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The MDP Procedure Revisited :
Is It Possible to Attain
Non-Samuelsonian Pareto Optimall
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Abstract. The purpose of this paper is twofold. The first is to extend the General-
ized MDP Procedure presented in Fujigaki and Sato(1981) to an economy with many
public goods. The second is to propose a version of the MDP Procedures satisfying
the Generalized Optimality Condition propounded by Campbell and Truchon (1988),
which includes the familiar Samuelson Condition as a special case and is valid for all
boundary optima in an economy with public goods and one private good. I show that
the procedures presented in this paper can attain an open subset of Pareto optima
which the original MDP Procedure fails to attain and where the Samuelson Condition
does not hold. It is shown that all of the Pareto optima, including boundary Non-
Samuelsonian Pareto optima, can be reached via the v MDP Procedures. The issues of
incentives and normative properties are examined. With Aggregate Correct Revelation,
it is possible to characterize the v MDP Procedures. There is in the class of the v MDP
Procedures a member whose solutions converge to the core. Finally, three figures are
presented to show the trajectories of the v MDP Procedures to reach Pareto optima,

including boundary ones.
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1. INTRODUCTION

1.1.  For many years since the appearance of the seminal paper by Samuelson(1954),
there prevailed a gloomy pessimism that the free rider problem was inevitable in the
provision of public goodsl®). This skeptical unanimity, however, was alleviated by the
accumulated literature on the incentive compatible planning procedures for providing
public goods.

The last three decades have witnessed numerous attempts to resolve the free
rider problem or the problem of incentives by designing iterative planning procedures
to efficiently supply public goods. Typically, these procedures involve asking partici-
pants to provide information on their preferences to a planning centre in charge of
allocating resources among individual agents.

The incentive problem associated with planning procedures to supply public
goods may be summarized as follows : the agents might have an incentive to purposely
misstate their private information about their preferences in the hope of distorting to
their advantage the outcome that process yields. The fundamental problem is how to
elicit the unobservable information that is necessary to implement the planning rules.

The idea of employing game-theoretic concepts in solving the incentive problem
associated with planning paths of the procedure was first formally introduced into the
literature by Draze and de la Vallée Poussin(1971). Malinvaud (1970-71) introduced
planning—-theoretic concepts into the incentive problem with public goods. They showed
that their procedures converge monotonically to an individually rational Pareto optimum,
and that true revelation of preferences for public goods is a minimax strategy for each
individual. The processes established by three pioneers have become one of the most
important contributions in planning theory with public goods, and in public economics.
They have come to be termed the MDP Procedure, and subsequently spawned numerous
papers with fruitful results. The existence of solutions to the MDP Procedure was
proved by Henry(1972).

As for modelling incentives of the players, however, a minimax strategy is
weaker and less attractive than the Nash strategy, Roberts(1979) and Henry (1979)
worked with Nash equilibria for local games associated with solution paths of the
MDP Process, by substituting myopic Nash behaviour for minimax behaviour at its

each iteration. Roberts showed that the resulting path converges to an individually
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rational Pareto optimum even under strategic revelation. As well, Henry refined Ro-
berts' results on the incentive properties in the MDP Procedure by restricting individ-
uals to report nonnegative messages.

Subsequently, Fujigaki and Sato(1981) and (1982) demonstrated that there exists
a “satisfactory” planning procedure generalizing the MDP Process, which assures that
truth-telling is a dominant strategy for each player. They showed that the path
arising from local incentive games converges monotonically to the unique individually
rational Pareto optimal allocation. They also proved that any quantity—guided conti-
nuous planning procedure satisfying certain axioms is characterized by the very
procedure they established. The distributional implications of this characterization
were also deduced.

The design of the planning procedures with public goods might be said to have
fully developed to reach the acme in 1983. Initiated by three great pioneersd Malinvaud
(1970-71), and Dreze and de la Vallee Poussin(1971)0 this field of research made
remarkable progress in these three decades. The analysis of incentives in planning
procedures began in late sixties and was mathematically refined by the characterization
theorems of Champsaur and Rochet(1983), theorems that furthermore generalized the
previous results of Fujigaki and Sato(1981) and (1982), as well as Laffont and Maskin
(1983)who also treated the coalition incentive compatibility.

Most of these procedures can be characterized by the set of axioms:

(i) Feasibility

(ii) Monotonicity

(iii) Pareto Efficiency

(iv) Local Strategy Proofness

Formal definitions of these properties are given in Section 3.

1.2.  Samuelson’s optimality condition for public goods, first propounded in 1954, has
acquired universal familiarity. This condition, however, implicitly assumed interior
optima and ignored boundary ones. Campbell and Truchon(1988) generalized the opti-
mality condition which holds for all boundary optima, and thereby showed the exis-
tence of an open subset of Pareto optima where the Samuelson condition is not satis-
fied.

My objective in this paper is to show that a slight modification of the MDP

Procedure delivers the property that every Pareto optimal allocation, not just interior
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ones, 1s the limit point of the Procedure for some choice of parameters. We do this
by using the Campbell-Truchon theorem on the characterization of Pareto optimal
allocations in public good economies.

Five sections follow. Section 2 presents the model and introduces the generalized
optimality condition(GO). Section 3 describes the procedures based on GO, and Section
4 confirms that the normative conditions are fulfilled by them: i.e., feasibility, monoto-
nicity, stability, neutrality, and incentive properties pertaining to minimax and Nash
strategies. It is verified that all of the Pareto optima including boundary ones can be
reached by a choice of a vector of weights attached to each individual’s marginal rate
of substitution calculated by the agents. Existence and stability of the solutions are
demonstrated for these procedures. Then the procedures are generalized, and their
incentive properties are examined. A proof of the main theorem is given in Section 5.
Finally, concluding remarks follow. Three figures are presented in the Appendix to

show some trajectories of the procedures to reach Pareto optima.

2. MODEL

2.1.  Notation

Consider an economy with many public goods and one private good whose
quantities are denoted by z*, k =1,.., K, and y, respectively. Let K be the set of public
goods and N = {1,..., N} be the set of individuals. H, CR®"" denotes the consumption
set of consumer i. I assume that the preferences of every agent i is numerically rep-
resented by some real valued utility function u;: RS — R. Assumptions on H, and
u; are to follow in the next subsection. Suppose that the initial endowment of every
agent comprizes the private good only : w; >0 denotes the quantity of the pivate good
that agent 7 possesses at the outset. I represent the production technology by the cost
function, g:R*—>R .. That is, for eveny vector z € R® of public goods, g(x) denotes
the minimum amount of the private good for producing z. It is assumed as usual that
there is no production of private good.

I assume that the planning centre possesses the production unit so that it has
a complete knowledge on the cost function g. Therefore, the centre can compute the

marginal cost 7°(z) represented as:

7*(x) = dg(x) /0", vk E K.
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The centre asks each individual ¢ to report his/her marginal rate of substitution

(MRS) between each public good and the private numéraire :

 dux, y)/0x"

k
. ) = &=
7 (x, v) 3z )70y vk € K.

Different from the usual arguments, our analysis throughout this paper does
not bypass the possibility of boundary problem, which should not be avoided, since the
initial allocation z, = (0, w,,.., wy), including only private endowments belongs to the
boundary of R¥™™. An assumption to avoid this problem is an innocuous one in the
single public good case, because its quantity must be always increasing. For several
public goods, however, some difficulties arise®). This paper deals with them in the context

of planning procedures.

2.2.  Assumptions

Let me give some assumptions.
Assumption 1. For any iEN, H, = {(x,y,) ER*"' |z =0, y,=8,}.
Assumption 2. For any { € N, u;(+,-) is strictly quasiconcave and at least twice
continuously differentiable.
Assumption 3. For any i € N, uf (x, v,) = ou;(x, y,)/0z" = 0, and u) (z, v,)

=0u; (x,v,)/0y; >0, for all (x,y,).

Assumption 4. For any i € N, ou; (z, 0)/62" =0 for all x € RT and for any k € K.
Assumption 5. B =w and B # w, where 8 = (B,,..,8y) and w = (w,,.., wy).
Assumption 6. g(x) is convex and twice continuously differentiable.

Assumption 7. For any k € K, there exists 2" in RY such that dg(x)/6z" # 0.

Remark 1. Assumption 1 is the same as Assumption 2" in Draze and de la Vallee
Poussin(1971), where they considered B; to be equal to the “otherwise given income”
of individual i. Campbell and Truchon(1988) employed the same consumption set as in
Assumption 1, where they regard B; as the fixed lower bound, which may be zero,
some positive subsistance level, or a negative number to allow for the possibility of
borrowing and lending. They themselves acknowledged that they derived their
characterization theorem at the cost of making these restictive assumptions. However,
Conley and Diamantaras(1996) removed those restrictive assumptions to give a
characterization of Pareto optimal allocations in general public good economics. The

original MDP Process ruled out convergence to boundary optima by making the



80 O00oOooOoo Os0 OO0 20030

assumption of no bankrupty. This paper proposes a variant of the MDP Process which
can also converge to boundary optima. The issue of incentives and normative properties
are considered. B3; may be called an individual boundary point assigned beforehand by
the planner who knows each w;. Note that in the original MDP Procedure the planning

centre has only to know w EZi w;, not each w;.

2.3.  Definitions
Following difinitions are used.

Definition 1. An allocation z is feasible if and only if
2E€Z=1{(z v,. 9 ERY \Zi v,+g(x) :Zi w;}.
Definition 2. An allocation z is individually rational if and only if
(Vie N [uz, v;) = 4,0, w;)].

Definition 3. A Pareto optimum for this economy is an allocation z* € Z such that

there exists no feasible allocation z with

(vie N [u,(x, v;) = u,(x* y*)]
(7€ M) [u,(x, vp) > u,(x*, y;)].

2.4.  The Generalized Optimality Condition
Campbell and Truchon(1988) showed under the above assumptions that for each
Pareto optimal allocation z* € Z there exist 2 & RY\{0}, Lagrangian multipliers

© € RY, and ¢, € RY such that z* is a solution of the following nonlinear program :

Max Zl A u;(x, y,)
subject to
2 (w—v) = g(a)
v, =B, ViE N. 0

Eq.() is an additional constraint. The first order optimality conditions of this opti-
mization problem imply that any z € Z maximizes L(z) :Zi A u; (x, y;) if and only

if z satisfies the equations:
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Aiul—potu; =0 and w; (y,—B;) =0, ViEN @
Zi Luf—uy7" <0 and <Z, Ul =, 7’“>xk =0, VkE K. )

Eq.(2) must hold for the private good, and (3) has to be valid for all public goods.
Following Campbell and Truchon(1988), if one could set v; = 2, u;"/u,, one can easily
derive

v, = 1—u,; /uy, ¥i<E N.

If an interior solution is assumed, one observes that v, = 1,Vi & N. Whereas, if a
boundary solution is also taken into consideration, v, can vary in the interval [0, 1].
The above discussions together give us a generalized condition for all types of Pareto
optima in our economy. Campbell and Truchon(1988) verified under Assumptions 10
7 that a necessary and sufficient condition for a generalized Pareto optimality, which

includes the Samuelson condition as a special one.

Condition GO. Generalized Optimality :
There is some v © R™\ {0} such that v < (1,..., 1)
Zi v;mf < 7" and <Zl vinikfyk)xk =0, VEEK
1=y (=B;) =0, YiEN.

In terms of Condition GO, one may distinguish two kinds of Pareto optima;
namely, Samuelsonian and Non-Samuelsonian. Here I introduce some definitions rele-

vant for my analysis.

Definition 4. An allocation is interior if v, >8;,Vi & N and 2" > 0,vk € K.

Definition 5. An allocation is on the boundary if there exists at least i € N such
that v,0 B, and/or ¥ =0 for at least one k € K.

Definition 6. A Samuelsonian Pareto Optimum is an allocation such that v,=1, ViEN,
holds in Condition GO.

Definition 7. A Non-Samuelsonian Pareto Optimum is an allocation where there exists

y; # 1 for some ¢ € N in Condition GO.

Our procedures presented below, can attain both Samuelsonian and Non-Samuel-

sonian Pareto optima. Let P, Py, and B be the sets of Pareto, individually rational
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Pareto, and boundary optima, respectively. I assume P,1B # ¢. To reach a point in
P\ P, is not a task given to the MDP Procedure, so that I may confine myself to
focus on the set P,. Conventional mathematical notation is used throughout in the
same manner as in Sato(1983). Hereafter all variables are assumed to be functions

of time, however, the argument ¢ is omitted unless confusion could arise.

3. THE vMDP PROCEDURES

3.1. A Description of the Procedure

The MDP Procedure is the best-known member belonging to the family of the
quantity—guided procedures, in which the planning centre asks individual agents their
MRSs between each public good and a private numéraire. Then the centre revises the
allocation according to the reported MRSs and the MRT. The relevant information
exchanged between the centre and the periphery is in the form of quantity.

Let us describe a generic model of our planning procedures for public goods and

a private good used as a numéraire :

dx"/dt = X*(s* (1), if °(+) >0, VkEK
dx"/dt = Mazx {0, X"(s"())}, if () =0, VkEK
dy; /dt = Y.(s(1)), viEN

where s*(£) =(s,"(0),...,sk(t)) ERY,VKEK, and s(¢) = (5,(2),...,s,()) €E RV is a vector
of v-parameterized MRSs announced at iteration ¢ €[0, ):i.e., s; (1) =(v; ¢, (1), ...,

v; $F(1), Vi E N.
For any ¢ € [0, ), the procedure reads:

XA =D v (O =7 (D), it () >0, YkEK

X(6) = Maz {0, X*(s" (1))}, it 2°(1) =0, VKkEK

V() =D v ¢f(;)xk(t>+5i2k{zj y]-gbj’-‘(t)*rk(t)}X"(t),Vi EN
where 6, > 0,Vi EN, and 2,6, = L.

6= (6,,..., Oy) 1s a vector of distributional coefficients determined by the planner
prior to the beginning of the operation of the procedure. Its role is to share among

individuals the surplus, Zk {Zl v, ¢ () —rk(t)}Xk(t), which is always positive except

at the equilibrium.
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Remark 2. 6; > 0 was posited by Dreze and de la Vallée Poussin(1971), and
followed by Roberts(1979), whereas 6, = 0 was assumed by Champsaur(1976) who

advocated a notion of neutrality to be explained below.

Let me call the procedures defined by the above equations the v MDP Procedures
since they are parameterized by the vector v. There could be a large class of the v MDP
Processes via the choice of & . The original MDP Procedure appears if v, = 1,Vi E N,
which reduces to an achievement of the Samuelson Condition at an equilibrium of the
process. The vMDP Processes preserve the properties that the MDP Procedure enjoys;
viz. feasibility, monotonicity, stability, and neutrality, incentive properties pertaining
to minimax and Nash strategies, as was proved by Draze and de la Vallge Poussin(1971)
and Roberts(1979).

Next, I compare the original MDP and the vMDP Procedures. The MDP algo-
rithms evolve in the allocation space and stops when the Samuelson condition is met
so that the public good quantity is optimal, and simultaneously the private good is
allocated in a Pareto optimal way : i.e., (x, y) is Pareto optimal. The v MDP Procedures
generate, v given, in the allocation space and stops when the GO holds; i.e., the allocation
at that point is Pareto optimal in the generalized sense. In the vMDP Processes the
centre must acquire v; ¢ instead of ¢ as a relevant information, since v; depends on
the functional form of his/her utility function. Hence, v, is called a “preferece parameter.”

There are possibilities of boundary problems due to " =0 for at least one k
and/or y; = B; for at least one individual. The case with 2" = 0 was solved by Henry
(1972) by using the max operator as in the above formulation to avoid a public good
adjustment to the negative direction. Other cases were treated by Campbell and Truchon
(1988). The vMDP Procedures therefore dispense with any assumption to avoid boundary

problems.

3.2.  The Local Incentive Game

Let me examine the incentive properties of the v MDP Procedures in this section.
Now the assumption of truthful revelation of preferences is relaxed: i.e., each agent’s
announcement, ¢¥, is not necessarily equal to its true marginal rate of substitution,

xl.
A local incentive game associated with each iteration of the process is formally

defined as the normal form game (N, ¥, V) ; N is the set of players, =X,y CR,
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is the Cartesian product of the individual strategy sets, and V = (V],..., Vi) is the
N-tuple of payoff functions. Given y; calculated by each player at each iteration of the

procedure, the time derivative of an individual’s utility is defined as
du; [t =2 uf X (s5(0) +u Vs (D),

which is proportional to the payoff in the local incentive game along the procedure
given by
Vi (s() =2, mb X (s"() + Y(s(D). 4)

The behavioural hypothesis underlying the above equations is the following
myopia assumption : i.e., in order to maximize his/her instantaneous utility increment
Vi(s(t)), each player determines his/her dominant strategy ¢;* € ¥ such that

(VoeE UV ER,)(VIiEN)
[ X 6 DY @) =D XM D Y )]
where ¢ = (¢1,..., ¢n), ¢ = (&', 61, @5 = (@, G 1, G, 91), and ¢ = (¢,
e iy iy senns OB

3.3.  Normative Conditions for the v MDP Procedures

The conditions that I have presented in INTRODUCTION are in order. The
differences from the usual definitions here are such that s* =y, ¢F instead of ¢* and
that there are many public goods. Note that the conditions are based on Condition

GO. Letting & = v, zf, then I have the following conditions:
Condition F. Feasibility :
(Vs € W1 E [0, )] 27 X (D + 2% () =0,

Condition M. Monotonicity :
(vse W (vie N)(vie [0, oo>>[14 () =D L, 7F XD+ Y (s) = o}.

Condition PE. Pareto Efficiency :
(VsEW(VEEB|[ X (H =0 & Dsk=7"]

Condition LSP. Local Strategy Proofness:
(vse W) (vs eR)H(vie N)(Vte [0, ©))
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[an;‘Xk(d‘, s H+Y &, s ) 2Zkﬂka(sk)+Yi(S)}

1 k k k k k k
where &;=(&, ..., &), s ;= (Sq,0ees S 15 Sit1ser Sy), and 5, = (ST, Sip, STireees Sy)-

Remark 3. Conditions except PE must be fulfilled for any ¢ € [0, ). Champsaur
and Rochet(1983) gave a systematic study on the family of planning procedures which
are asymptotically efficient and locally strategy proof. Now I know that three subclasses
belong to this class: the Bowen procedure, the Generalized MDP Procedure, and the
Generalized Wicksell Procedure as classified in Sato(1986). I introduce in the present
paper the class of the Generalized vMDP Procedures defined later, which enjoy all of
the above conditions. The MDP Process does not satisfy Condition LSP, except for

a two—person economy.
4. PROPERTIES OF THE YMDP PROCEDURES

4.1.  Conditions F, M, and PE

Now I examine the properties of the v MDP Procedures just defined above. Con-
dition F is easily checked to be satisfied, since it has been already used to formulate
the vMDP Procedures. Condition M is verified under correct revelation as follows.

This is simply derived from the fact that
V(s) =D, al X (s +Y () = D ,u8,(x) =0,
Thus, I have the following :
Theorem 1. The v MDP Procedures satisfy Condition M for 6; > 0, Vi & N.

Condition PE, of course, comes from Condition GO. The statement of the former
should be regarded as one of the desiderata the procedures have to possess, and the
latter concerns the existence of the vector v in the definition of the generalized opti-

mality condition.

4.2.  Minimax and Nash Strategies
What about then the incentive properties of the v MDP Procedures? The results

are the same as in the original MDP Process, as seen below.



86 O00oOooOoo Os0 OO0 20030

1) Minimax strategy

Theorem 2. Revealing preferences truthfully in the v MDP Procedures is a minimax
strategy for any i € N. 1t is the only minimax strategy for any i € N, when x* >0
for any k € K.

Proof: FEach agent aims at minimizing his opponent’s payoff, then
oV, (s)/0s! :Zk[é‘f—s’f-&-Zéi <Zhi]—sf+s]’-‘—7k>} =0
where sf = v, ¢ which can differ from ¢ =y, zf. Hence, I have
sh= (f=sh /2047 = 20, st
When the agents 7 # i, 1 € N, use this strategy, the payoff to agent i is obtained as
Vi (s) =2, (ch—s9)%/46,= 0.

In conclusion, only sf = ¢ Vk € K, i.e., correct revelation assures V;(s) to be maxi-

mized irrespective of the strategies followed by the others. Q.E.D.

11) Nash strategy
Next I examine the Nash strategy of the vMDP Procedures. By the results of
Roberts(1979), I obtain the Nash strategy as follows:

1—20;
Vi ¢/§ — V,‘ 7Z_ik_ i < jyjﬂjlc_7k>, Vk = K

Generally, ¢f # zf holds for any i € N, and any k € K, since Zjujnf*/‘ # 0 for any
ke K. However, Zjujﬂjkfrk =0 holds for any k& € K at any equilibrium, ¢* = zf,
ViE N, Vk € K, which results for each individual. The posibility that v, =0 for

some i should not be overlooked. Thus I present the following.

Theorem 3. ¢° = " holds for any indiridual with v; # 0 and for any k € K at amy
equilibrium of the v MDP Procedures.
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4.3.  Neutrality of the v MDP Procedures

Champsaur(1976) advocated the notion of neutrality for the MDP Procedure,
and Cornet(1983) generalized it by omitting two restrictive assumptions imposed by
Champsaur : i.e., (i) uniqueness of solution and (ii) concavity of the utility functions.H)
Neutrality depends on the distributional coefficient vector & . Remember that the role
of & is to attain any individually rational Pareto optima(IRPO) by redistributing the
social surplus generated during the operation of the procedure:d varies the trajectory
to reach every IRPO. In other words, the centre can guide the allocation via the choice

of d , however, it cannot predetermine the final allocation to be reached.

Condition N. Neutrality :
For every efficient point, 2* € Z and for any initial point, z, € Z, there exists

5 and z(¢, 6), a trajectory starting at z,, such that z* = z(o0, §).

Remark 4. Neutrality is autonomous, while Champsaur and Rochet’s(1983) local
neutrality is not autonomous. See Hirsch and Smale(1974) for the concept of autono-
mous. For the other concepts of neutrality associated with planning procedures, see
Sato(1983) and (1986). See also D’Aspremont and Draze(1979) for an alternative version

of neutrality which is valid in general contexts.

The crucial underpinning of Champsaur-Cornet’s neutrality is the nonnegativity
requirement of & . Once dropping this, they cannot prove their neutrality theorems.
Originally, Dreze and de la Vallée Poussin(1971) imposed the hypothesis of positive
0 ; with this assumption, they could demonstrate their Theorem 3 on minimax strategy.
At any rate, provided that positivity of & must be kept, an open subset of TRPO
cannot be reached by the MDP Process, as shown below by the Figure 1 in the Appendix.
Successors except Roberts(1979) imposed the nonnegativity of 8 to obtain some fruitful
results. Hence, Campbell and Truchon(1988) precipitated the design of neutral proce-
dures based on Condition GO.

Clearly, the MDP Procedure satisfies Condition N which, however, assumed interior
optima and nonnegative & . In order to be able to reach also the Non-Samuelsonian

optima, I have to generalize the Champsaur-Cornet’s neutrality theorem as follows :

Theorem 4. Under Assumptions 10 7, for every individually rational Pareto optimum
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z*, there exists & and a trajectory z(+):[0,90) — Z of the differential equations defining
the v MDP Procedures such that u;(z*) = lim, ... u; (x(8), y; (1)), Vi E N.

Proof: The Cornet’s neutrality theorem [Theorem 5.2, 1983] tells us that the original
MDP Procedure is neutral. However, the solutions of the differential equation system
of the MDP Process were assumed to be interior. The vMDP Procedures which can
also attain boundary solutions, so that the dynamical system must be replaced by that
of the yMDP procedures in the proof to the Cornet’s neutrality theorem. It can be
checked that the assumptions imposed by Cornet are all satisfied in the statement of

the Theorem. Q. E. D.

4.4. Existence and Stability of Solutions

This subsection considers the issues on the existence and stability of solutions.

Theorem 5. For the v MDP Procedures and for z, € Z, there exists a unique solution

z(+):[0,00] — Z, which is such that lim,_. ..z(1) exists and is a Pareto optimum.

Proof: (1) Existence.

In order to verify the existence of solutions to the procedure, I have to modify
it. Clearly, the differential equations defining our vMDP Procedures are not globally
Lipschitzian continuous, so that possible discontinuities must be dealt with. For that

purpose, I modify the procedure as follows :

{Xk =D ¢ (@), ¥) = (@), vk E K
Y= -2 G, yi>Xk+5iZk{Zﬂf¢f(x<x>, y,v)fr"(xu))}X"
where x(x) = (Maz {0, z'},..., Max {0, z*}), and 6, > 0,vi € N, and Zi 5, = 1.

Now X, Vk € K, and Y;,Vi € N, are all Lipschitzian, so that starting from such
a point z, there exists a locally unique solution path z(f, z,), by Theorem 1 in Hirsch
and Smale(1974, Ch. 15). Discontinuity has been, as it were, included or “internalized”

in x(z).

(i) Convergence.

So as to verify the second part of the Theorem, recollect as an immediate cor-
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ollary to Theorem 6.1 in Champsaur, Dreze and Henry(1977), that if a dynamic system
has a unique solution for every z, € Z, say z({, z,), which varies continuously with z,
remains in Z for all ¢, and that if there is a Lyapunov function, then the system is
quasi-stable.

As a function pertinently chosen for a Lyapunov function, let us take the weighted
sum of the utility functions :

L)) =D Au; (0.

Differentiating this gives

\%

dL(2)/dt =, 2 (du; /dD) =D vigty 6, (Zi ; 71/‘*7”‘)2 0.

Clearly, any equilibrium of the vMDP Procedures is a Pareto efficient allocation,

*

z*, one has only to verify that lim, .. 2(t z,) exists for any z, € Z. This is immediate,
however, because of our convexity assumptions, there is only one Pareto optimum z*

such that L(z*) = lim, .. L(z(¢)). Q.E.D.

4.5.  LSP v MDP Procedures

Substituting v; ¢; for ¢; seems to bring no difference in terms of the preference
revelation, since one may regard v; as a weight to each individual’s MRS and v plays
no essential role in a preference revelation context. Calculated by each player to
maximize their payoff in a local incentive game, the vector v leads to every allocation
including any boundary point with z,=0 for some k< K and/or y, =4, for some i EN.
In order to be able to choose the appropriate values of the parameter v, the planner
ought to have information about agents’ true preferences. In the local incentive game,
the planner i1s assumed to know the true information of individuals, if the v MDP
Procedures are locally strategy proof. Our accumulated knowledge of incentives there-
fore can be immediately used to nonlinearize the yMDP Procedures in such a parallel

manner as in Fujigaki and Sato(1981).

The LSP v MDP Procedure reads :

2
{Xk_“k<2ﬂj¢’jk7k>'2j’“i‘/’jk7’k La"ER,., VEEK
Y= =2 X U D (2wt ) X vie N

N—

where ¢, = ¢, (x(2), v), v" =7*(x(2)), and " is an adjustment speed of the kth
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public good.

In our context, as one of the planner’s tasks is to achieve an optimal allocation
of public goods given the value of v, he or she has to collect the relevant information
from the periphery so as to meet the conditions presented above. Fortunately, the
necessary information is available if the procedure is locally strategy proof. It was
already shown by Fujigaki and Sato(1982), however, that the locally strategy proof
generalized MDP Procedures cannot preserve neutrality, since 8 was concluded to be
fixed ; i.e., 1/N, to accomplish LSP, keeping the other conditions fulfilled. &,=1/N+#0,
since N cannot be zero. Instead, our LSP vMDP Procedures may reach any limit

point, either an interior or a boundary allocation.
Theorem 6. The LSP v MDP Procedures fulfill Conditions F, M, PE, and LSP.
Proof is postponed to Section 5.

Remark 5. In Fujigaki and Sato (1981) and (1982), we called our procedure as
the Generalized MDP Procedure. Certainly, the public decision function was generalized
to include that of the MDP Procedure, the distributional vector was fixed to a specific
value, i.e., 1/N. Thus, in order to be more precise, we have called the procedure the

LSP v MDP Procedure. The genuine Generalized v MDP Procedures are presented below.

4.6 Aggregate Correct Revelation

The operation of the Generalized MDP Procedure we proposed in(1981) does
not even require truthfulness of each player to be a Nash equilibrium strategy, but
it needs only aggregate correct revelation to be a Nash equilibrium, as was verified
in Sato(1983). It is easily seen from the discussion in the previous subsections that
the LSP yMDP procedure is not neutral at all, which means that local strategy proofness
impedes the attainment of neutrality. Hence, Sato(1983) proposed another version of
neutrality, and Condition Aggregate Correct Revelation which is weaker than LSP.

It can be stated in our context as follows:

Condition ACR. Aggregate Correct Revelation :
(va*emN(vke K)(vte [0, ©)) [Z]’yj¢jk(7[k> :nyj”fk}
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where z* = (xf,..., 7)) € II*: the set of MRS vectors for public goods.

Remark 6. Condition ACR means that the sum of the Nash strategies
¢;, Vi E N, always coincides with the aggregate value of the correct MRSs. Clearly,
ACR claims only truthfulness in the aggregate.

Condition TN. Transfer Neutrality:
(vz*eP,NB)(3TE A (Fz() € 8)[z* = lim,_..z2(D)]
where A is the set of transfer rules: T={T),..., Ty}, 2(*) is a solution of the procedure,

and S is the class of solutions.
O need also the following conditions.

Condition TA. Transfer Anonymity :
(vsERY)(ViE NIT (s) = T, (o(s)],

where p: RY = RY is a permutation function.

Remark 7. Condition TA says that the agent i’s transfer in private good is
invariant under the permutation of its arguments: i.e., the order of strategies does

not affect the value of 7;(s),ViE N.

Keeping the same nonlinear public good decision function as derived from

Condition LSP, I can state the characterization theorem.

Theorem 7. The Generalized v MDP Procedures fulfill Conditions ACR, F, M, PE, TA
and TN. Conversely, any planning procedure satisfying these conditions is characterized
to:

X" =q <Z_7. , ¢_7.k—y’f> S veir | deRr. vkek  (5)

{ Y= =D v X+ Y;Zk<2juj¢/‘—yk)x’i ViE N.

Proof: Follows immediately from Theorem 2 in Sato(1983) by replacing V]-(ﬁjk for
gb]-k. Chander(1993) verified the incompatibility between core convergence property and
local strategy proofness. It is possible to escape from his “impossibility theorem” by

weakening incentive requirement from LSP to ACR, hence, I can present the following:
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Corollary 1. There exists a Generalized v MDP Procedure such that the solution path

converges to some core allocation.

Proof: Obviously, the family of the Generalized v MDP Procedures involves as its
member the Process with

7= 0( e ")

and

5. = Zk”i‘/’f
) Z].Zkng[)jk.

Some calculation leads to observe

Vi ﬁbf

Yi=— L 2 X" ©)
ZkaVf ¢;

From Theorem 3.4 in Chander(1993), the procedure defined by Eqgs. (5) and (6) clearly

belongs to the class of processes he proposed, whose solutions converge to some core

allocation. Oo.ED.
Let me propose here a new concept of neutrality.

Condition yN. yNeutrality -
(Vz* e P,NB)(FveEQ)(Fz(-) € S)[z* = lim,_ .. z(1)]

where Q is the class of v = {y,..., vy}.

It was already shown by Fujigaki and Sato(1982) that the Generalized MDP
Procedures could not preserve neutrality, since & was concluded to be fixed to accom-
plish LSP. Instead, our Generalized yMDP Procedures dispense with & , and relies on
v to achieve vNeutrality. I am not yet able to give a rigorous proof here, but I may
make the following conjecture. See Figure 3 in the Appendix for a graphical presentation

of the proof.

Conjecture: There exist procedures which can attain whatever limit point in the core
according to the change of the vector v on the part of the individual agents. In other

words, there exist processes which are “neutralized” by the choice of v instead of & .
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Almost all MDP-type planning procedures designed so far share a common
characteristic that a social surplus in numéraire appears at each iteration during the
working of the process, and that this surplus is distributed among all individuals
according to the distributional coefficients specified by a constant N-dimensional vector
O . All these planning procedures assume that this vector is determined exogenously
by the planner and prior to the beginning of the procedure, without resort to any
knowledge about the periphery, which has often been criticized.

Let me show an internalization of the distributlonal coefficients of surplus sharing
in procedures and tried to give a possible solution for endogenous determination of
surplus share by specifying a transfer function which has the role of distributing the
surplus.

Representative candidates for internally determining & would be as follows:

i) 6, =

, i) 6, = | iii) 6, =

w; i VTt
,
waf Z]‘”f Zf”j”f

and

Z]’*’iyi”f

iv) 6 =T
v (N-DD v

Remark 8. 1) and ii) have obvious implications respectively, so 1 consider the
others; iv) signifies that the smaller v;7;, the larger §;, which may give agents an
incentive to purposely misstate their preferences for public goods. Hence, I have
chosen 1iii) to obtain the above result. Crucial difference between 8 and v is that the
latter can partially determine the adjustment speeds of public goods, but the former

cannot. Given the amount of surplus, d can “neutralize” the procedure.
5. PROOF OF THE THEOREM

Here I give the proof to the Theorem 6.

It is easy to see that Conditions F and M are satisfied, and that F and M entail
PE. As regards LSP, let me modify the proof to Theorem 1 in Sato(1983) to the case
with many public goods. Denote 6" :Z]-sf—yk‘

Consider the following procedure:



94 O00oOooOoo Os0 OO0 20030

{X" =G0, YkEK
Y= =D, sEG6M) 4+ 1,6,(0M0"G (0", vie N.

With this procedure, differentaiation of Eq.(4) with respect to st gives

g;/;_; =2 [ -6 +6/ 00" G (0" +5, (6" {G(9k>+9’fc’(0")}] =0

which 1s a necessary condition for the truth-telling to be 0 dominant strategy. Hence,
one has

G'(6")
G(6"

5. (0" + {(9k>*1+ }o; e = (OH

By the formula of inhomogeneous linear differential equation, one observes

5;(0) = exp(—@k)zk{f(ﬁk)lexp(@k)dé?k-&-ci(ski)}, VieEN

’ k
where @sz{(ﬁk)l+ Gcggk;}cwk, and C, is a real-valued function independent of s..

The equations
exp(—0") = [0°G(6O)] ' = [T(H)] "
and
exp(0°) = T(6)
yield

6,(6") = [T(6"] lzk{fG(Gk)d9k+Ci(ski)}, ViE N.

Defining 6, (0") T(6*) = T,(0%), one obtains
T,(65 =Y, U G (6" ao"+C, (s’:)}, vViE N. O)

Rewriting (7) in a definite integral form gives
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st
T, (6% —Zk{fc(ef, > ieisierhaek+c (ski)}, viEN
Vk’ZJ':iSJk

which can be written as
ek
T, (69 —Zk{jc(s")dguci(s’;)}, ViEN
0

Let 6" =0, then
T.(0) = D, Ci(s"), YiEN.
But, from Conditions F and M, one gets
T.(0) =0, ViEN
which implies that

> Ci(st) =o.

Consequently
9/:
T, (6% ZkJG(shdék, ViEN ®)
0
leads to

Qk
D> .0°GeY =D, T Z,-ijG(E’“)dE". ©)
0

Differentiating (9) with respect to 6° yields
G(0") +0%dG(0")/ao* = NG(6")

thus

dG(0"/do"  N—1
Gy 6

. VEEK. (10)
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Solving (10) for G(6*), one obtains
G =a" @DV, FER, ., VEEK.
Since G(8*) is sign-preserving from Lemma 2 in Sato(1983), finally I have
GO =d" 0" 6"V a"ER,.,, VEEK.
As can be easily seen from (8)
T, (0% = T, (0") =+ -+ = T, (6"
which reduces to
> .0°G(6") = NT,.
Hence, I can conclude that
T, = (1/N) D, 0°G(6"), ViE N.

This completes the proof. Q.E.D.
6. FINAL REMARKS

The 1ssue of the present paper has been to design planning procedures which can
attain both Samuelsonian and Non-Samuelsonia Pareto optimal allocations. To this end,
I have adopted the generalized optimality condition propounded by Campbell and
Trllclion(1988), that is valid for all Pareto optima including boundary ones.

The vMDP Procedures are capable of achieving all Pareto optima, some of which
do not satisfy the Samuelson condition, so that the original MDP Process cannot reach
them. Whereas, the vYMDP Procedures are able to achieve all Pareto optima, including
boundary ones, via a weight vector v attached to each individual’s marginal rate of
substitution.

What I have wished to show in this paper is that the scope of the foregoing
analyses in the literature of the MDP Procedure is much longer and one can go further
than we might have expected, by presenting the family of the vMDP Procedures that

are convergent, neutral, and incentive compatible.
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APPENDIX

A.l.  Impossibility of the MDP Procedure to Reach an Open Subset of IRPO

Here I show open subsets unachievable via the MDP Procedure under the follow-
ing example with 6=(6,,5,) #0, v=(0,,0,), © =(w/,, 0), " =00, w,"), z=(z,, z,),
Diw =2 0] =20 u(w)=(u,00,0), 4,(0,w,)), and u(2) = (u,(x*, 1,*), u,(z*,
v,*)). See Figure 1.

[a@n] : Set of IRPO
[e £] : Set of IRPO achievable via the MDP Procedure with & # 0
[ae), ((n]: Sets of IRPO unattainable by the MDP Procedure with & kept positive.

A.2. Graphical Illustrations of the Optima Reached by the MDP and v MDP Procedures

Malinvaud(1971) reproduced Serge-Christophe Kolm'’s elaborately devised triangle
less familiar than the Edgeworth box diagram with two goods, however, one of which
is a public good. By making use of his helpful diagram I illustrate in Figures 2 and
3 possible optima that are either Samuelsonian or Non-Samuelsonian reached by the

trajectories of the yMDP Procedure based on the Condition GO."

In a two-person economy the core coincides with the set of IRPO. 1 can draw
a Kolm’s equilateral triangle 0,0,Q which is the simplex in R® where z+v,+vy, = 2.
The straight line BF is the set of Samuelsonian PO, where x = 1. Whereas, AB and
FH are both Non-Samuelsonian PO which are boundary optima. Point ® corresponds
to the equal initial endowment (x,, w,,w,) = (0,1, 1), where x, is an initial amount of
the public good. The trajectories of the MDP Procedure is determined by the distri-
butional coefficient vector & . If & O (0.5, 0.5), the time path is @ D. The trajectory
@ F occurs when & O (l, 0) and coincides with agent 2’s indifference curve. I,
and I, are sample indifference curves of individuals 1 and 2.

Trajectories of the MDP Procedure in the Example in Figure 2 with:
u(x,y,) =1Inz+y;, i =12 x=g(x) =y, 0w = (w,, w,), ,=w, =1, and g = (0, 0).

[BF]: Set of Samuelsonian IRPO achievable via the MDP Process with a Choice of 3
[AB), (FH]: Sets of Non-Samuelsonian PO unattainable by the MDP Process via &
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Next, it is gaphically shown in Figure 3 that the vMDP Procedure can attain
an open subset of Pareto optima where the Samuelson condition does not hold, a
subset which is beyond the reach of the original MDP Procedure. Let the procedure
start from an unequal initial endowment. I,” and I, are sample indifference curves
which determine the CORE [EH].

Time Paths of the MDP and vMDP Procedures in the Example with :
w,(x,y;) =lnzx+y, i=12 x=g(x) =y 0 = (0, w)), where o,/ = 1.5, w, = 0.5,

and 8 = (0, 0).

[DF] : Set of Samuelsonian PO reachable by the MDP Procedure with a choice of &

[FI]: Set of Non-Samuelsonian PO unachievable by the MDP Procedure with &
adjustment

[DI]: Set of either Samuelsonian or Non-Samuelsonian PO achievable by the v MDP
Procedure

[EH] : Set of IRPO (which coincides with the core in this case) attainable via the
vMDP Procedure

[FH] : Set of Boundary IRPO unattainable via the MDP Procedure but achievable by
the yMDP Procedure.
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T  This is one of the series of papers dedicated to the XXXth anniversary of the
MDP Procedure. It was at the Brussels Meeting of the Econometric Society in Septem-
ber 1969 that Dreze and de la Vallsée Poussin together, and Malinvaud independently,
presented the pepers on planning tdtonnement processes for guiding and financing the
optimal provision of public goods. The previous version of this paper was presented
at the annual meeting of the Japan Association of the Theoretical Economics and Econo-
metrics held at Osaka University, September 22, 1996. Discussion with Jacques Draze
was very helpful, to whom I express my deep gratitude. Major revisions were made

thereafter.

NOTES
1. Jacques Draze(1995, p.199) lucidly summarized the free rider problem as follows:
“The theory of incentives is concerned with the design of rules or mechanisms
that provide individual economic agents with incentives to adopt a nonobservable course
of action compatible with overall efficiency, or to reveal truthfully private information
that is socially relevant. Information asymmetry is essential. These problems typically
belong to the sphere of public economics, because market mechanisms do not provide
the required incentives. A standard illustration is the “free rider” problem in choosing
an optimal provision of public good, namely a level where the marginal cost provision
1s equal to the sum of the so-called “marginal willingness—-to-pay” of users. If user
charges are based on reported preferences, there is an incentive to underreport; and

conversely, if the charges are unrelated to reported preferences.”

2. See Chapter 16 of Green and Laffont(1979) for the difficulties with several public
goods.

3. See also the proofs given by Cornet(1977a,b) and Cornet and Lasry(1976).

4. As for numerical examples showing the existence of Non-Samuelsonian Pareto
optima, see Campbell and Truchon(1988). Saijo(1990) exhibited graphical illustrations
for two cases: a public good economy in a Kolm'’s triangle and a private good economy
in an Edgeworth box diagram. He concluded that his observations were not special.
Conley and Diamantaras(1996) provided necessary and sufficient conditions for all Pareto

optima, including boundary ones, without smoothness and monotonicity.
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