). We consider static and spherically symmetric

spacetime

ds2 = −A(r)dt2 + dr2

B(r)
+ r2C(r)dσ2, (4.3.1)
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where dσ2 := dθ2 + sin2 θdφ2, and linearly time dependent scalar field

ϕ(t, r) = µt+ ψ(r), (4.3.2)

where µ is constant. Here, we leave the function C(r) in order to obtain all the

independent equations. We will set C(r) = 1 after varying the action. The kinetic

term of the scalar field is

X := −1

2
gµν∇µϕ∇νϕ =

1

2

(
µ2

A
− Bψ′2

)
. (4.3.3)

We would like to find a stealth Schwarzschild solution defined by

A(r) = B(r) = 1− rh
r
, (4.3.4)

and

X = X0 :=
µ2

2
. (4.3.5)

Varying the action with respect to A,B,C and ψ, and substituting (4.3.4) and

(4.3.5), we find that the stealth Schwarzschild solution exists if the arbitrary func-

tions satisfy the following equations [35]:

F0(X0) = 0, F0X(X0) = 0, F1X(X0) = 0

A1(X0) + A2(X0) = 0, A1X(X0) + A2X(X0) = 0,

B2(X0) = −1

2
B3(X0) = 9B1(X0),

B4(X0) + B6(X0)− B1X(X0)− B2X(X0)−
5

9
B3X(X0)

=
6

X0

B1(X0). (4.3.6)

Note that these relations are compatible with the degeneracy conditions in the class
2N-I + 3M-I degenerate theories in the terminology of [36]. We will use this type of

solution as background in the next chapter.



Chapter 5

Black hole perturbations with

time dependent scalar hair in

shift-symmetric scalar-tensor

theories

The material in this chapter was originally published in “Perturbations and quasi-

normal modes of black holes with time-dependent scalar hair in shift-symmetric

scalar-tensor theories”, Phys. Rev. D 103 (2021) 084041. [37]

Copyright (2021) by the American Physical Society.

5.1 Higher-Order Scalar-Tensor Theories

We consider the action (2.2.47) described in 2.2.3 and write it again for convenience.

We consider a scalar-tensor theory given by [9, 38, 36]

Sgrav =

∫
d4x

√
−g
[
F0(X) + F1(X)2ϕ+ F2(X)R

+
5∑
I=1

AI(X)L
(2)
I + F3(X)Gµνϕ

µν +
10∑
I=1

BI(X)L
(3)
I

]
, (5.1.1)

where X := −ϕµϕµ/2, ϕµ := ∇µϕ, ϕµν = ∇ν∇µϕ, R is the Ricci scalar, and Gµν is

the Einstein tensor. Here, L2 is consist of all possible terms which are quadratic in

37
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the second derivatives of the scalar field and given by

L
(2)
1 = ϕµνϕ

µν , L
(2)
2 = (2ϕ)2, L

(2)
3 = (2ϕ)ϕµϕµνϕ

ν ,

L
(2)
4 = ϕµϕµρϕ

ρνϕν , L
(2)
5 = (ϕµϕµνϕ

ν)2. (5.1.2)

Similarly, L
(3)
I are cubic in the second derivatives of the scalar field and are given by

L
(3)
1 = (2ϕ)3, L

(3)
2 = (2ϕ)ϕµνϕ

µν ,

L
(3)
3 = ϕµνϕ

νρϕµρ , L
(3)
4 = (2ϕ)2ϕµϕ

µνϕν ,

L
(3)
5 = 2ϕϕµϕ

µνϕνρϕ
ρ, L

(3)
6 = ϕµνϕ

µνϕρϕ
ρσϕσ,

L
(3)
7 = ϕµϕ

µνϕνρϕ
ρσϕσ, L

(3)
8 = ϕµϕ

µνϕνρϕ
ρϕσϕ

σλϕλ,

L
(3)
9 = 2ϕ(ϕµϕ

µνϕν)
2, L

(3)
10 = (ϕµϕ

µνϕν)
3. (5.1.3)

The arbitrary functions F0, F1, F2, F3, AI , and BI depend only on X, because we

impose that this theory has the shift symmetry, ϕ→ ϕ+ c.

In this theory, the equation of motion for the metric and the scalar field has

higher-order derivatives in general and the Ostrogradsky ghost may appear. The

Ostrogradsky ghost can be removed by imposing the degeneracy conditions among

the arbitrary functions F2, F3, AI , and BI [9, 38, 36]. However, one can relax the

degeneracy conditions and construct healthy theories. An example, by requiring that

the theory degenerates at least in the unitary gauge, the theory can be free from the

Ostrogradsky ghost even in general gauges. This theory is called the U-degenerate

theories [39]. Another example is given regarding this theory as an effective field

theory. In this formalism, this theory can be regarded as some low-energy limits of

a UV-complete theory, and one can detune the degeneracy conditions if the ghost

will appear only at some high energy scale above a cutoff scale [40].

In this study, we do not impose any particular degeneracy conditions among

the arbitrary functions. Nonetheless, we can derive the quadratic Lagrangian for

the odd parity mode of the metric perturbations around the static and spherically

symmetric background spacetime with a time-dependent scalar field.

5.2 Spherically Symmetric Background

In this section, we explain the background solutions. We consider static and spher-

ically symmetric spacetime given by

ds2 = −A(r)dt2 + dr2

B(r)
+ r2C(r)dσ2, (5.2.1)
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where dσ2 := dθ2 + sin2 θdφ2. Here we leave the function C(r) to reproduce the θθ

component of the equation of motions for the metric. We take C(r) = 1 after the

variation with respect to C(r) (see, e.g., [41]).

We assume that the scalar field depends linearly on the time,

ϕ(t, r) = µt+ ψ(r), (5.2.2)

where µ is a constant. Without loss of generality, we assume that µ > 0. This

assumption is consistent with the static metric (5.2.1) because the action (5.1.1)

depends on ϕ only through its derivatives due to the shift symmetry.

According to the ansatz (5.2.2), one can avoid the assumptions of the no-hair

theorem of shift symmetric scalar-tensor theories [28]. Several black hole solu-

tions with spherical symmetry have been found in the context of Horndeski the-

ory [31, 42, 43, 44, 45] and beyond-Horndeski/DHOST theories [46, 47, 48, 35, 49].

Note that in [50, 51], the authors studied the effective field theory of black hole

perturbations with a static and spherically symmetric scalar field. However, for the

ansatz (5.2.2), one cannot use the effective field theory approach straightforwardly.

Therefore, it is interesting to explore a general form of the effective action for black

hole perturbations in the presence of the time-dependent scalar field.

Substituting the metric (5.2.1) and the ansatz of scalar field (5.2.2) into the

action (5.1.1) and varying it with respect to A, B, C, and ψ, we can derive the

background field equations. We write the resultant field equations as EA = 0, EB = 0,

EC = 0, and Eψ = 0. In general, these equations are higher order since we do not

impose the degeneracy conditions. Because we only use these background equations

to reduce the form of the quadratic Lagrangian, the explicit forms of the background

equations are not important. Also, for this reason, it is not important whether the

background equations are higher order or not.

Here we show an example of background solutions. An interesting class of so-

lutions often studied in the literature is a stealth Schwarzschild black hole with

X = X0 = const. In this case, the background metric and the kinetic term of the

scalar field are given by

A = B = 1− rh
r
, X = X0 =

µ2

2
. (5.2.3)

As we saw in chapter 4.3, the stealth Schwarzschild solution exists if the arbitrary

functions satisfy some relations (4.3.6). From 2X = µ2 = µ2/A − B(dψ/dr)2 we
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have

ψ = ±µ
[
2
√
rhr + rh ln

(√
r −√

rh√
r +

√
rh

)]
. (5.2.4)

We choose the “+” branch because we have ϕ ≃ µ[t± rh ln(r/rh − 1)]+ const near

the horizon and it is regular at the horizon only in the “+” branch, as is clear by

expressing ϕ in terms of the ingoing null coordinate v = t+ r+ rh ln(r/rh − 1) [31].

5.3 Odd Parity Perturbations

5.3.1 Derivation of the Quadratic Lagrangian and the Ef-

fective Metric

We consider the odd parity mode of the metric perturbations,

gµν = gµν + hµν , (5.3.1)

where gµν is the background metric (5.2.1) with C(r) = 1. The scalar field does not

have an odd mode perturbation. Among the ten components, hta, hra, and hab are

concerned with odd parity modes, where a = θ, φ. Using the spherical harmonics

Yℓm(θ, φ), we follow the standard procedure and expand the odd mode perturbations

as

htθ = − 1

sin θ
∂φ

∞∑
ℓ=2

ℓ∑
m=−ℓ

h
(ℓm)
0 (t, r)Yℓm(θ, φ), (5.3.2)

htφ = sin θ∂θ

∞∑
ℓ=2

ℓ∑
m=−ℓ

h
(ℓm)
0 (t, r)Yℓm(θ, φ), (5.3.3)

hrθ = − 1

sin θ
∂φ

∞∑
ℓ=2

ℓ∑
m=−ℓ

h
(ℓm)
1 (t, r)Yℓm(θ, φ), (5.3.4)

hrφ = sin θ∂θ

∞∑
ℓ=2

ℓ∑
m=−ℓ

h
(ℓm)
1 (t, r)Yℓm(θ, φ). (5.3.5)

The odd parity part of hab can also be expressed using a single pseudo-scalar function,

say h2, but we adopt the Regge-Wheeler gauge in which h2 = 0 and accordingly

hab = 0.

We substitute Eqs. (5.3.2)–(5.3.5) into the action (5.1.1) and expand the action

up to second order in perturbations. After performing the angular integrations, we
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get the general action

Sgrav =
∞∑
ℓ=2

ℓ∑
m=−ℓ

∫
dtdrL(2)

ℓm, (5.3.6)

and

L(2)
ℓm =

1

2

{[
2

r2
(ra3)

′ + a1

]
|h0|2 + a2|h1|2

+a3

(
|ḣ1|2 − 2ḣ∗1h

′
0 + |h′0|2 +

4

r
ḣ∗1h0

)
+ a4h

∗
1h0

}
+ c.c.. (5.3.7)

Here we omit the subscripts ℓm from h0 and h1. The coefficients are given by

a1 =
cℓ

2r2
√
AB

{
F2 +

µ2

A
A1 +

Bψ′X ′

2
F3X +

µ2

Aψ′

[
2B(ψ′)2

r
− (AX)′

A

]
B2

+
3µ2Bψ′

rA
B3 −

µ2Bψ′X ′

A
B6

}
, (5.3.8)

a2 = −cℓ
2

√
AB

r2

{
F2 − B(ψ′)2A1 −

Bψ′X ′

2
F3X − Bψ′

[
2B(ψ′)2

r
− (AX)′

A

]
B2

− 3B2(ψ′)3

r
B3 +B2(ψ′)3X ′B6

}
, (5.3.9)

a3 =
ℓ(ℓ+ 1)

2

√
B

A

{
F2 + 2XA1 −

Bψ′X ′

2
F3X +

2X

ψ′

[
2B(ψ′)2

r
− (AX)′

A

]
B2

+
3X

ψ′

[
B(ψ′)2

r
−X

A′

A
− µ2X ′

2AX

]
B3 − 2Bψ′XX ′B6

}
,

(5.3.10)

a4 = − cℓ
r2

√
B

A
µ

{
ψ′A1 +

X ′

2
F3X +

[
2B(ψ′)2

r
− (AX)′

A

]
B2 +

3B(ψ′)2

r
B3 − B(ψ′)2X ′B6

}
,

(5.3.11)

with cℓ = (ℓ−1)ℓ(ℓ+1)(ℓ+2). Here a dot means the derivative of t and a prime means

the derivative ofr. Following Ref. [52], it is convenient to write these coefficients as

a1 =
cℓ

4r2
√
AB

F(r), a2 = −cℓ
4

√
AB

r2
G(r),

a3 =
ℓ(ℓ+ 1)

4

√
B

A
H(r), a4 =

cℓ
2r2

√
B

A
J (r), (5.3.12)

where F , G, H, and J have a dimension of (mass)2. For the Schwarzschild solution

in general relativity, we simply have F = G = H =M2
Pl = (8πG)−1 and J = 0.

We note that the quadratic Lagrangian (5.3.7) only contains the arbitrary func-

tions F2, F3, A1, B2, B3, and B6. We have dropped the other terms from the
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Lagrangian using the background equations. This is expected from the results of

[53, 54], in which the quadratic Lagrangian of tensor mode around the cosmolog-

ical background contains only these arbitrary functions. It is also noted that the

quadratic Lagrangian (5.3.7) is obtained without imposing the degeneracy condi-

tions. This is also not surprising because tensorial metric perturbations in the

theory (5.1.1) obey second-order equations without regard to the degeneracy condi-

tions. Therefore, our result can be used, for example, to U-degenerate theories [39]

and detuned (“scordatura”) DHOST theories [40].

Now we rewrite the Lagrangian (5.3.7) in terms of a single master variable. This

can be done straightforwardly, following closely Refs. [32, 33, 52]. First, we introduce

an auxiliary field χ = χ(ℓm)(t, r) and rewrite the Lagrangian (5.3.7) as

L(2)
ℓm =

1

2

[
a1|h0|2 + a2|h1|2 + a4h

∗
1h0

+ 2a3χ
∗
(
−1

2
χ+ ḣ1 − h′0 +

2

r
h0

)]
+ c.c.. (5.3.13)

One can easily confirm that this Lagrangian is equivalent to the original one. Vari-

ation with respect to h∗0 and h∗1 leads, respectively, to

a1h0 + (a3χ)
′ +

2a3
r
χ+

1

2
a4h1 = 0, (5.3.14)

a2h1 − a3χ̇+
1

2
a4h0 = 0, (5.3.15)

which can be solved for h0 and h1 to express them in terms of χ, χ̇, and χ′:

h0 = −8a2a3(χ/r) + 4a2(a3χ)
′ + 2a3a4χ̇

4a1a2 − a24
, (5.3.16)

h1 =
4a3a4(χ/r) + 2a4(a3χ)

′ + 2a1a3χ̇

4a1a2 − a24
. (5.3.17)

(Here we assumed that FG+(B/A)J 2 ̸= 0.) Substituting Eqs. (5.3.16) and (5.3.17)

back to Eq. (5.3.13), we obtain

L(2)
ℓm =

ℓ(ℓ+ 1)r2

4(ℓ− 1)(ℓ+ 2)

√
B

A

{
b1|χ̇|2 − b2|χ′|2 + b3χ̇

∗χ′

−
[
ℓ(ℓ+ 1)

2

H
r2

+
V

2

]
|χ|2
}
+ c.c., (5.3.18)

where

b1 =
F
2A

· AH2

AFG +BJ 2
, b2 =

GB
2

· AH2

AFG +BJ 2
,

b3 =
BJ
A

· AH2

AFG +BJ 2
, (5.3.19)
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and

V = 2H

[
r2b2

√
B

A

(√
A/B

r2H

)′]′
− 2H

r2
. (5.3.20)

From this Lagrangian, the equation of motion is given by

b1χ̈−
√
A/B

r2

(
r2
√
B

A
b2χ

′

)′

+
b3
2
χ̇′

+

√
A/B

2r2

(
r2
√
B

A
b3χ̇

)′

+

[
ℓ(ℓ+ 1)

2

H
r2

+
V

2

]
χ = 0. (5.3.21)

At this stage, it can be seen from the Lagrangian (5.3.18) that we need to impose

H > 0, (5.3.22)

as otherwise modes with large ℓ would have large negative energy and make the

system unstable quickly.

One notices that Eq. (5.3.21) can be written in the form

HΩ2ZµνDµDνχ− V χ = 0, (5.3.23)

where Zµν is the inverse of the effective metric Zµν [55],

Zµνdx
µdxν = Ω2

(
−G
H
Adt2 − 2J

H
dtdr +

F
H

dr2

B
+ r2dσ2

)
, (5.3.24)

with

Ω2 :=
B

A

H2√
FG + (B/A)J 2

, (5.3.25)

and Dµ is the covariant derivative compatible with the effective metric Zµν . Note

here that the metric perturbations have already been expanded in terms of the

spherical harmonics and hence the spherical Laplacian in ZµνDµDν must be replaced

with its eigenvalue −ℓ(ℓ+ 1). Note also that

ζ2(r) := FG +
B

A
J 2 > 0 (5.3.26)

must be imposed in order for the effective metric to be well-defined. It is easy to

see that one has Zµν = M2
Plgµν in general relativity, where F = G = H = M2

Pl and

J = 0. However, Zµν may not be proportional to gµν in modified gravity. This fact

itself has already been known in the context of the Horndeski theory [56, 57, 58].
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We introduce a new time coordinate τ defined by

dτ = dt+
J
AG

dr. (5.3.27)

Using τ , the effective metric (5.3.24) can be written in a diagonal form as

Zµνdx
µdxν = Ω2

(
−G
H
Adτ 2 +

ζ2

GH
dr2

B
+ r2dσ2

)
. (5.3.28)

It is sometimes more convenient to work in the conformally related effective

metric Z̃µν defined as

Z̃µν = Ω−2Zµν . (5.3.29)

In the tilded frame, Eq. (5.3.23) is written as

Z̃µνD̃µD̃ν

(
χ̃

r

)
−

[
V

H
+
Z̃µνD̃µD̃νΩ

Ω

]
χ̃

r
= 0, (5.3.30)

where χ̃ := Ωrχ and D̃µ is the covariant derivative operator defined in terms of a

connection compatible with Z̃µν .

Defining the generalized tortoise coordinate by

dr∗ =
ζ

G
√
AB

dr, (5.3.31)

Eq. (5.3.30) can further be rewritten in a more familiar form as(
−∂2τ + ∂2r∗ − Ṽ

)
χ̃ = 0, (5.3.32)

where

Ṽ =
GA
H

{
(ℓ+ 2)(ℓ− 1)

r2
+ Ωr

[
G
√
AB

ζ

(
1

rζ1/2

)′
]′}

. (5.3.33)

This generalizes the Regge-Wheeler equation known in general relativity [59] to

higher-order scalar-tensor theories. In Appendix B, we extend the main result of this

section to include the energy-momentum tensor of matter and derive the generalized

Regge-Wheeler equation with a matter source term

So far we have focused on the modes with ℓ ≥ 2. The dipole (ℓ = 1) mode

must be treated separately, but here we only comment that the dipole perturbation

corresponds to adding a slow rotation, as has been already discussed in detail in the

previous literature [60, 32, 33, 52].
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5.3.2 Propagation Speed

In theories described by the action (5.1.1), the propagation speed of GWs differs in

general from the speed of light. In light of the constraint from GW170817 [61, 62, 63],

let us identify the subclass of scalar-tensor theories that admits a luminal speed of

GWs at least at large r. This weak requirement was also employed in Ref. [51] (see,

however, Refs. [64, 65]).

We assume that the background is given by

A = 1 +O(r−1), B = 1 +O(r−1),

ψ′ = ψ′
∞ +O(r−1), (5.3.34)

for large r, where ψ′
∞ is a constant. We then find

F = 2
[
F2(X∞) + µ2A1(X∞)

]
+O(r−1), (5.3.35)

G = 2
[
F2(X∞)− (ψ′

∞)2A1(X∞)
]
+O(r−1), (5.3.36)

H = 2 [F2(X∞) + 2X∞A1(X∞)] +O(r−1), (5.3.37)

J = −2µψ′
∞A1(X∞) +O(r−1), (5.3.38)

where X∞ := [µ2 − (ψ′
∞)2]/2. Thus, if one has

A1(X∞) = 0, (5.3.39)

Eq. (5.3.32) reduces to [−∂2t + ∂2r − ℓ(ℓ+ 1)/r2]χ̃ ≃ 0 for large r, rendering luminal

propagation of GWs sufficiently away from a black hole. Note that F3 and BI appear

only in the O(r−1) terms in Eqs. (5.3.35)–(5.3.38).

5.3.3 Horizons for Photons and Gravitons

Suppose that rh is the location of the horizon in the metric gµν and the metric

components are expanded as

A(r) =
∑
n=1

αnϵ
n, B(r) =

∑
n=1

βnϵ
n, (5.3.40)

where ϵ := r/rh − 1 > 0. We assume that X is regular at the horizon, so that X is

of the form

X = Xh +
∑
n=1

Xnϵ
n. (5.3.41)
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Accordingly, one has

ψ′ =
µ√
α1β1

1

ϵ
+
∑
n=0

γnϵ
n. (5.3.42)

Note that ψ′ diverges as r → rh, but this is not problematic. See the comment below

Eq. (5.2.4). Substituting Eqs. (5.3.40)–(5.3.42) to Eqs. (5.3.8)–(5.3.11), we find, in

the vicinity of the horizon,

F = −d0
ϵ
− d1 +O(ϵ), G =

d0
ϵ
+ d2 +O(ϵ),

H = d3 +O(ϵ),

√
B

A
J =

d0
ϵ
+
d1 + d2

2
+O(ϵ), (5.3.43)

and hence ζ = const +O(ϵ), where

d0 = −2µ2

α1

A1(Xh) +
2µ

rh

√
β1
α3
1

[
(α1Xh − 2µ2)B2(Xh)

− 3µ2B3(Xh) + µ2X1B6(Xh)
]
, (5.3.44)

while the explicit expressions for d1, d2, and d3 are more involved. Hereafter we will

consider the case where d0 is nonvanishing. Thus, at r ≃ rh,

Ω ≃ const, Z̃ττ ≃ const, Z̃rr ≃ const, (5.3.45)

which shows that nothing special happens in the effective metric at the horizon of

the metric gµν . In particular, this fact implies that r = rh is not an appropriate

place to impose the inner boundary conditions when solving the Regge-Wheeler

equation (5.3.32). Rather, the form of the effective metric implies that a possible

appropriate boundary will be r = rg, where G(rg) = 0. To see this more explicitly,

let us study some concrete examples.

The first example is given by the special case of the solution in Sec. 5.2, with

A1(X0) ̸= 0 and B1(X0) = 0. Essentially the same solution is also studied in

Ref. [52]. This does not satisfy Eq. (5.3.39), but is a good illustrative example. We

have

G = 2F2(X0) ·
1− rg/r

1− rh/r
, H = 2F2(X0)(1 +A), (5.3.46)

where

rg := (1 +A)rh, A :=
2X0A1(X0)

F2(X0)
, (5.3.47)
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and we assume that F2(X0) > 0 and 1 + A > 0. The conformal factor is a non-

vanishing constant, Ω2 = 2F2(X0)(1 + A)3/2, and the components of the (tilded)

effective metric are given by

Z̃ττ = −1− rg/r

1 +A
, Z̃rr =

1

1− rg/r
, (5.3.48)

which shows that the horizon of the effective metric is at r = rg ( ̸= rh). In this case,

the generalized tortoise coordinate is given by r∗ = (1 + A)1/2[r + rg ln(r/rg − 1)]

and the potential in Eq. (5.3.32) reads

Ṽ =
1− rg/r

1 +A

[
ℓ(ℓ+ 1)

r2
− 3rg

r3

]
. (5.3.49)

Aside from the constant factor of (1 + A)−1, this coincides with the well-known

potential in the Regge-Wheeler equation in general relativity with the horizon at

r = rg.

In this example, G is singular at r = rh. One also notices that G < 0 for

rg < r < rh if A < 0. However, the effective metric and the potential do not depend

on rh explicitly and are free from any pathologies. In particular, the sign of G does

not directly related to the stability of the solution. Indeed, it is now clear that the

above solution is stable provided that F2(X0) > 0 and 1 +A > 0 are satisfied.

The second example is again the special case of the solution in Sec. 5.2, but now

with A1(X0) = 0 and B1(X0) ̸= 0. In this case, we have

G = 2F2(X0) ·
f(r)

1− rh/r
, H = 2F2(X0), (5.3.50)

where

f(r) = 1− rh
r

+ B
(rh
r

)5/2
, B :=

81

2

µ3

rh

B1(X0)

F2(X0)
. (5.3.51)

The conformal factor is given by

Ω2 =
2F2(X0)

g1/2(r)
, (5.3.52)

and the (tilded) effective metric reduces to

Z̃ττ = −f(r), Z̃rr =
g(r)

f(r)
, (5.3.53)

where

g(r) =1− B
(rh
r

)3/2
. (5.3.54)
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Figure 5.1: Potential Ṽ with ℓ = 2 as a function of r/rh.

We see that the horizon of the effective metric is at r = rg ̸= rh, where f(rg) = 0.

Let us investigate the structure of the effective metric (5.3.53) in more detail.

For B > 6/25(
√

3/5) (≃ 0.186), f has no zeros, while g = 0 at r = B2/3rh. We are

not interested in this case. For 0 < B ≤ 6/25(
√

3/5), we have f = 0 at r = rg < rh.

In this case, g remains positive outside the horizon of the effective metric, but g = 0

occurs at r = B2/3rh < rg. Finally, for B < 0, we have f = 0 at r = rg > rh and

g is always positive for r > 0. Therefore, in the latter two cases the solution has

an outer horizon of the effective metric at r = rg. It is straightforward to write the

potential Ṽ , but the expression is messy. The shape of the potential is shown for

different values of B in Fig. 5.1. One can check that r∗ → −∞ as r → rg.
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Figure 5.2: Lowest overtone quasi-normal frequencies for ℓ = 2 and some represen-

tative values of B.

5.4 Quasi-Normal Modes

In this section, we compute the QMNs for the second example of the previous section.

First, we perform the Fourier transformation as

χ̃ =

∫ ∞

−∞
dωQ(r)e−iωτ , (5.4.1)

and the master equation becomes

d2Q

dr2∗
+
[
ω2 − Ṽ (r)

]
Q = 0. (5.4.2)

where the effective potential Ṽ (r) is given by (5.3.33) and (5.3.50). We have to solve

this equation with the boundary conditions which are given by

Q ∝

e−iωr∗ r∗ → −∞ (r → rg)

e+iωr∗ r∗ → ∞ (r → ∞).
(5.4.3)

Note that we should impose the inner boundary condition at the horizon for gravi-

tons r = rg rather than for that of photons r = rh = 1. We solve the master

equation (5.4.2) by the direct integration method. In a direct integration method,
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we first expand the master variable as

Q =


Q1(r) ≡ H(r)e−iωr∗ =

N∑
i=0

Hi(r − rg)
ie−iωr∗ r → rg

Q2(r) ≡ G(r)e+iωr∗ =
N∑
i=0

Gi
1
ri
e+iωr∗ r → ∞.

(5.4.4)

Then we substitute the series (5.4.4) into the master equation and obtain

a0 + a1(r − rg) + a2(r − rg)
2 + · · · = 0 (5.4.5)

Here, ai are written by the ω and Hi. For example, a1 can be written by ω,H0 and

H1, and a2 can be written by ω,H0, H1 and H2. We solve the (5.4.5) order by order

in r − rg. From the linear order, we can write the H1 in terms of ω and H0, i.e.,

H1 = H1(ω,H0). Similarly, from the quadratic order, we can also write the H2 in

terms of ω,H1 and H0, i.e. H2 = H2(ω,H1, H0). Substitute the H1 = H1(ω,H0)

into the H2, we can write the H2 in terms of ω and H0. Finally, we choose H0 = 1

just for normalization. Then we can express the all Hi in terms of only the one

variable, ω. Similarly, we can also express all Gi in terms of ω.

Next, we perform numerical integration. We use these two solutions for comput-

ing the boundary condition numerically. We solve the master equation numerically

from the near horizon, r = rg + ϵ, to the some intermediate radius, r = rm. For this

purpose, we use the series solution, Q1(r), to determine the boundary condition at

r = rg + ϵ numerically. Using the solution Q1(r), we can calculate the numerical

value of the solution at the near horizon, Q1(rg+ ϵ), and its derivative, ∂rQ1(rg+ ϵ).

Then we can solve the master equation numerically with these boundary conditions

and obtain the solution purely ingoing at the near horizon. We perform a similar

procedure for Q2(r). We use the series solution Q2(r) and its derivative ∂rQ2(r)

to find the numerical value at some sufficiently large radius, r = rinf . We solve

the master equation numerically with this boundary condition at r = rinf and ob-

tain the solution purely outgoing at infinity. Now, we have two solutions. One is

purely ingoing at the near horizon but not purely outgoing at infinity, and another is

purely outgoing at infinity but not purely ingoing at the near horizon. For a general

value of ω, these two solutions do not coincide. Therefore, they cannot satisfy the

boundary conditions for QNMs. On the other hand, for some particular values of ω,

these two solutions can be the same solution and satisfy the boundary condition for

QNMs (5.4.3). In order to satisfy the boundary conditions for QNMs, we demand

that these two solutions coincide each other. Hence we impose that the Wronskian
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becomes zero at some intermediate radius rm, i.e.,

W [Q1(rm), Q2(rm)] ≡

∣∣∣∣∣ Q1(rm) Q2(rm)

∂rQ1(rm) ∂rQ2(rm)

∣∣∣∣∣ = 0. (5.4.6)

From this constraint, we can find the value of QNM frequencies.

We compute the lowest overtone quasinormal frequencies for ℓ = 2, and the

result is Fig. 5.2. This figure shows how the frequencies depend on the theory

parameter B. In the calculation, we choose some values, which are required to

perform numerical computation, as ϵ = 10−4, rinf = 15rg and rm = 2rg. We confirm

that our results do not change even if we use other values of these parameters. The

fundamental frequency at B = 0 in this code, which corresponds to GR, agrees with

the well-known fundamental frequency of GR to at least the first four digits. The

Mathematica notebook we used to compute the QNMs can be available in [66].



Chapter 6

GWs propagating in an

inhomogeneous universe

In this chapter, we study the propagation of GWs in spatially covariant theory. In

particular, we investigate the propagation of GWs in an inhomogeneous universe

using the effective metric for the gravitons. We put severe constraints on the coef-

ficients in the spatially covariant theory.

6.1 Propagation of GWs in a homogeneous and

isotropic universe

In this section, we review the propagation of GWs in the spatially covariant theory

according to [12]. The action of spatially covariant theory is given by (2.3.1). From

the observation of the coalescence of binary neutron stars, the propagation speed of

GWs is constrained as [61, 63]

−3× 10−15 ≤ cT − 1 ≤ 7× 10−16, (6.1.1)

at the redshift z ≤ 0.009 and the frequency f ∼ 10 − 100Hz. We can use this

constraint to test the spatially covariant theory. For this purpose, we perform cos-

mological perturbations and investigate how GWs propagate in the universe. While

the real universe has some inhomogeneity caused by the galaxies, we consider the

propagation of GWs in a homogeneous and isotropic universe as a first approxima-

tion. Thus we use the metric of flat FLRW spacetime

ds2 = −dt2 + a2(t) (δij + hij) dx
idxj, (6.1.2)

52
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where hij is transverse-traceless tensor perturbations with δ
ijhij = 0 and δij∂ihjk =

0.

In order to derive the quadratic Lagrangian, we have to specify the concrete

form of the Lagrangian. Here we classify terms by the order of differentiation and

consider terms up to the fourth order of derivatives which are listed in Table 6.1.
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d (dt, ds) Operators

0 (0,0) 1

1 (1,0) K

(0,1) no terms

2 (2,0) KijK
ij, K2

(1,1) no terms

(0,2) R

3 (3,0) KijK
jkKi

k, KijK
ijK, K3

(2,1) εijkK
i
l∇jKkl

(1,2) ∇i∇jKij, ∇2K, RijKij, RK

(0,3) no terms

4 (4,0) KijK
jkKi

kK, (KijK
ij)

2
, KijK

ijK2, K4

(3,1) εijk∇mK
i
nK

jmKkn, εijk∇iKj
mK

k
nK

mn, εijk∇iKj
lK

klK

(2,2) ∇kKij∇kKij, ∇iKjk∇kKij, ∇iK
ij∇kK

k
j , ∇iK

ij∇jKij

∇iK∇iK, RijK
i
kK

jk, RKijK
ij, RijK

ijK, RK2

(1,3) εijkR
il∇jKk

l , εijk∇iRj
lK

kl

(0,4) ∇i∇jRij, ∇2R, RijR
ij, R2

Table 6.1: The terms which can be contained in Lagrangian up to the fourth order

of derivatives [12]. d means an order of derivatives in each term. dt and ds are time

and spatial derivatives respectively.

Then we write the action as

S =

∫
dt d3xN

√
γ
(
L(0) + L(1) + L(2) + L(3) + L(4)

)
. (6.1.3)

Here, L(d) means the total order of derivatives where d = dt + ds with dt the order

of time derivatives and ds the order of spatial derivatives. We consider all possible

terms up to the fourth order of derivatives such as

L(0) = c
(0,0)
1 , (6.1.4)

L(1) = c
(1,0)
1 K, (6.1.5)

and

L(2) = c
(2,0)
1 KijK

ij + c
(2,0)
2 K2 + c

(0,2)
1 R, (6.1.6)

etc. The coefficients ci are arbitrary functions of the time and the lapse

c
(0,0)
1 = c

(0,0)
1 (t, N). (6.1.7)
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Substituting the metric (6.1.2) into the action, we obtain the quadratic action for

the tensor perturbation

S2 =

∫
dt d3x

a3

2

(
G0(t)ḣijḣ

ij + G1(t)ϵ
ijkḣli

1

a
∂jḣ

l
k

− G2(t)ḣij
∆

a2
ḣij +W0(t)hij

∆

a2
hij

+W1(t)ϵ
ijkhli

1

a

∆

a2
∂jh

l
k −W2(t)hij

∆2

a4
hij
)
,

(6.1.8)

where Gi and Wi are given by

G0(t) =
1

2

[
c
(2,0)
1 + 3

(
c
(3,0)
1 + c

(3,0)
2

)
H + 3

(
3c

(4,0)
1 + 2c

(4,0)
2 + 3c

(4,0)
3

)
H2
]
,

G1(t) =
1

2

[
c
(2,1)
1 −

(
c
(3,1)
1 − 2c

(3,1)
2 − 3c

(3,1)
3

)
H
]
,

G2(t) =
1

2
c
(2,2)
1 ,

W0(t) =
1

4

[
2c

(0,2)
1 + ∂tc

(1,2)
3 +

(
3c

(1,2)
3 + 6c

(1,2)
4 + 2∂tc

(2,2)
6 + 3∂tc

(2,2)
8

)
H

+
(
4c

(2,2)
6 + 6c

(2,2)
7 + 9c

(2,2)
8 + 18c

(2,2)
9

)
H2 +

(
2c

(2,2)
6 + 3c

(2,2)
8

)
Ḣ
]
,

W1(t) =
1

4
∂t

(
c
(1,3)
1 + c

(1,3)
2

)
,

W2(t) =− 1

2
c
(0,4)
3 ,

(6.1.9)

with ∆ = δij∂i∂j. We define the Fourier component of hij(t,x) as

hij(t,x) =

∫
d3k

(2π)3

∑
s=±2

h(s)(t,k)e
(s)
ij (k̂)e

−ik·x, (6.1.10)

with k̂ = k/|k|. Here e(s)ij (k̂) is the polarization tensor satisfying

δije
(s)
ij (k̂) = kie

(s)
ij (k̂) = 0, (6.1.11)

and

e
(s)∗
ij (k̂) = e

(−s)
ij (k̂) = e

(s)
ij (−k̂), (6.1.12)

where the asterisk is the complex conjugate. We suppose that the two polarization

tensors are normalized by

e
(s)
ij (k̂)e

(−s′)ij(k̂) = δss
′
. (6.1.13)
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Using these equations, the quadratic action in Fourier space is given by

S2 =

∫
dτ

d3k

(2π)3
a2

2

∑
s=±2

G(s)(τ, k)

(
∂τh

(s)(τ,k)∂τh
(s)(τ,−k),

− k2
W (s)(τ, k)

G(s)(τ, k)
h(s)(τ,k)h(s)(τ,−k)

)
. (6.1.14)

Here we use the conformal time τ defined by dt = adτ and G(s)(τ, k) and W (s)(τ, k)

are given by

G(s)(τ, k) =
∑
n=0

Gn(τ)
(
s

2

k

a

)n
(6.1.15)

W (s)(τ, k) =
∑
n=0

Wn(τ)

(
s

2

k

a

)n
. (6.1.16)

From the (6.1.14), the propagation speed of two tensor modes are given by

(
c
(s)
T

)2
≡ W (s)

G(s)
=

W0(t) +W1(t)
s
2
k
a
+W2(t)

k2

a2

G0(t) + G1(t)
s
2
k
a
+ G2(t)

k2

a2

. (6.1.17)

From this equation, in order for both polarization modes of GWs to propagate with

the speed of light, we require

Wi = Gi, (i = 0, 1, 2.), (6.1.18)

with any value of H(t). From these requirements, we obtain 7 constraints

c
(2,0)
1 − c

(0,2)
1 − 1

2
∂tc

(1,2)
3 = 0,

6c
(3,0)
1 + 6c

(3,0)
2 − 3c

(1,2)
3 − 6c

(1,2)
4 − 2∂tc

(2,2)
6 − 3∂tc

(2,2)
8 = 0,

18c
(4,0)
1 + 12c

(4,0)
2 + 18c

(4,0)
3 − 4c

(2,2)
6 − 6c

(2,2)
7 − 9c

(2,2)
8 − 18c

(2,2)
9 = 0,

2c
(2,2)
6 + 3c

(2,2)
8 = 0,

c
(2,1)
1 − 1

2
∂t

(
c
(1,3)
1 + c

(1,3)
2

)
= 0,

c
(3,1)
1 − 2c

(3,1)
2 − 3c

(3,1)
3 = 0,

c
(2,2)
1 + c

(0,4)
3 = 0,

(6.1.19)
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and by solving these constraints, we can remove 7 coefficients:

c
(0,2)
1 = c

(2,0)
1 − 1

2
∂tc

(1,2)
3 ,

c
(2,1)
1 =

1

2
∂t

(
c
(1,3)
1 + c

(1,3)
2

)
,

c
(1,2)
4 = c

(3,0)
1 + c

(3,0)
2 − 1

2
c
(1,2)
3 ,

c
(3,1)
3 =

1

3

(
c
(3,1)
1 − 2c

(3,1)
2

)
,

c
(2,2)
8 = −2

3
c
(2,2)
6 ,

c
(2,2)
9 =

1

9

(
9c

(4,0)
1 + 6c

(4,0)
2 + 9c

(4,0)
3 + c

(2,2)
6 − 3c

(2,2)
7

)
,

c
(0,4)
3 = −c(2,2)1 .

(6.1.20)

Note that while there are 21 arbitrary coefficients in the original action (6.1.3),

we have 21-7=14 coefficients after imposing the constraints. Substituting the con-

straints (6.1.20) into the original action (6.1.3), we obtain the theory with cT = 1

which is given by

ScT=1
=

∫
dt d3xN

√
γ
(
L(0) + L(1) + L̃(2) + L̃(3) + L̃(4)

)
, (6.1.21)

with

L̃(2) = c
(2,0)
1

(
KijK

ij +R
)
+ c

(2,0)
2 K2, (6.1.22)

L̃(3) =c
(3,0)
1

(
KijK

jkKi
k +RK

)
+ c

(3,0)
2

(
KijK

ij +R
)
K,

+ c
(3,0)
3 K3 + c

(1,2)
1 ∇i∇jKij + c

(1,2)
2 ∇2K,

+ c
(1,2)
3 GijKij −

1

2N
∂tc

(1,2)
3 R,

(6.1.23)
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and

L̃(4) =c
(4,0)
1

(
KijK

jkKi
k +RK

)
K + c

(4,0)
2

((
KijK

ij
)2

+
2

3
RK2

)
+ c

(4,0)
3

(
KijK

ij +R
)
K2 + c

(4,0)
4 K4,

+ c
(3,1)
1 εijk

(
∇mK

i
nK

jmKkn +
1

3
∇iKj

lK
klK

)
+ c

(3,1)
2 εijk

(
∇iKj

mK
k
nK

mn − 2

3
∇iKj

lK
klK

)
,

+ c
(2,2)
1

(
∇kKij∇kKij −RijR

ij
)
+ c

(2,2)
2 ∇iKjk∇kKij

+ c
(2,2)
3 ∇iK

ij∇kK
k
j + c

(2,2)
4 ∇iK

ij∇jK,+c
(2,2)
5 ∇iK∇iK

+ c
(2,2)
6 Rij

(
Ki
kK

jk − 2

3
KijK +

1

9
hijK2

)
+ c

(2,2)
7 R

(
KijK

ij − 1

3
K2

)
,

+ c
(1,3)
1 εijkR

il∇jKk
l + c

(1,3)
2 εijk∇iRj

lK
kl +

1

2N
∂t

(
c
(1,3)
1 + c

(1,3)
2

)
εijkK

i
l∇jKkl,

+ c
(0,4)
1 ∇i∇jRij + c

(0,4)
2 ∇2R + c

(0,4)
4 R2.

(6.1.24)

In the next subsection, we use the subclass of this theory to study GWs propagating

in an inhomogeneous universe.

6.2 Propagation of GWs in an inhomogeneous uni-

verse

In this section, we study the propagation of GWs in an inhomogeneous universe. In

the previous subsection, we obtain the subclass of spatially covariant theory (6.1.21)

with cT = 1 in a homogeneous and isotropic universe. Although the constraint cT =

1 in a homogeneous and isotropic universe is efficient to restrict several coefficients,

we can further restrict the theory (6.1.21) by taking into account the inhomogeneities

of the universe.

The effect of inhomogeneities on the propagation speed of GWs was also studied

in [67, 68]. In [67], the authors proposed a theory that can evade the constraints on

the propagation speed of GWs. In this theory, the difference between the speeds of

GWs and light is proportional to the equation of motion of the scalar field, which

allows evading the constraint. However, if we take into account inhomogeneities

on the scale of ∼ 100Mpc, it affects the speed of GWs and the difference becomes

|cT − 1| ∼ 10−3. This completely contradicts the observational constraint (6.1.1).
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Therefore this theory is severely constrained by considering the effect of inhomo-

geneities on the propagation of GWs. In [68], the authors considered the effective

field theory of dark energy and proposed a broader class of theories than in the

previous work, in which the speed of GWs equals the speed of light. However, inho-

mogeneities affect the speed of GWs and all of these theories are severely constrained

as well as the previous study. These studies show that investigating the propagation

of GWs in an inhomogeneous universe enables us to severely constrain theories of

gravity. In the following, we will consider how the propagation speed of GWs is

affected by inhomogeneities and will put the constraint on the spatially covariant

theory proposed in [12].

We consider the action given by

S =

∫
dtdx3N

√
γ
(
L(2) + L(3) + L(4)

)
, (6.2.1)

L(2) = c
(2,0)
1

(
KijK

ij +R
)
, (6.2.2)

L(3) = c
(3,0)
1

(
Ki
jK

j
lK

l
i +RK

)
+ c

(3,0)
2

(
KijK

ij +R
)
K, (6.2.3)

L(4) = c
(4,0)
1

(
Ki
jK

j
lK

l
i +RK

)
K + c

(4,0)
2

((
KijK

ij
)2

+
2

3
RK2

)
+ c

(4,0)
3

(
KijK

ij +R
)
K2.

(6.2.4)

This theory is the subclass of the theory (6.1.21). This action consists of only the

terms which affect the propagation of GWs in a homogeneous and isotropic universe.

Now we study the propagation of GWs in a slightly inhomogeneous universe.

In this case, we take into account inhomogeneity as the perturbation around the

homogeneous universe. We consider the perturbations in comoving gauge. The

metric is given by,

ds2 = gµνdx
µdxν = −N2dt2 + γij

(
dxi +N idt

) (
dxj +N jdt

)
, (6.2.5)

where

N = 1 + α, Ni = ∂iχ, γij = e2ζ
(
eh
)
ij
= e2ζ

(
δij + hij +

1

2
hikh

k
j + · · ·

)
.

(6.2.6)

Here, α, χ and ζ are the scalar perturbations and hij is the tensor perturbation with

δijhij = 0 and δij∂ihjk = 0. We expand the action up to (scalar)×(tensor)×(tensor)
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order since the effects of the inhomogeneity in propagation appear in this order. We

denote (scalar) × (tensor) × (tensor) order as shh just for simplicity. Note that we

can recognize this metric as

gµνdx
µdxν =

(
gµν + hµν

)
dxµdxν

=− (1 + 2α)dt2 + 2∂iχdtdx
i + a2 (1 + 2ζ) (δij + hij) dx

idxj. (6.2.7)

Here, gµν is background metric which contains only the scalar perturbations, and hµν

is the tensor perturbations. In order to study the propagation of GWs, we expand

the action up to quadratic order of hij using this metric. Since the background

metric has linear terms of the scalar perturbations, the quadratic action for hij

becomes the order of shh.

After the expansion, the Lagrangian becomes

Sshh =

∫
dtdx3

(
L
(2)
shh + L

(3)
shh + L

(4)
shh

)
. (6.2.8)

Here L
(2)
shh, L

(3)
shh and L

(4)
shh are given as follows.

L
(2)
shh =

a3

4
c
(2,0)
1 eδΩ

(2,0)
1

[
(1− α + 3ζ) ḣ2ij − 2a−2∂iχḣjk∂ihjk − a−2 (1 + α + ζ) (∂khij)

2
]
,

(6.2.9)

with

δΩ
(2,0)
1 ≡

c
(2,0)
1,N

c
(2,0)
1

α, c
(2,0)
1,N ≡ ∂c

(2,0)
1

∂N
. (6.2.10)

L
(3)
shh =

∑
A=1,2

L
(3)
Ashh, (6.2.11)

with

L
(3)
1shh =

3

4
a3Hc

(3,0)
1 eδΩ

(3,0)
1

[
(1− α + 3ζ) ḣ2ij − 2a−2∂iχḣjk∂ihjk − a−2 (1 + α + ζ) (∂khij)

2
]

− 3

4
ac

(3,0)
1 χ̃ijḣikḣjk, (6.2.12)

and

L
(3)
2shh =

3

4
a3Hc

(3,0)
2 eδΩ

(3,0)
2

[
(1− α + 3ζ) ḣ2ij − 2a−2∂iχḣjk∂ihjk − a−2 (1 + α + ζ) (∂khij)

2
]
,

(6.2.13)
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with

χ̃ij :=∂i∂jχ− 1

3
∂2χδij, (6.2.14)

δΩ
(3,0)
A :=− α +

c
(3,0)
A,N

c
(3,0)
A

α− ζ̇

H
+

∂2χ

3a2H
. (6.2.15)

L
(4)
shh =

∑
A=1,2,3

L
(4)
Ashh, (6.2.16)

with

L
(4)
1shh =

9

4
a3Hc

(4,0)
1 eδΩ

(4,0)
1

[
(1− α + 3ζ) ḣ2ij − 2a−2∂iχḣjk∂ihjk − a−2 (1 + α + ζ) (∂khij)

2
]

− 9

4
ac

(4,0)
1 χ̃ijḣikḣjk, (6.2.17)

and

L
(4)
2shh =

3

2
a3Hc

(4,0)
2 eδΩ

(4,0)
2

[
(1− α + 3ζ) ḣ2ij − 2a−2∂iχḣjk∂ihjk − a−2 (1 + α + ζ) (∂khij)

2
]
,

(6.2.18)

and

L
(4)
3shh =

9

4
a3Hc

(4,0)
3 eδΩ

(4,0)
3

[
(1− α + 3ζ) ḣ2ij − 2a−2∂iχḣjk∂ihjk − a−2 (1 + α + ζ) (∂khij)

2
]

(6.2.19)

with

δΩ
(4,0)
A := −2α +

c
(4,0)
A,N

c
(4,0)
A

α +
2ζ̇

H
− 2∂2χ

3a2H
. (6.2.20)

Now we will define the effective metric for the tensor modes and consider their

propagation. Temporarily, we focus on (6.2.9) for simplicity. Using the components

of the background metric√
−gg00 = −a3 (1− α + 3ζ) ,

√
−gg0i = a∂iχ,

√
−ggij = a (1 + α + ζ) δij,

(6.2.21)

we can rewrite this Lagrangian as

L
(2)
shh =

1

4
c
(2,0)
1 eδΩ

(2,0)
1 gµν∂µhij∂νhij =: Zµν∂µhij∂νhij. (6.2.22)
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Here we define the effective metric Zµν which determines the propagation of GWs.

For this Lagrangian, the effective metric is given by

Zµν =
1

4
c
(2,0)
1 eδΩ

(2,0)
1 gµν . (6.2.23)

Therefore the effective metric is conformal to the background metric. This result

shows that the terms contained in L(2) do not change the propagation speed of GWs

even in an inhomogeneous universe. We can perform a similar calculation for L(3)

and L(4). For the terms with coefficients c
(3,0)
2 , c

(4,0)
2 and c4,03 , the effective metric

become also conformal to the background metric. Hence we find that these terms

do not change the speed of GWs in an inhomogeneous universe.

On the other hand, we find that the terms with coefficients c
(3,0)
1 and c

(4,0)
1 affect

the speed of GWs in an inhomogeneous universe and the speed will be different from

that of light. The first line of (6.2.12) and (6.2.17) is conformal to the background

metric. However, because of the second line of (6.2.12) and (6.2.17), the effective

metric is not conformal to the background metric. As a result, we can very strictly

restrict these coefficients c
(3,0)
1 and c

(4,0)
1 to evade the observational constraint of

GW170817/GRB170817A (6.1.1) even in an inhomogeneous universe. We will con-

tinue a similar investigation for the terms which contain higher spatial derivatives.



Chapter 7

Conclusions

In this thesis, we have studied black hole perturbations and cosmological pertur-

bations in modified theories of gravity. In particular, we have studied black hole

perturbations in shift symmetric higher-order scalar-tensor theories. Also, we have

investigated the stability of the background black hole solution and computed the

quasinormal mode of a black hole. Finally, we have studied cosmological perturba-

tion in an inhomogeneous universe in spatially covariant theories.

In chapter 2, we have reviewed the modified theories of gravity. According to

Ostrogradsky’s theorem, the equations of motion have to be up to a second-order

differential equation. Horndeski theory is the most general scalar-tensor theory

whose equations of motion become up to second order. DHOST theory contains

higher derivative terms in the Lagrangian but its equations of motion become up to

second order by imposing the degeneracy condition.

In chapter 3, we have reviewed the formalism of black hole perturbations in

general relativity. Black hole perturbations can be decomposed into odd and even

parity perturbations which describe the odd and even parity mode of GWs. We have

derived the master equations for odd mode, the Regge-Wheeler equation, and for

even mode, the Zerilli equation. We have explained that we can test gravity from

the ringdown GWs which are characterized by quasinormal mode of black holes.

In chapter 4, we have explained black hole solutions in shift-symmetric scalar-

tensor theories. The no-hair theorem implies that most subclass of Horndeski the-

ories cannot have scalar hair. However, if the scalar field depends on time, black

holes can have scalar hair.

In chapter 5, we have studied odd parity perturbations of black holes with lin-

early time-dependent scalar hair in shift-symmetric scalar-tensor theories. Although
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we do not impose the degeneracy conditions, the resultant quadratic Lagrangian for

the odd parity mode of metric perturbations does not contain higher-order deriva-

tives and avoids the Ostrogradsky ghost. Then, we have derived the generalized

Regge-Wheeler equations and have defined the effective metric which determines

the causal structure of the odd parity mode of GWs. We have defined the horizon

for gravitons from the component of the effective metric and have found that the

ordinary horizon (for photons) is nothing special for gravitons. Finally, we have con-

sidered two concrete examples and have computed QNMs for the second example.

We have found that the signal of the discrepancy between these two horizons can

be observed from the quasinormal frequencies.

In chapter 6, we have studied the effect of inhomogeneities on the speed of prop-

agation of GWs. We reviewed the spatially covariant theory of gravity, which can

contain a wide class of theories even though the theories have the symmetry of the

four-dimensional diffeomorphism, e.g., the Horndeski theory. We also reviewed the

propagation of GWs in a homogeneous and isotropic universe in spatially covariant

theory. We required that the propagation speed of GWs is equal to that of light in

a homogeneous and isotropic universe, and obtained the constraints on some coef-

ficients in the theory. We have studied how GWs propagate in an inhomogeneous

universe in this obtained theory. We have shown that some coefficients in this theory

change the propagation speed of GWs. In order to be consistent with the observa-

tion GW170817/GRB170817A, these coefficients must be very small with respect

to other coefficients. Thus we have put some severe constraints on the spatially

covariant theory.
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Appendix A

Generality of the Quadratic

Lagrangian

Starting from the action (5.1.1), we have shown in the main text that the quadratic

Lagrangian for the odd parity mode is given by Eq. (5.3.7). Actually, one can show

that more general scalar-tensor theories lead to the quadratic Lagrangian for the

odd parity modes having the same structure as Eq. (5.3.7) as long as the equation

of motion for gravitational-wave degrees of freedom remains of second order.

For example, one may add to the action (5.1.1)

F̃3(X)R2ϕ, (A.0.1)

to consider a general derivative coupling of the form F3Gµνϕ
µν+F̃3R2ϕ = F3Rµνϕ

µν+

(F̃3 − F3/2)R2ϕ. This only shifts the coefficients as

F ,G,H → F ,G,H +

[
Bψ′

r
− (AX)′

Aψ′

]
F̃3, (A.0.2)

J → J , (A.0.3)

and does not give rise to any new terms in Eq. (5.3.7).

Similarly, one may also add terms quartic in second derivatives of ϕ such as

C1(X)ϕµνϕ
νρϕρλϕ

λµ, C2(X)(2ϕ)4, · · · . (A.0.4)

One can verify by direct computation that such quartic terms merely shift the co-

efficients without altering the structure of the Lagrangian (5.3.7) or have no contri-

bution to the odd parity sector.

We thus conclude that the form of the Lagrangian (5.3.7) is generic to scalar-

tensor theories in which gravitational-wave degrees of freedom obey a second-order

equation of motion.
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Appendix B

Sourced Regge-Wheeler Equation

In this appendix, we generalize our main result to include the source term, which

has not been considered in the previous similar studies [60, 32, 33, 52]. Assuming

that matter is minimally coupled to gravity, the source term can be obtained from

Ssource =
1

2

∫
d4x
√
−ghµνTµν , (B.0.1)

where Tµν is the matter energy-momentum tensor. Similarly to the metric pertur-

bations, the odd parity part of the energy momentum tensor can also be expanded
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as

Ttθ = − 1

sin θ
∂φ

∞∑
ℓ=2

ℓ∑
m=−ℓ

S
(ℓm)
0 (t, r)Yℓm, (B.0.2)

Ttφ = sin θ∂θ

∞∑
ℓ=2

ℓ∑
m=−ℓ

S
(ℓm)
0 (t, r)Yℓm, (B.0.3)

Trθ = − 1

sin θ
∂φ

∞∑
ℓ=2

ℓ∑
m=−ℓ

S
(ℓm)
1 (t, r)Yℓm, (B.0.4)

Trφ = sin θ∂θ

∞∑
ℓ=2

ℓ∑
m=−ℓ

S
(ℓm)
1 (t, r)Yℓm, (B.0.5)

Tθθ =
2

sin θ
(∂θ∂φ − cot θ∂φ)

∞∑
ℓ=2

ℓ∑
m=−ℓ

S
(ℓm)
2 (t, r)Yℓm, (B.0.6)

Tθφ =

(
1

sin θ
∂2φ + cos θ∂θ − sin θ∂2θ

)
×

∞∑
ℓ=2

ℓ∑
m=−ℓ

S
(ℓm)
2 (t, r)Yℓm, (B.0.7)

Tφφ = −2 sin θ (∂θ∂φ − cot θ∂φ)
∞∑
ℓ=2

ℓ∑
m=−ℓ

S
(ℓm)
2 (t, r)Yℓm. (B.0.8)

The conservation of the matter energy-momentum tensor, ∇νT
µν = 0, yields

− Ṡ
(ℓm)
0

A
+

√
B/A

r2

(
r2
√
ABS

(ℓm)
1

)′
+

(ℓ− 1)(ℓ+ 2)

r2
S
(ℓm)
2 = 0. (B.0.9)

It is straightforward to perform the angular integrations in Eq. (B.0.1) to obtain

Ssource = −
∞∑
ℓ=2

ℓ∑
m=−ℓ

ℓ(ℓ+ 1)

2

×
∫

dtdr

(
h∗0S0√
AB

−
√
ABh∗1S1 + c.c.

)
, (B.0.10)

where we omitted the labels (ℓm) from S0 and S1. This is the source action for

the odd mode perturbations (see also Ref. [51]). We add the above source action

to the gravitational part of the action (5.3.6). Then, Eqs. (5.3.14) and (5.3.15) are
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generalized to

a1h0 + (a3χ)
′ +

2a3
r
χ+

1

2
a4h1 =

ℓ(ℓ+ 1)

2
√
AB

S0, (B.0.11)

a2h1 − a3χ̇+
1

2
a4h0 = −ℓ(ℓ+ 1)

2

√
ABS1, (B.0.12)

Solving these equations for h0 and h1 and removing h0 and h1 from the quadratic

Lagrangian, we see that the Lagrangian (5.3.18) is generalized to include the source

as

L(2)
ℓm,total = L(2)

ℓm − ℓ(ℓ+ 1)r2

4(ℓ− 1)(ℓ+ 2)

√
B

A
(χ∗Sodd + c.c.) , (B.0.13)

where L(2)
ℓm in the right-hand side is the same Lagrangian as the one defined as

Eq. (5.3.18) and

S
(ℓm)
odd (t, r) := 2H

(
G
ζ2
S
(ℓm)
0

)′

− 2FH
ζ2

Ṡ
(ℓm)
1

− 2HJ
Aζ2

Ṡ
(ℓm)
0 − 2H

(
BJ
ζ2

S
(ℓm)
1

)′

. (B.0.14)

Now Eq. (5.3.23) with the source term reads

HΩ2ZµνDµDνχ− V χ = Sodd, (B.0.15)

and, accordingly, Eq. (5.3.32) with the source term is given by(
−∂2τ + ∂2r∗ − Ṽ

)
χ̃ =

Gr
√
AB

Hζ1/2
Sodd. (B.0.16)

This is the generalization of the sourced Regge-Wheeler equation.
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[44] E. Babichev, C. Charmousis, A. Lehébel and T. Moskalets, Black holes in a

cubic Galileon universe, JCAP 09 (2016) 011 [1605.07438].
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