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Abstract. Some generalizations of the Maass relation for Siegel modular forms of
higher degrees have been obtained by several authors. In the present article we first give a
new generalization of the Maass relation for Siegel-Eisenstein series of arbitrary degrees.
Furthermore, we show that the Duke-Imamoglu-Ibukiyama-Ikeda lifts satisfy this general-
ized Maass relation with some modifications. As an application of the generalized Maass
relation, we give a new computation of the standard L-function of the Miyawaki-Ikeda lift
of two elliptic modular forms.

1. Introduction

1.1.
The Maass relation is a relation among Fourier coefficients of Siegel-Eisenstein series

of degree two, and the Maass relation characterizes the Saito-Kurokawa lifts (cf. [E-Z 85].)
In his article [Ya 86] Yamazaki has obtained a generalization of the Maass relation for
Siegel-Eisenstein series of arbitrary degrees. Furthermore, in [Ya 89] Yamazaki obtained
a relation among Jacobi-Eisenstein series of arbitrary degrees. Here the Jacobi-Eisenstein
series is a Jacobi form which is constructed like the Siegel-Eisenstein series. This relation
among Jacobi-Eisenstein series is necessary to obtain a new generalization of the Maass
relation, which is different from the generalized Maass relation in [Ya 86]. However, the
relation among Jacobi-Eisenstein series in [Ya 89] is not enough to obtain a new gener-
alization of the Maass relation, because in [Ya 89] the Jacobi-Eisenstein series of index 1
is treated and we need the relation among the Jacobi-Eisenstein series of arbitrary index.
One of the aim of the present article is to generalize the relation among Jacobi-Eisenstein
series obtained in [Ya 89] for arbitrary index and to give a new generalization of the Maass
relation for Siegel-Eisenstein series of general degrees.

On the other hand, a generalization of the Saito-Kurokawa lift for Siegel modular
forms of even degrees was conjectured by Duke and Imamoglu, and by Ibukiyama, inde-
pendently, and the conjecture was solved by Ikeda [Ik 01]. In the present article, we call
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these lifts the Duke-Imamoglu-Ibukiyama-Ikeda lifts. It is known that the Duke-Imamoglu-
Ibukiyama-Ikeda lifts satisfy the generalized Maass relations in [Ya 86] by inserting the
Satake parameters of the preimage of the Duke-Imamoglu-Ibukiyama-Ikeda lift into the
relation (cf. [Ha 11].)

By applying the Duke-Imamoglu-Ibukiyama-Ikeda lift, Ikeda [Ik 06] solved and gen-
eralized one of the two conjectures posed by Miyawaki [Mi 92] under a certain assumption.
Namely, he obtained lifts from pairs of an elliptic modular form and a Siegel modular form
of degree r to Siegel modular forms of degree 2n + r under the assumption that the con-
structed Siegel modular form does not vanish identically. In the present article we call
these lifts the Miyawaki-Ikeda lifts. In [Ik 06] Ikeda obtained a conjecture about the rela-
tion between the Petersson norm of the Miyawaki-Ikeda lift and a special value of a certain
L-function. For more details about the conjecture of non-vanishing of the Miyawaki-Ikeda
lift, we refer the reader to [Ik 06].

The purpose of the present article is as follows:
(1) we generalize the relation among Jacobi-Eisenstein series given in [Ya 89] for

arbitrary integer-indices and obtain a new generalization of the Maass relation for
the Siegel-Eisenstein series of arbitrary degrees (Theorem 1.1),

(2) we show a new generalization of the Maass relation for the Duke-Imamoglu-
Ibukiyama-Ikeda lifts (Theorem 1.2),

(3) By using the generalized Maass relation we obtain a new proof of the explicit
expression of the standard L-functions of the Miyawaki-Ikeda lift of two elliptic
modular forms (Corollary 1.4).

As for generalization of the Maass relation, Kohnen [Ko 02] obtained another kind of
generalization of the Maass relation which is related to the Fourier-Jacobi coefficients of
matrix index of size 2n−1, while the generalization of the Maass relation in the present arti-
cle is related to the Fourier-Jacobi coefficients of integer index. It is known that the general-
ized Maass relation in [Ko 02] characterizes the image of the Duke-Imamoglu-Ibukiyama-
Ikeda lifts (cf. Kohnen-Kojima [KK 05], Yamana [Ya 10].)

We remark that a certain identity of the spinor L-function of the Miyawaki-Ikeda lift
of two elliptic modular forms has been given by Heim [He 12] for the case of degree three
and weight twelve. This identity has been generalized in [Ha 13] for any odd degrees 2n−1
and for any even weights k.

1.2.
We explain our results more precisely. We denote by Hn the Siegel upper-half space

of size n. For integers n and k > n + 2, the Siegel-Eisenstein series of weight k of degree
n + 1 is defined by

E
(n+1)
k (Z) :=

∑

M=
(

A B
C D

)
∈Γn+1,0\Γn+1

det(CZ + D)−k ,
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where τ ∈ Hn+1, where Γn+1 := Spn+1(Z) is the symplectic group of size 2n + 2 with

entries in Z, and we set Γn+1,0 :=
{(

A B

C D

)
∈ Γn+1 | C = 0

}
. The Fourier-Jacobi ex-

pansion of E
(n+1)
k is given by

E
(n+1)
k

((
τ z
t z ω

))
=

∞∑
m=0

e
(n)
k,m(τ, z)e2πimω ,

where τ ∈ Hn, ω ∈ H1 and z ∈ Cn. The form e
(n)
k,m is called the m-th Fourier-Jacobi

coefficient of E
(n+1)
k . We remark that e

(n)
k,m is a Jacobi form of weight k of index m of

degree n (cf. Ziegler [Zi 89].)
We denote by J

(n)
k,m the space of Jacobi forms of weight k of index m of degree n. For

the definition of Jacobi forms of higher degree, we refer the reader to [Zi 89] or Section 2.2
in the present article. We define two kinds of index-shift maps:

Vl,n−l (p
2) : J

(n)
k,m → J

(n)

k,mp2 ,

U(p) : J
(n)
k,m → J

(n)

k,mp2 .

Here the index-shift map Vl,n−l(p
2) (0 ≤ l ≤ n) is given by the action of the double coset

Γndiag(1l, p1n−1, p
21l, p1n−l )Γn. For the precise definition of Vl,n−1(p

2) see Section 2.4,
and we define (φ|U(d))(τ, z) := φ(τ, dz) for φ ∈ J

(n)
k,m and for any natural number d .

THEOREM 1.1. Let e
(n)
k,m be the m-th Fourier-Jacobi coefficient of Siegel-Eisenstein

series. Then we obtain the relation

e
(n)
k,m|

(
V0,n(p

2), . . . , Vn,0(p
2)
)

=
(

e
(n)

k, m

p2
|U(p2), e

(n)
k,m|U(p), e

(n)

k,mp2

)⎛
⎝

0 1
p−k p−k(−1 + p δp|m)

0 p−2k+2

⎞
⎠A

p,k

2,n+1 ,

where the both sides of the above identity are vectors of functions and A
p,k

2,n+1 is a certain

matrix with size 2 times (n+ 1) which depends only on p and k, and where we regard e
(n)

k, m

p2

as identically 0 if p2 � |m. Here δp|m is defined by 1 or 0, according as p|m or p � |m. For the

precise definition of A
p,k

2,n+1, see Section 2.6.

The relation in Theorem 1.1 is a new generalization of the Maass relation for Siegel-
Eisenstein series of arbitrary degrees. As for the function e

(n)
k,m|Vn(p), a similar identity has

already been given in [Ya 86]. Here the operator Vn(p) is obtained from the double coset
Γndiag(1n, p1n)Γn.

Now we apply the relation in Theorem 1.1 to the Duke-Imamoglu-Ibukiyama-Ikeda
lifts. We denote by Sk(Γn) the space of Siegel cusp forms of weight k of degree n. Let f ∈
S2k(Γ1) be a normalized Hecke eigenform and let F ∈ Sk+n(Γ2n) be the Duke-Imamoglu-
Ibukiyama-Ikeda lift of f (cf. Ikeda [Ik 06].) We remark that there is no canonical choice
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of F , however F is determined up to constant multiple. We consider the Fourier-Jacobi
expansion of F :

F

((
τ z
t z ω

))
=

∞∑
m=1

φm(τ, z)e2πimω ,

where τ ∈ Hn, ω ∈ H1 and z ∈ Cn. Then φm is the m-th Fourier-Jacobi coefficient of
F and is a Jacobi cusp form of weight k + n of index m of degree 2n − 1. We denote by
J

(n) cusp

k,m the space of Jacobi cusp forms of weight k of index m of degree n. The restriction

of the maps Vl,n−l (p
2) and U(p) to J

(n) cusp

k,m gives maps from J
(n) cusp

k,m to J
(n) cusp

k,mp2 . Let

α±1
p be the complex numbers which satisfy

(αp + α−1
p )pk− 1

2 = a(p) ,

where a(p) is the p-th Fourier coefficient of f .
The following theorem is a generalization of the Maass relation for the Duke-Imamo-

glu-Ibukiyama-Ikeda lifts, which is different from the ones in [Ko 02] and in [Ha 11].

THEOREM 1.2. Let φm ∈ J
(2n−1) cusp
k+n,m be the m-th Fourier-Jacobi coefficient of the

Duke-Imamoglu-Ibukiyama-Ikeda lift F as the above. Then we have

φm|
(
V0,2n−1(p

2), . . . , V2n−1,0(p
2)
)

= p−(n−1)(2k−1)

(
φ m

p2
|U(p2), φm|U(p), φmp2

)

×
⎛
⎝

0 1
p−k−n p−k−n(−1 + p δp|m)

0 p−2k−2n+2

⎞
⎠A′

2,2n(αp) ,

where A′
2,2n(αp) is a certain matrix with size 2 times 2n which depends only on f and p.

We regard the form φ m

p2
as identically zero if p2 � |m. The matrix A′

2,2n(αp) is obtained by

substituting Xp = αp into a matrix A′
2,2n(Xp). For the precise definition of A′

2,2n(Xp), see
Section 2.6.

Now we apply the relation in Theorem 1.2 to the Miyawaki-Ikeda lifts of two elliptic
modular forms. Let f and F be as above. Let g ∈ Sk+n(Γ1) be a normalized Hecke
eigenform. Then one can construct a Siegel cusp form Ff,g of weight k + n of degree
2n − 1:

Ff,g(τ ) :=
∫

Γ1\H1

F

((
τ 0
0 ω

))
g(ω) Im(ω)k+n−2 d ω .

The form Ff,g is the Miyawaki-Ikeda lift of g associated to f . It is shown by Ikeda [Ik 06]
that if Ff,g is not identically zero, then Ff,g is an eigenfunction for Hecke operators for the
Hecke pair (Γ2n−1, Sp2n−1(Q)). Furthermore, the standard L-function of Ff,g is expressed
as a certain product of L-functions related to f and g . Now by virtue of Theorem 1.2, we
obtain a new proof of these facts by using the generalized Maass relations.
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THEOREM 1.3. Let Ff,g ∈ Sk+n(Γ2n−1) be the Miyawaki-Ikeda lift of g associated
to f . Then

Ff,g |(T0,2n−1(p
2), . . . , T2n−1,0(p

2)
)

= p2nk+n−1(p−k−n, p−2k−2n+2λg (p2)
)
A′

2,2n(αp)Ff,g ,

where Tl,2n−1−l(p
2) are Hecke operators (see Section 2.4) and A′

2.2n(αp) is the same ma-
trix in Theorem 1.2. Here λg (p2) is the eigenvalue of g for T1,0(p

2).

We denote by β±1
p the complex numbers which satisfy:

(βp + β−1
p )p

k+n−1
2 = b(p) ,

where b(p) is the p-th Fourier coefficient of g . The adjoint L-function of g is defined by

L(s, g, Ad) :=
∏
p

{
(1 − p−s )(1 − β2

p p−s )(1 − β−2
p p−s )

}−1
.

COROLLARY 1.4. If Ff,g is not identically zero, then the Satake parameter of Ff,g

at prime p is
{
μ±1

1 , . . . , μ±1
2n−1

}= {β±2
p , α±1

p p−n+ 3
2 , α±1

p p−n+ 5
2 , . . . , α±1

p pn− 3
2
}
.

Furthermore, the standard L-function of Ff,g is

L(s,Ff,g , st) = L(s, g, Ad)

2n−2∏
i=1

L(s + k + n − 1 − i, f ) ,

where L(s, f ) is the Hecke L-function of f . (see Section 2.3 for the definition of the
standard L-function.)

We remark that Corollary 1.4 has already been shown by Ikeda [Ik 01] for more gen-
eral case, namely for Siegel modular form g ∈ Sk+n(Γr). The method in [Ik 01] is based
on the theory of automorphic representations. On the other hand, if a Siegel modular form
is an eigenform for Hecke operators, the eigenvalues are calculated from the Satake pa-
rameters by using the explicit map of the Satake isomorphism. This explicit map is given
in [Kr 86]. Hence Theorem 1.3 and Corollary 1.4 are equivalent. Therefore Theorem 1.3
essentially follows from [Ik 01, Proposition 3.1] as a special case of r = 1. However, in
the present article we obtained a new proof of Theorem 1.3 and Corollary 1.4 by using the
generalized Maass relation.

Furthermore, we remark that a certain identity of the spinor L-function of Ff,g has
been obtained in [Ha 13] which is a generalization of the case (n, k) = (2, 12) in [He 12].

This paper is organized as follows: In Section 2 we give a notation and review some
operators for Jacobi forms, and in Section 3 we shall show a certain relation among Jacobi-
Eisenstein series with respect to the index-shift maps. In Section 4 we shall prove Theo-
rem 1.1, while we shall prove Theorem 1.2, Theorem 1.3 and Corollary 1.4 in Section 5.
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2. Operators on Jacobi forms

2.1. Symbols.
We denote by Mi,j (R) the set of all i by j matrices with entries in the ring R and put

Mn(R) := Mn,n(R). For any square matrix A ∈ Mn(Z) we denote by rankp(A) the rank
of A in Mn(Z/pZ). For any two matrices A ∈ Mn(Z) and B ∈ Mn,m(Z) we write A[B]
for tBAB. The set of all half-integral symmetric matrices of size n is denoted by Sym∗

n.

We put Jn :=
(

0 −1n

1n 0

)
and set

GSp+
n (R) := {M ∈ M2n(R) | MJn

tM = ν(g)Jn, ν(g) > 0
}
,

where the number ν(g) is called the similitude of g .
We put Γn := Spn(Z) ⊂ SL2n(Z). For any square matrix x we set e(x) := e2πi tr(x),

where tr(x) denotes the trace of x. For any natural number m we put < m >:= m(m+1)
2 .

The symbol Hn denotes the Siegel upper-half space of size n. The action of GSp+
n (R)

on Hn is given by g · τ := (Aτ + B)(Cτ + D)−1 for g = (
A B
C D

) ∈ GSp+
n (R) and for

τ ∈ Hn.
The symbol Hol(Hn → C) (resp. Hol(Hn × Cn → C)) denotes the space of all

holomorphic function on Hn (resp. Hn × Cn.) For any integer k, we define the slash
operator |k :

(F |kg)(τ ) := det(Cτ + D)−kF (g · τ ) ,

where F ∈ Hol(Hn → C), g = (
A B
C D

) ∈ GSp+
n (R) and τ ∈ Hn. By this definition the

group GSp+
n (R) acts on Hol(Hn → C).

2.2. Jacobi group.
We define a subgroup of GSp+

n+1(R):

GJ
n :=

{
γ ∈ GSp+

n+1(R)

∣∣∣∣∣ γ =
(

A 0 B ∗∗ ν(γ ) ∗ ∗
C 0 D ∗
0 0 0 1

)
,

(
A B

C D

)
∈ GSp+

n (R)

}
.

A bijective map from GSp+
n (R) × (Rn × Rn) × R to GJ

n is given by
[(

A B

C D

)
, (λ, μ) , κ

]

→
(

A 0 B 0
0 ν(g) 0 0
C 0 D 0
0 0 0 1

)(
1n 0 0 μ
tλ 1 tμ t λμ+κ
0 0 1n −λ
0 0 0 1

)
,

where g =
(

A B

C D

)
∈ GSp+

n (R), λ,μ ∈ Rn and κ ∈ R. We identify GSp+
n (R) ×

(Rn × Rn) × R and GJ
n . By this bijection the group GJ

n can be regarded as a semi-direct
product of GSp+

n (R) and ((Rn × Rn) × R), namely GJ
n

∼= GSp+
n (R) � ((Rn × Rn) × R).
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Let k and m be integers and let φ ∈ Hol(Hn × Cn → C) be a holomorphic function
on Hn × Cn. We define the slash operator |k,m:

(φ|k,mγ )(τ, z) := ((φ(τ, z)e(m ω))|kγ ) e(−ν(γ ) m ω),

where

(
τ z
tz ω

)
∈ Hn+1, τ ∈ Hn, ω ∈ H1, z ∈ Cn and γ ∈ GJ

n . We remark that the RHS

of the above definition does not depend on the choice of ω. By this definition, the group
GJ

n acts on Hol(Hn × Cn → C).
For γ = [g, (λ, μ), κ] ∈ GJ

n we have

(φ|k,mγ )(τ, z) = det(Cτ + D)−k e(−ν(g) m ((Cτ + D)−1C)[z + τλ + μ])
×e(ν(g) m (tλτλ + 2t λz + 2t λμ + κ))

×φ(g · τ, ν(g)t (Cτ + D)−1(z + τλ + μ)) ,

where g =
(

A B

C D

)
∈ GSp+

n (R).

We put a discrete subgroup Γ J
n of GJ

n :

Γ J
n := {[M, (λ,μ), κ] ∈ GJ

n | M ∈ Γn, (λ,μ) ∈ Z
n × Z

n, κ ∈ Z
}
.

We denote by J
(n)
k,m the space of Jacobi forms of weight k of index m of degree n (cf.

Ziegler [Zi 89].) For n > 1 the space J
(n)
k,m is defined by

J
(n)
k,m := {φ ∈ Hol(Hn × C

n → C) | φ|k,mγ = φ for any γ ∈ Γ J
n

}
.

2.3. The standard L-functions.
Let F ∈ Sk(Γn) be a Siegel cusp form which is an eigenform for all Hecke operators.

Let {μ0,p, μ1,p, . . . , μn,p} be the Satake parameter of F at a prime p. The standard L-
function of F is defined by

L(s, F, st) :=
∏
p

{
(1 − p−s )

n∏
i=1

(1 − μi,pp−s )(1 − μ−1
i,pp−s )

}−1

.

In our setting we have μ2
0,pμ1,p · · · μn,p = pnk−<n>.

2.4. Index-shift maps of Jacobi forms.
For any function φ ∈ J

(n)
k,m and for any matrix g ∈ GSp+

n (R) ∩ M2n(Z) we define

φ|V (ΓngΓn) :=
∑

i

φ|k,m[gi , (0, 0), 0] ,

where ΓngΓn =
⋃
i

Γngi is a coset decomposition. It is known that φ|V (ΓngΓn) is well-

defined and belongs to J
(n)
k,ν(g)m.

For any integer l (0 ≤ l ≤ n), we define

φ|Vl,n−l(p
2) := φ|V (Γndiag(1l, p1n−l , p

21l, p1n−l )Γn) .
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For any non-negative integer d we define

(φ|U(d))(τ, z) := φ(τ, dz) .

Then φ|Vl,n−l (p
2) ∈ J

(n)

k,mp2 and φ|U(d) ∈ J
(n)

k,md2 .
Let F be a Siegel modular form of weight k of degree n. Let g be an element of

GSp+
n (R)∩M2n(Z). For any double coset ΓngΓn, the Hecke operator T (ΓngΓn) is defined

by

F |T (ΓngΓn) := ν(g)nk−<n>
∑

i

F |kgi ,

where ΓngΓn =
⋃
i

Γngi is a coset decomposition. For any integer l (0 ≤ l ≤ n), we define

F |Tl,n−l (p
2) := F |T (Γndiag(1l, p1n−l , p

21l, p1n−l )Γn) .

For any Jacobi form φ ∈ J
(n)
k,m, we define the function

W(φ)(τ ) := φ(τ, 0)

for τ ∈ Hn. From the definition of Jacobi form, it follows that W(φ) is a Siegel modular
form of weight k of degree n.

Furthermore, due to a straightforward calculation, we obtain

W(φ)|T (ΓngΓn) = ν(g)nk−<n>W(φ|V (ΓngΓn))(2.1)

for any Jacobi form φ ∈ J
(n)
k,m and for any g ∈ GSp+

n (R) ∩ M2n(Z).

2.5. Siegel Φ-operator for Jacobi forms.
Let φ ∈ Hol(Hn × Cn → C) be a holomorphic function. We define the Siegel Φ-

operator:

Φ(φ) (τ1, z1) := lim
t→+∞ φ

((
τ1 0
0 it

)
,

(
z1
0

))
,

where τ1 ∈ Hn−1 and z1 ∈ Cn−1.
It is known that if φ ∈ J

(n)
k,m is a Jacobi form, then the function Φ(φ) is also a Jacobi

form which belongs to J
(n−1)
k,m .

2.6. The Satake isomorphism and the Siegel Φ-operator.
Let Hn

p be the local Hecke ring with respect to the Hecke pair (Γn, GSp+
n (R) ∩

M2n(Z[p−1])). We denote by C[X±1
0 , . . . , X±1

n ]Wn the subring of the polynomial ring
C[X±1

0 , . . . , X±1
n ] which is invariant under the action of the Weyl group Wn associated to

the symplectic group. The Satake isomorphism ϕn : Hn
p → C[X±1

0 , . . . , X±1
n ]Wn is given

by

ΓngΓn =
⋃
i

Γn

(
pl tDi

−1
Bi

0 Di

)

→ Xl

0

∑
i

∏
j

(
Xj

pj

)li,j

,
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where ν(g) = pl and Di =
⎛
⎜⎝

pli,1 ∗ ∗
. . . ∗

pli,n

⎞
⎟⎠ (cf. Andrianov [An 79]).

We write ϕ = ϕn for simplicity. In this article we consider the subring of Hn
p which is

generated by T0.n(p
2)±1 and Tl,n−l (p

2) (l = 1, . . . , n).
The following proposition follows from [Kr 86, Satz].

PROPOSITION 2.1. If n ≥ 2 we have

ϕ(Tn,0(p
2)) = Xn

{(
X−1

n + (p − 1)p−1 + Xn

)
ϕ(Tn−1,0(p

2))

+(p2 − 1)p−1ϕ(Tn−2,1(p
2))
}
,

ϕ(T1,n−1(p
2)) = Xn

{
p1−n ϕ(T1,n−2(p

2))

+(X−1
n + (p − 1)p−n + Xn

)
ϕ(T0,n−1(p

2))
}
,

ϕ(T0,n(p
2)) = Xn

{
p−n ϕ(T0,n−1(p

2))
}
,

and for 1 < j < n we have

ϕ(Tj,n−j (p
2)) = Xn

{
pj−nϕ(Tj,n−j−1(p

2))

+(X−1
n + pj−n−1(p − 1) + Xn

)
ϕ(Tj−1,n−j (p

2))

+(p2n−2j+2 − 1)pj−n−1ϕ(Tj−2,n−j+1(p
2))
}
.

Proof. We obtain this proposition by replacing p−r in [Kr 86, Satz] by p−nXn. For
the detail the reader is referred to [Kr 86, Satz]. �

Now for integers l (2 ≤ l), t (0 ≤ t ≤ l), j (0 ≤ j ≤ l), we put

bt,j := bt,j,l,p(Xl) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

(p2l−2j+2 − 1)pj−1−lXl if t = j − 2 ,

1 + pj−1−l (p − 1)Xl + X2
l if t = j − 1 ,

p−l+jXl if t = j ,

0 otherwise,

and we put a matrix

Bl,l+1(Xl) := (bt,j

)
t=0,...,l−1
j=0,...,l

=
⎛
⎜⎝

b0,0 · · · b0,l

... · · · ...

bl−1,0 · · · bl−1,l

⎞
⎟⎠

with entries in C[Xl,X
−1
l ]. From Proposition 2.1 and from the definition of Bl,l+1(Xl), we

have the identity:

(ϕ(T0,l(p
2)), . . . , ϕ(Tl,0(p

2))) = (ϕ(T0,l−1(p
2)), . . . , ϕ(Tl−1,0(p

2)))Bl,l+1(Xl) .

For Jacobi forms we obtain the following lemma.

LEMMA 2.2. Let φ ∈ J
(l)
k,m be a Jacobi form such that Φ(φ) is not identically zero.

Then we have

Φ(φ|(V0,l(p
2), . . . , Vl,0(p

2))) =
(
Φ(φ)|(V0,l−1(p

2), . . . , Vl−1,0(p
2))
)

Bl,l+1(p
l−k) ,
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where we put φ|(V0,l(p
2), . . . , Vl,0(p

2)) := (φ|V0,l(p
2), . . . , φ|Vl,0(p

2)).

Proof. Let γ =
[(

A B

0 D

)
, (0, 0), 0

]
∈ GJ

l with A =
(

A∗ 0
a a

)
, B =

(
B∗ b1
b2 b

)
,

D =
(

D∗ d
0 d

)
, where A∗, D∗ ∈ GLl−1(R) and B∗ ∈ Ml−1(R). Then

Φ(φ|k,mγ ) = d−kΦ(φ)|k,mγ ∗ ,

where γ ∗ =
[(

A∗ B∗
0 D∗

)
, (0, 0), 0

]
∈ GJ

l−1.

The rest of the proof of this lemma is the same to the case of Siegel modular forms
(cf. [Kr 86, Satz].) Thus we conclude this lemma. �

We define a matrix

B2,n+1(X2,X3, . . . , Xn) :=
n∏

l=2

Bl,l+1(Xl) ,

which entries are in C[X±
2 , . . . , X±

n ]. Then we have

(ϕ(T0,n(p
2)), . . . , ϕ(Tn,0(p

2))) = (ϕ(T0,1(p
2)), ϕ(T1,0(p

2)))B2,n+1(X2, . . . , Xn) .

The precise expression of ϕ(Tl,n−l(p
2)) by using the elementary symmetric polyno-

mials has been given in [Kr 86, Korollar 2].
To explain our results we define two matrices A

p,k

2,n+1 and A′
2,2n(Xp). First we define

a 2 × (n + 1) matrix

A
p,k

2,n+1 := B2,n+1(p
2−k, p3−k, . . . , pn−k) .

We remark that the matrix A
p,k

2,n+1 depends only on the prime p and the integer k > 0.
We set a 2 × 2n matrix

B ′
2,2n(X2, . . . , X2n−1) :=

(
2n−1∏
i=2

Xi

)−1

B2,2n(X2, . . . , X2n−1) .

From the definition of B2,2n(X2, . . . , X2n−1) it is not difficult to see that the entries in the
matrix B ′

2,2n(X2, . . . , X2n−1) belong to C[X2 + X−1
2 , . . . , X2n−1 + X−1

2n−1]. We define a
2 × 2n matrix

A′
2,2n(Xp) := B ′

2,2n(p
3
2 −nXp, p

5
2 −nXp, . . . , p− 3

2 +nXp) .

In Section 5.3 we will show A′
2,2n(Xp) = A′

2,2n(X
−1
p ).

3. Jacobi-Eisenstein series

The goal of this section is to show a certain relation among Jacobi-Eisenstein series
with respect to the index-shift maps Vl,n−l(p

2) (l = 0, . . . , n). In Section 4 we shall
translate such relation to the relation among Fourier-Jacobi coefficients e

(n)
k,m and will prove

Theorem 1.1.
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3.1. Definition of Jacobi-Eisenstein series.
For integers k, m and n, we define the Jacobi-Eisenstein series of weight k of index m

of degree n by

E
(n)
k,m(τ, z) :=

∑

γ∈Γ J
n,0\Γ J

n

(1|k,mγ ) ,

where we put

Γ J
n,0 :=

{(
A 0 B 0
0 1 0 0
0 0 D 0
0 0 0 1

)( 1n 0 0 μ

0 1 tμ κ
0 0 1n 0
0 0 0 1

)
∈ Γ J

n

∣∣∣∣
(

A B

0 D

)
∈ Γn,μ ∈ Z

n, κ ∈ Z

}
.

It is known that if k > n+2, then E
(n)
k,m converges and belongs to J

(n)
k,m (cf. Ziegler [Zi 89].)

The purpose of this section is to show that E
(n)
k,m|Vl,n−l (p

2) is a linear combination of

three forms E
(n)

k, m

p2
|U(p2), E

(n)
k,m|U(p) and E

(n)

k,mp2 .

LEMMA 3.1. Let m and n be positive integers. Then the forms
{
E

(n)

k, m

d2
|U(d)

}
d

are

linearly independent, where d runs over all positive integers such that d2|m.

Proof. Let Φ be the Siegel Φ-operator for Jacobi forms introduced in Section 2.5. It
follows from the definition that Φ(E

(n)
k,m) = E

(n−1)
k,m . Hence it is enough to show that the

forms
{
E

(1)

k, m

d2
|U(d)

}
d

are linearly independent.

Let E
(1)
k,m(τ, z) =∑n′,r c(n′, r) e(n′τ + rz) be the Fourier expansion of E

(1)
k,m. We call

c(n′, r) the (n′, r)-th Fourier coefficient of E
(1)
k,m. Let n′ > 0 and r ≥ 0 be integers such that

4n′m − r2 > 0. Then it is known that the (n′, r)-th Fourier coefficient of E
(1)
k,m is not zero

(cf. Eichler-Zagier [E-Z 85, p.17–p.20].) On the other hand, for any d > 1 such that d2|m,
the (n′, r)-th Fourier coefficient of E

(1)

k, m

d2
|U(d) is zero unless d|r . Therefore we obtain this

lemma. �
3.2. Definition of a form K

(n)
i,j .

We quote some symbols from [Ya 89]. For a fixed prime p and for 0 ≤ i ≤ j ≤ n, we
put

δi,j := diag(1i , p1j−i , p
21n−j )

and

δi := δi,n = diag(1i , p1n−i ) .

And for x = diag(0i , x2,2, 0n−j ) with x2,2 = t x2,2 ∈ Mj−i (Z) we set

δi,j (x) :=
(

p2δ−1
i,j x

0n δi,j

)
.
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We denote by Γn,0 the set of all matrices

(
A B

0n D

)
in Γn. We set

Γ (δi,j ) :=
{(

A B

0n D

)
∈ Γn,0

∣∣∣∣ A ∈ δi,j GLn(Z) δ−1
i,j

}
,

Γ (δi) :=
{(

A B

0n D

)
∈ Γn,0

∣∣∣∣ A ∈ δiGLn(Z) δ−1
i

}

and put a subgroup Γ (δi,j (x)) of Γ (δi,j ):

Γ (δi,j (x)) := Γn ∩ (δi,j (x)−1Γn,0 δi,j (x)) .

For λ ∈ Zn and for M ∈ GSp+
n (R) ∩ M2n(Z) we put

j (k,m; M,λ)(τ, z) := (1|k,m[12n, (λ, 0), 0][M, (0, 0), 0])(τ, z) .

For two matrices x = diag(0i , x2,2, 0n−j ) and y = diag(0j , y2,2, 0n−j ) such that
x2,2 = t x2,2, y2,2 = t y2,2 ∈ Mj−i (Z), we say they are equivalent and write [x] = [y],

if there exists a matrix u =
⎛
⎝

u1,1 u1,2 u1,3
p u2,1 u2,2 u2,3

p2u3,1 p u3,2 u3,3

⎞
⎠ ∈ δi,j GLn(Z)δ−1

i,j ∩ GLn(Z) which

satisfies u2,2x2,2
tu2,2 ≡ y2,2 mod p, where u2,2 ∈ Mj−i (Z), u1,1 ∈ Mi(Z) and u3,3 ∈

Mn−j (Z).
We define a function Kα

i,j on (τ, z) ∈ Hn × Cn by

Kα
i,j := Kα

i,j,m,p(τ, z) =
∑
[x]

rankp(x)=α

∑
M∈Γ (δi,j (x))\Γn

∑
λ∈Zn

j (k,m; δi,j (x)M, λ)(τ, z) ,

where in the first summation on the RHS, [x] runs over all equivalence classe which satisfy
rankp(x) = α. A straightforward calculation shows that the function φ defined by

φ(τ, z) =
∑

M∈Γ (δi,j (x))\Γn

∑
λ∈Zn

j (k,m; δi,j (x)M, λ)(τ, z)

satisfies the transformation formula φ|k,mp2γ = φ for any element γ ∈ Γ J
n . Moreover,

the convergence of φ can be shown as in [Zi 89, Theorem 2.1]. Hence Kα
i,j belongs to

J
(n)

k,mp2 . In Lemma 3.8 we will show that the form Kα
i,j is a linear combination of three

forms E
(n)

k, m

p2
|U(p2), E

(n)
k,m|U(p) and E

(n)

k,mp2 .

PROPOSITION 3.2 (Yamazaki [Ya 89]). The double coset Γn

(
δl 0n

0n p2δ−1
l

)
Γn is a

disjoint union

Γn

(
δl 0n

0n p2δ−1
l

)
Γn =

⋃
i,j

0≤i≤j≤n

⋃
[x]

rankp(x)=l−n−i+j

Γn,0δi,j (x)Γn ,

where in the last union on the RHS, [x] runs over all equivalence classes which satisfy
rankp(x) = l − n − i + j .
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Proof. This proposition has been shown in [Ya 89, Corollary 2.2]. �
LEMMA 3.3. We obtain

E
(n)
k,m|Vl,n−l(p

2) =
∑
i,j

0≤i≤j≤n

K
l−i−n+j
i,j .

Proof. It follows from Proposition 3.2 and from the definitions of E
(n)
k,m, Vl,n−l (p

2)

and Kα
i,j . �

LEMMA 3.4. If p2|m, then

Kα
i,j = p−k(2n−i−j)+(n−j)(n−i+1)

∑
x=diag(0i,x2,2,0n−j )

x2,2=t x2,2∈Mj−i (Z) mod p

rankp(x2,2)=α

∑
M∈Γ (δi,j )\Γn

×
∑

λ∈(p2Z)i×(pZ)j−i×Zn−j

j

(
k,

m

p2 ;
(

1n p−1x

0 1n

)
M,λ

)
(τ, p2z) .

If p2 � |m, then

Kα
i,j = p−k(2n−i−j)+(n−j)(n−i+1)

∑
x=diag(0i,x2,2,0n−j )

x2,2=t x2,2∈Mj−i (Z) mod p

rankp(x2,2)=α

∑
M∈Γ (δi,j )\Γn

×
∑

λ∈(pZ)i×Zn−i

j

(
k,m;

(
1n p−1x

0 1n

)
M,λ

)
(τ, pz) .

We remark that this lemma has been shown for the case m = 1 by Yamazaki [Ya 89].

Proof. The proof of this lemma is an analogue to [Ya 89]. If p2 � |m, then the proof is
similar to the case m = 1. Hence we assume p2|m and shall prove this lemma.

We put U :=
{(

1n s
0 1n

)
| s =t s ∈ Mn(Z)

}
. Then the set

U ′ :=
{(

1n s
0 1n

) ∣∣∣∣ s =
(

0 0 0
0 0 s23
0 t s23 s33

)
mod p, s23 ∈ Mj−i,n−j (Z), s33 = t s33 ∈ Mn−j (Z)

}

is a complete set of representatives of Γ (δi,j (x))\Γ (δi,j (x))U . Thus
∑
[x]

rankp(x)=α

∑
M∈Γ (δi,j (x))\Γn

∑
λ∈Zn

j (k,m; δi,j (x)M, λ)(τ, z)

=
∑
[x]

rankp(x)=α

∑
M∈Γ (δi,j (x))U\Γn

∑
λ∈Zn

j (k,m; δi,j (x)M, λ)(τ, z)

×
∑

(
1n s
0 1n

)
∈U ′

e(p2mtλδ−1
i,j sδ−1

i,j λ)
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= p(j−i)(n−j)+(n−j)(n−j+1)
∑
[x]

rankp(x)=α

∑
M∈Γ (δi,j (x))U\Γn

∑
λ∈Zn

× j (k,m; δi,j (x)M, λ)(τ, z) .

We remark

j (k,m; δi,j (x), λ)(τ, z) = p−k(2n−i−j)e
(
mtλ(p2δ−1

i,j τ δ−1
i,j + p−1x)λ + 2p2mtλδ−1

i,j z
)
.

Hence if we put λ′ = p2δ−1
i,j λ, then λ′ ∈ (p2Z)i × (pZ)j−i × Zn−j and we have

j (k,m; δi,j (x), λ)(τ, z) = p−k(2n−i−j)j (k, p−2m;
(

1n p−1x
0 1n

)
, λ′).(τ, p2z) .

Thus

Kα
i,j = p−k(2n−i−j)+(n−j)(n−i+1)

∑
[x]

rankp(x)=α

∑
M∈Γ (δi,j (x))U\Γn

×
∑

λ′∈(p2Z)i×(pZ)j−i×Zn−j

j (k, p−2m;
(

1n p−1x
0 1n

)
M,λ′)(τ, p2z)

= p−k(2n−i−j)+(n−j)(n−i+1)
∑
[x]

rankp(x)=α

∑
(

u 0
0 t u

−1

)
∈Γ (δi,j (x))U\Γ (δi,j )

∑
M∈Γ (δi,j )\Γn

×
∑

λ′∈(p2Z)i×(pZ)j−i×Zn−j

j (k, p−2m;
(

1n p−1u−1xtu
−1

0 1n

)
M, tuλ′)(τ, p2z) .

Here, the matrix u in the above summation belongs to δi,j GL(n, Z)δ−1
i,j ∩ GL(n, Z). Hence

tu stabilizes the lattice (p2Z)i × (pZ)j−i × Zn−j . Furthermore, the summation over the
equivalence classes [x] and the summation over the representatives of Γ (δi,j (x))U\Γ (δi,j )

turn into the summation over x = diag(0, x2,2, 0) such that x2,2 = t x2,2 ∈ Mj−i (Z) mod p

and rankp(x) = α. Therefore we conclude this lemma. �
3.3. Summation Gn

j (m, λ).
We define

gp(n, i) :=

⎧
⎪⎨
⎪⎩

∏i
a=1(p

n−a+1 − 1)(pa − 1)−1 if 1 ≤ i ≤ n ,

1 if i = 0 ,

0 otherwise.

For any λ ∈ Z
n and for 0 ≤ j ≤ n we define

Gn
j (m, λ) :=

∑

x=t x∈Mn(Z/pZ)
rankpx=j

e

(
m

p

tλxλ

)
.
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PROPOSITION 3.5. For m ∈ Z and for λ ∈ Zn we have

Gn
j (m, λ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

p
� j

2 �
(
� j

2 �+1
)
gp(n, j)

j∏
α=1

α : odd

(pα − 1) if mλ ≡ 0 mod p,

(−1)jp
� j

2 �
(
� j

2 �+1
)
gp

(
n − 1, 2� j

2�
) j−1∏

α=1
α : odd

(pα − 1) if mλ �≡ 0 mod p.

Proof. If p|m, then Gn
j (m, λ) = Gn

j (1, 0). And if p � |m, then Gn
j (m, λ) = Gn

j (1, λ).
Hence we need to calculate the case m = 1. The calculation of Gn

j (1, λ) has already been
obtained by [Ya 89, Lemma 3.1]. �
3.4. Some cardinalities.

In this subsection we will give some lemmas to calculate Kα
i,j .

For 0 ≤ i ≤ j ≤ n, we put

Hi := δiGLn(Z)δ−1
i ∩ GLn(Z) ,

Hi,j := δi,j GLn(Z)δ−1
i,j ∩ GLn(Z) .

We define two sets

Si :=
{( ∗ ∗

p tb ∗
)−1

∈ GLn(Z)

∣∣∣∣∣ b ∈ Z
i

}
,

Si,j :=
{( ∗ ∗ ∗

p2t b1 p tb2 ∗
)−1

∈ GLn(Z)

∣∣∣∣∣ b1 ∈ Z
i , b2 ∈ Z

j−i

}
,

where b, b1 and b2 in the above sets are column vectors.

LEMMA 3.6. We have

|Hi\GLn(Z)| = gp(n, i) ,

|Hi\Si | = gp(n − 1, i) .

Furthermore, we have∣∣Hi,j\GLn(Z)
∣∣= pi(n−j)gp(n, j) gp(j, i) ,∣∣Hi,j\Si

∣∣= pi(n−j)gp(n − 1, i) gp(n − i, n − j) ,∣∣Hi,j\Si,j

∣∣= pi(n−1−j)gp(n − 1, j) gp(j, i) .

Proof. These are elementary. We leave details to the reader. �

LEMMA 3.7. Let B(λ) be a function on λ ∈ Zn. We put L0 := (p2Z
)i × (pZ)j−i ×

Zn−j . We assume that the sum
∑

A∈Hi,j \GLn(Z)

∑
λ∈L0

B(tAλ) converges absolutely. Then we

have ∑
A∈Hi,j \GLn(Z)

∑
λ∈L0

B(tAλ) = a0

∑
λ∈Zn

B(λ) + a1

∑
λ∈Zn

B(pλ) + a2

∑
λ∈Zn

B(p2λ) ,
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where a0, a1 and a2 are integers which satisfy

a0 + a1 + a2 = ∣∣Hi,j\GLn(Z)
∣∣ , a0 + a1 = ∣∣Hi,j\Si

∣∣ and a0 = ∣∣Hi,j\Si,j

∣∣ .

Proof. For λ ∈ Zn we denote by gcd(λ) the greatest common divisor of all entries in
λ. Let X be a complete set of representatives of Hi,j\GLn(Z). For λ ∈ Zn we define

N(λ) := ∣∣{A ∈ X | λ ∈ tAL0
}∣∣ .

We remark that N(λ) does not depend on the choice of X. To show this lemma, it is enough
to calculate N(λ) for given λ ∈ Zn.

By the definition of Si,j and Si , we have

Si,j = {A ∈ GLn(Z) | t (0, . . . , 0, 1) ∈ tAL0
}

,

Si = {A ∈ GLn(Z) | t (0, . . . , 0, p) ∈ tAL0
}

.

Hence we have N(t (0, . . . , 0, 1)) = |Hi,j\Si,j | and N(t (0, . . . , 0, p)) = |Hi,j\Si |. Fur-
thermore, we have N(t (0, . . . , 0, p2)) = |Hi,j\GLn(Z)|.

For any λ ∈ Zn, there exists a matrix B ∈ GLn(Z) such that tBλ = gcd(λ)
t (0, . . . , 0, 1). Thus we have N(λ) = N(gcd(λ)t (0, . . . , 0, 1)). Hence N(λ) equals to∣∣Hi,j\Si,j

∣∣, |Hi,j\Si | or
∣∣Hi,j\GLn(Z)

∣∣, according as gcd(p2, gcd(λ)) = 1, p or p2.
Therefore we obtain this lemma. �
3.5. Calculation of the function Kα

i,j .
For simplicity we define

Gn
j (m) := Gn

j (m, λ) ,

where λ ∈ Zn is an vector which satisfy λ �≡ 0 mod p. Due to Proposition 3.5, the value
Gn

j (m) does not depend on the choice of λ.

LEMMA 3.8. If p2|m, then we have

Kα
i,j = p−k(2n−i−j)+(n−j)(n−i+1)Gj−i

α (0)

×{a0E
(n)

k, m

p2
(τ, p2z) + a1E

(n)
k,m(τ, pz) + a2E

(n)

k,mp2(τ, z)
}
,

where

a0 + a1 + a2 = ∣∣Hi,j\GLn(Z)
∣∣ , a0 + a1 = ∣∣Hi,j\Si

∣∣ and a0 = ∣∣Hi,j\Si,j

∣∣ .

If p2 � |m, then we have

Kα
i,j = p−k(2n−i−j)+(n−j)(n−i+1)

{
(Gj−i

α (0) − Gj−i
α (m))

[
Γ (δj ); Γ (δi,j )

]

×{gp(n − 1, j)E
(n)
k,m(τ, pz) + pn−j gp(n − 1, j − 1)E

(n)

k,mp2(τ, z)
}

+ Gj−i
α (m)

[
Γ (δi); Γ (δi,j )

]

×{gp(n − 1, i)E
(n)
k,m(τ, pz) + pn−igp(n − 1, i − 1)E

(n)

k,mp2(τ, z)
}}

,

where Γ (δi,j ) and Γ (δi) are groups denoted in Section 3.2.
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In particular, the function Kα
i,j is a linear combination of E

(n)

k, m

p2
|U(p2), E

(n)
k,m|U(p)

and E
(n)

k,mp2 .

Proof. First we assume p2|m. In this case the sum G
j−i
α (m, λ′) equals to G

j−i
α (0)

for any λ′ ∈ Zj−i . Hence due to Lemma 3.4, we obtain

Kα
i,j = p−k(2n−i−j)+(n−j)(n−i+1)Gj−i

α (0)
∑

M∈Γ (δi,j )\Γn

×
∑

λ∈(p2Z)i×(pZ)j−i×Zn−j

j

(
k,

m

p2 ; M,λ

)
(τ, p2z) .

If {Al}l is a complete set of representatives of Hi,j\GLn(Z), then the set

{(
Al 0
0 tAl

−1

)}

l
is a complete set of representatives of Γ (δi,j )\Γn,0. Hence we have

Kα
i,j = p−k(2n−i−j)+(n−j)(n−i+1)Gj−i

α (0)
∑

M∈Γn,0\Γn

∑
A∈Hi,j \GLn(Z)

×
∑

λ∈(p2Z)i×(pZ)j−i×Zn−j

j

(
k,

m

p2 ; M, tAλ

)
(τ, p2z) .

From Lemma 3.7 we obtain

Kα
i,j = p−k(2n−i−j)+(n−j)(n−i+1)Gj−i

α (0)
∑

M∈Γn,0\Γn

{
a0

∑
λ∈Zn

j

(
k,

m

p2 ; M,λ

)
(τ, p2z)

+a1

∑
λ∈Zn

j

(
k,

m

p2 ; M,pλ

)
(τ, p2z) + a2

∑
λ∈Zn

j

(
k,

m

p2 ; M,p2λ

)
(τ, p2z)

}
.

Due to the two identities

j

(
k,

m

p2
; M,pλ

)
(τ, p2z) = j(k,m; M,λ)(τ, pz)

and

j

(
k,

m

p2 ; M,p2λ

)
(τ, p2z) = j

(
k,mp2; M,λ

)
(τ, z) ,

we have

Kα
i,j = p−k(2n−i−j)+(n−j)(n−i+1)Gj−i

α (0)

×{a0E
(n)

k, m

p2
(τ, p2z) + a1E

(n)
k,m(τ, pz) + a2E

(n)

k,mp2(τ, z)
}
.

Thus we showed this lemma for the case p2|m.
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We now assume p2 � |m. In this case the sum G
j−i
α (m, λ′) equals to G

j−i
α (0) or

G
j−i
α (m), according as λ′ ∈ pZj−i or λ′ �∈pZj−i . Thus due to Lemma 3.4 we have

Kα
i,j = p−k(2n−i−j)+(n−j)(n−i+1)

⎧
⎨
⎩(Gj−i

α (0) − Gj−i
α (m))

∑
M∈Γ (δi,j )\Γn

∑

λ∈(pZ)j×Zn−j

×j(k,m; M,λ)(τ, pz) + Gj−i
α (m)

∑
M∈Γ (δi,j )\Γn

∑

λ∈(pZ)i×Zn−i

j (k,m; M,λ)(τ, pz)

⎫⎬
⎭ .

Here we have∑
M∈Γ (δi,j )\Γn

∑

λ∈(pZ)j×Zn−j

j (k,m; M,λ)(τ, pz)

= [Γ (δj ); Γ (δi,j )
] ∑

M∈Γ (δj )\Γn

∑

λ∈(pZ)j×Zn−j

j (k,m; M,λ)(τ, pz)

= [Γ (δj ); Γ (δi,j )
] ∑

M∈Γn,0\Γn

∑
A∈Hj \GLn(Z)

∑

λ∈(pZ)j×Zn−j

j
(
k,m; M, tAλ

)
(τ, pz)

= [Γ (δj ); Γ (δi,j )
] {

gp(n − 1, j)E
(n)
k,m(τ, pz) + pn−j gp(n − 1, j − 1)E

(n)

k,mp2(τ, z)
}

and ∑
M∈Γ (δi,j )\Γn

∑

λ∈(pZ)i×Zn−i

j (k,m; M,λ)(τ, pz)

= [Γ (δi); Γ (δi,j )
] {

gp(n − 1, i)E
(n)
k,m(τ, pz) + pn−igp(n − 1, i − 1)E

(n)

k,mp2(τ, z)
}
.

Hence we showed this lemma also for the case p2 � |m. �
The following proposition has been shown by Yamazaki [Ya 89, Theorem 3.3] for the

case m = 1. We generalize it for any positive-integer m.

PROPOSITION 3.9. For any natural number l (0 ≤ l ≤ n), the form E
(n)
k,m|Vl,n−l (p

2)

is a linear combination of E
(n)

k, m

p2
|U(p2), E

(n)
k,m|U(p) and E

(n)

k,mp2 over C.

Proof. This proposition follows from Lemma 3.3 and Lemma 3.8. �
3.6. Relation among Jacobi-Eisenstein series.

Now we shall calculate the coefficients in the linear combinations in Proposition 3.9.
This calculation can be directly done by using the values of Gα

j−i (m) and gp(a, b). How-
ever, we will here use the Siegel Φ-operators for simplicity.
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We set

⎛
⎝

a0,m,p,k

a1,m,p,k

a2,m,p,k

⎞
⎠ :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎝

p−2k+2

p−k(p − 1)

1

⎞
⎟⎠ if p2|m ,

⎛
⎜⎝

0

p−2k+2 + p−k+1 − p−k

1

⎞
⎟⎠ if p2 � |m and p|m ,

⎛
⎜⎝

0

p−2k+2 − p−k

p−k+1 + 1

⎞
⎟⎠ if p � |m .

LEMMA 3.10. For the Jacobi-Eisenstein series E
(1)
k,m of degree 1, we have the iden-

tity

E
(1)
k,m|

(
V0,1(p

2), V1,0(p
2)
)

= (E(1)

k, m

p2
|U(p2), E

(1)
k,m|U(p),E

(1)

k,mp2

)
⎛
⎝

0 a0,m,p,k

p−k a1,m,p,k

0 a2,m,p,k

⎞
⎠ .

Proof. Since Γ1(p
212)Γ1 = Γ1(p

212), the relation E
(1)
k,m|V0,1(p

2) = p−kE
(1)
k,m|U(p)

is obvious.
From Lemma 3.3 we obtain

E
(1)
k,m|V1,0(p

2) = K0
0,0 + K1

0,1 + K0
1,1 .

Due to Lemma 3.6 and Lemma 3.8, we have

K0
0,0 =

⎧
⎨
⎩

p−2k+2E
(1)

k, m

p2
(τ, p2z) if p2|m ,

p−2k+2E
(1)
k,m(τ, pz) if p2 � |m ,

K1
0,1 =

{
p−k(p − 1)E

(1)
k,m(τ, pz) if p|m ,

p−k+1E
(1)

k,mp2(τ, z) − p−kE
(1)
k,m(τ, pz) if p � |m ,

K0
1,1 = E

(1)

k,mp2(τ, z) .

Therefore this lemma follows. �
Let Bl,l+1(Xl), B2,n+1(X2, . . . , Xn) and A

p,k
2,n+1 be the matrices introduced in Sec-

tion 2.6. We recall A
p,k

2,n+1 = B2,n+1(p
2−k, p3−k, . . . , pn−k) and the matrix A

p,k

2,n+1 has the
size 2 times (n + 1).

The following proposition has been shown by Yamazaki [Ya 89, Theorem 4.1] for the
case m = 1. We generalize it for any positive-integer m.

PROPOSITION 3.11. For any Jacobi-Eisenstein series E
(n)
k,m of degree n, the follow-

ing identity holds
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E
(n)
k,m|(V0,n(p

2), . . . , Vn,0(p
2)
)

= (E(n)

k, m

p2
|U(p2), E

(n)
k,m|U(p),E

(n)

k,mp2

)
⎛
⎝

0 a0,m,p,k

p−k a1,m,p,k

0 a2,m,p,k

⎞
⎠A

p,k

2,n+1 .

Proof. Let m be a positive-integer. Let Φ be the Siegel Φ-operator for Jacobi forms
introduced in Section 2.5. From Lemma 2.2 and from the fact that Φ(E

(n)
k,m) = E

(n−1)
k,m , we

have

Φ(E
(n)
k,m|(V0,n(p

2), . . . , Vn,0(p
2))) = E

(n−1)
k,m |(V0,n−1(p

2), . . . , Vn−1,0(p
2))Bn,n+1(p

n−k) .

Hence by using Siegel Φ-operator n − 1 times and by using Lemma 3.10, we have

Φ(n−1)(E
(n)
k,m|(V0,n(p

2), . . . , Vn,0(p
2)))

= E
(1)
k,m|(V0,1(p

2), V1,0(p
2))B2,n+1(p

2−k, p3−k, . . . , pn−k)

= (E(1)

k, m

p2
|U(p2), E

(1)
k,m|U(p),E

(1)

k,mp2

)
⎛
⎝

0 a0,m,p,k

p−k a1,m,p,k

0 a2,m,p,k

⎞
⎠B2,n+1(p

2−k, p3−k, . . . , pn−k) .

On the other hand, due to Proposition 3.9, there exists a 3 × (n + 1) matrix Bk
n which

satisfies

E
(n)
k,m|(V0,n(p

2), . . . , Vn,0(p
2)) = (E(n)

k, m

p2
|U(p2), E

(n)
k,m|U(p),E

(n)

k,mp2

)
Bk

n.

From this identity we have

Φ(n−1)(E
(n)
k,m|(V0,n(p

2), . . . , Vn,0(p
2))) = (E(1)

k, m

p2
|U(p2), E

(1)
k,m|U(p),E

(1)

k,mp2

)
Bk

n .

Because three forms E
(1)

k, m

p2
|U(p2), E

(1)
k,m|U(p) and E

(1)

k,mp2 are linearly independent

(see Lemma 3.1), we obtain

Bk
n =

⎛
⎝

0 a0,m,p,k

p−k a1,m,p,k

0 a2,m,p,k

⎞
⎠B2,n+1(p

2−k, p3−k, . . . , pn−k) =
⎛
⎝

0 a0,m,p,k

p−k a1,m,p,k

0 a2,m,p,k

⎞
⎠A

p,k

2,n+1 .

Thus this proposition follows for any positive-integer m. �

4. Generalized Maass relation for Siegel-Eisenstein series

The purpose of this section is to prove Theorem 1.1. Let e
(n)
k,m be the m-th Fourier-

Jacobi coefficient of Siegel-Eisenstein series E
(n+1)
k , which is introduced in Section 1.2.

In this section we write
∑
d |m

for
∑
d>0
d |m

, and
∑

d2|m
for

∑
d>0
d2|m

, for simplicity.
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4.1. Fourier-Jacobi coefficients.
We define an arithmetic function

gk(m) :=
∑

d2|m
μ(d) σk−1

(m

d2

)
,

where μ(d) is the Möbius function and we put σk−1(m) :=
∑
d |m

dk−1 as usual.

LEMMA 4.1. We obtain

gk(mp) =
{(

pk−1 + 1
)
gk(m) if p � |m ,

pk−1gk(m) if p|m .

Proof. The function gk(m) is a multiplicative function, namely gk(ml) = gk(m)gk(l)

if gcd(m, l) = 1. Hence we obtain the identity gk(m) = mk−1
∏

q : prime
q|m

(
1 + 1

qk−1

)
. This

lemma follows from this identity. �
The following proposition is a special case of a result in [Bo 83, Satz 7].

PROPOSITION 4.2 (Boecherer [Bo 83]). We have

e
(n)
k,m =

∑

d2|m
gk

( m

d2

)
E

(n)

k, m

d2
|U(d) .

Proof. For the proof of this proposition, the reader is referred to [Ya 86, Theorem
5.5]. �

PROPOSITION 4.3. For any n > 0 and for any m > 0 we have the identity

∑

d2|m
gk

(m

d2

) (
E

(n)

k, m

p2d2
|U(p2d),E

(n)

k, m

d2
|U(pd),E

(n)

k,
mp2

d2

|U(d)
)
⎛
⎜⎝

a0, m

d2 ,p,k

a1, m

d2 ,p,k

a2, m

d2 ,p,k

⎞
⎟⎠

=
(
e
(n)

k, m

p2
|U(p2), e

(n)
k,m|U(p), e

(n)

k,mp2

)
⎛
⎝

1
p−k(−1 + p δp|m)

p−2k+2

⎞
⎠ ,

where δp|m is 1 or 0, according as p|m or p � |m.

Proof. Due to Proposition 4.2 and Lemma 4.1, this proposition is obtained by straight-
forward calculation as follows. We set nine functions

Eg1 :=
∑

d2|m
m

d2 ≡0 (p2)

p−2k+2E
(n)

k, m

p2d2
|U(p2d) g

( m

d2

)
,

Eg2 :=
∑

d2|m
m

d2 ≡0 (p2)

p−k(p − 1)E
(n)

k, m

d2
|U(pd) g

( m

d2

)
,
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Eg3 :=
∑

d2|m
m

d2 ≡0 (p2)

E
(n)

k,
p2m

d2

|U(d) g
( m

d2

)
,

Eg4 :=
∑

d2|m
m

d2 ≡0 (p)

m

d2 �≡0 (p2)

p−2k+2E
(n)

k, m

d2
|U(pd) g

( m

d2

)
,

Eg5 :=
∑

d2|m
m

d2 ≡0 (p)

m

d2 �≡0 (p2)

(p−k+1 − p−k)E
(n)

k, m

d2
|U(pd) g

( m

d2

)
,

Eg6 :=
∑

d2|m
m

d2 ≡0 (p)

m

d2 �≡0 (p2)

E
(n)

k,
p2m

d2

|U(d) g
(m

d2

)
,

Eg7 :=
∑

d2|m
m

d2 �≡0 (p)

p−2k+2E
(n)

k, m

d2
|U(pd) g

( m

d2

)
,

Eg8 :=
∑

d2|m
m

d2 �≡0 (p)

(−p−k)E
(n)

k, m

d2
|U(pd) g

( m

d2

)
,

and

Eg9 :=
∑

d2|m
m

d2 �≡0 (p)

(p−k+1 + 1)E
(n)

k,
p2m

d2

|U(d) g
(m

d2

)
.

If ordpm ≡ 1 (2), then

∑

d2|m
gk

( m

d2

) (
E

(n)

k, m

p2d2
|U(p2d),E

(n)

k, m

d2
|U(pd),E

(n)

k,
mp2

d2

|U(d)
)
⎛
⎜⎝

a0, m

d2 ,p,k

a1, m

d2 ,p,k

a2, m

d2 ,p,k

⎞
⎟⎠

= Eg1 + Eg2 + Eg3 + Eg4 + Eg5 + Eg6 ,

and

Eg1 = e
(n)

k, m

p2
|U(p2) ,

Eg2 + Eg5 = p−k(p − 1)e
(n)
k,m|U(p) ,

Eg3 + Eg4 + Eg6 = p−2k+2e
(n)

k,mp2 .
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Because of the assumption ordpm ≡ 1 (2), we have δp|m = 1.
Hence this proposition follows for the case ordpm ≡ 1 (2).
If ordpm ≡ 0 (2), then

∑

d2|m
gk

(m

d2

) (
E

(n)

k, m

p2d2
|U(p2d),E

(n)

k, m

d2
|U(pd),E

(n)

k,
mp2

d2

|U(d)
)
⎛
⎜⎝

a0, m

d2 ,p,k

a1, m

d2 ,p,k

a2, m

d2 ,p,k

⎞
⎟⎠

= Eg1 + Eg2 + Eg3 + Eg7 + Eg8 + Eg9,

and

Eg1 = δp2|m

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

e
(n)

k, m

p2
|U(p2) + p−k+1

∑

d2|m
m

d2 �≡0 (p2)

E
(n)

k, m

d2
|U(pd) g

( m

d2

)
⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

,

Eg2 + Eg8 = δp2|m

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

p−k+1e
(n)
k,m|U(p) − p−k+1

∑

d2|m
m

d2 �≡0 (p2)

E
(n)

k, m

d2
|U(pd) g

( m

d2

)
⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

−p−ke
(n)
k,m|U(p),

Eg3 + Eg7 + Eg9 = p−2k+2e
(n)

k,mp2 .

Here δp2|m is defined by 1 or 0, according as p2|m or p2 � |m. Because of the assumption
ordpm ≡ 0 (2), we have δp2|m = δp|m.

Therefore this proposition follows also for the case ordpm ≡ 0 (2). �
4.2. Proof of Theorem 1.1.

Now we shall prove Theorem 1.1. For any prime p and for any positive-integer d ,
the operators Vl,n−l (p

2) and U(d) are compatible. Hence from Proposition 4.2, Proposi-
tion 3.11 and Proposition 4.3, we have

e
(n)
k,m|(V0,n(p

2), . . . , Vn,0(p
2)
)

=
∑

d2|m
gk

(m

d2

) (
E

(n)

k, m

d2
|
(
V0,n(p

2), . . . , Vn,0(p
2)
)

|U(d)
)

=
∑

d2|m
gk

(m

d2

) (
E

(n)

k, m

p2d2
|U(p2d),E

(n)

k, m

d2
|U(pd),E

(n)

k,
mp2

d2

|U(d)
)

×
⎛
⎜⎝

0 a0, m

d2 ,p,k

p−k a1, m

d2 ,p,k

0 a2, m

d2 ,p,k

⎞
⎟⎠A

p,k

2,n+1
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=
(
e
(n)

k, m

p2
|U(p2), e

(n)
k,m|U(p), e

(n)

k,mp2

)
⎛
⎝

0 1
p−k p−k(−1 + p δp|m)

0 p−2k+2

⎞
⎠A

p,k

2,n+1 .

Thus we obtain Theorem 1.1.

5. Generalized Maass relation for Siegel cusp forms

In this section we shall show Theorem 1.2, Theorem 1.3 and Corollary 1.4. Let φm ∈
J

(2n−1)
k+n,m be the m-th Fourier-Jacobi coefficient of the Duke-Imamoglu-Ibukiyama-Ikeda lift

F stated in Theorem 1.2.
In this section the letters p and q are reserved for prime numbers. For example, the

symbol
∏

p|N denotes the product over primes p such that p|N .

5.1. Fourier coefficients of φm.
We take the Fourier expansion of φm:

φm(τ, z) =
∑
N,R

Cm(N,R)e(Nτ)e(tRz) ,

where in the summation N ∈ Sym∗
2n−1 and R ∈ Z2n−1 run over all elements which satisfy

4Nm − RtR > 0. We set M =
(

N 1
2R

1
2
tR m

)
. We denote by DM and by fM the integers

such that (−1)n det(2M) = DMf 2
M , where DM is a fundamental discriminant and fM is a

positive integer. Then the (N,R)-th Fourier coefficient Cm(N,R) of φm is

Cm(N,R) = C(|DM |)f k− 1
2

M

∏
p|fM

F̃p(M; αp) ,

where C(|DM |) is the |DM |-th Fourier coefficient of h which corresponds to g by Shimura
correspondence, and F̃p(M; Xp) ∈ C[Xp + X−1

p ] is a certain Laurent polynomial intro-
duced in [Ik 01, §1].

5.2. Matrix A
p,k+n

2,2n .

Let A
p,k

2,n+1 and A′
2,2n(Xp) be the matrices introduced in Section 2.6.

LEMMA 5.1. For any even integer k we obtain

A
p,k+n

2,2n = p−(n−1)(2k−1)A′
2,2n(p

−(k− 1
2 )) .

Proof. From the definition of A
p,k

2,n+1 we get

A
p,k+n

2,2n = B2,2n(p
2−n−k, p3−n−k, . . . , pn−1−k)

=
(

2n−1∏
i=2

pi−n−k

)
B ′

2,2n(p
3
2 −n−(k− 1

2 ), p
5
2 −n−(k− 1

2 ), . . . , p− 3
2 +n−(k− 1

2 ))

= p−(n−1)(2k−1) A′
2,2n(p

−(k− 1
2 )) . �
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5.3. Proof of Theorem 1.2.
Let g ∈ GSp+

2n−1(R) ∩ M4n−2(Z) be a matrix such that the similitude of g is ν(g) =
p2. We write the coset decomposition Γ2n−1gΓ2n−1 =

⋃
i

Γngi with gi =
(

Ai Bi

02n−1 Di

)
.

We take the Fourier expansion of φm|V (Γ2n−1gΓ2n−1):

(φm|V (Γ2n−1gΓ2n−1)) (τ, z) =
∑
N,R

Cm(g; N,R) e(Nτ) e(tRz) ,

where in the summation N ∈ Sym∗
2n−1 and R ∈ Z2n−1 run over all elements which satisfy

4Nmp2 − RtR > 0.
We now fix N ∈ Sym∗

2n−1 and R ∈ Z2n−1 such that 4Nmp2 − RtR > 0. And we set

M1 =
(

N 1
2p

R
1

2p
tR m

)
.

LEMMA 5.2. The (N,R)-th Fourier coefficient Cm(g;N,R) of φm|V (Γ2n−1gΓ2n−1)

is

Cm(g; N,R) = p−(2n−1)(k− 1
2 )C

(|DM1 |
)
f

k− 1
2

M1

∑
i

det D
−n− 1

2
i

×
∏

q|f
M1 [diag(p−1t Di ,1)]

F̃q

(
M1[diag(p−1 tDi, 1)]; αq

)
.

Here we regard F̃q

(
M1[diag(p−1tDi, 1)]; Xq

)
as 0, if M1[diag(p−1tDi, 1)] �∈ Sym∗

2n.

Proof. From the definition of V (Γ2n−1gΓ2n−1) the (N,R)-th Fourier coefficient of
the form φm|V (Γ2n−1gΓ2n−1) is

∑
i

det D−(k+n)
i C

(|DM1,i
|) f k− 1

2
M1,i

∏
q|fM1,i

F̃q

(
M1,i; αq

)
,

where M1,i := M1[diag(p−1tDi, 1)]. Thus this lemma follows from the fact that
if M1,i is a half-integral symmetric matrix, then DM1,i

= DM1 and fM1,i
= p−(2n−1)

(det Di)fM1 . �
Now we shall prove Theorem 1.2. In the same manner as in Lemma 5.2 we obtain the

fact that the (N,R)-th Fourier coefficient of e
(2n−1)
k+n,m |V (Γ2n−1gΓ2n−1) is

p−(2n−1)(k− 1
2 )h

k+ 1
2

(|DM1 |
)
f

k− 1
2

M1

∑
i

det D
−n− 1

2
i

×
∏

q|f
M1[diag(p−1t Di ,1)]

F̃q

(
M1[diag(p−1 tDi, 1)]; qk− 1

2
)
,

where h
k+ 1

2
(|DM1 |) is the |DM1 |-th Fourier coefficient of the Cohen type Eisenstein series

of weight k + 1
2 which corresponds to the Eisenstein series of weight 2k by the Shimura

correspondence.
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By virtue of Theorem 1.1, the form e
(2n−1)
k+n,m |V (Γ2n−1gΓ2n−1) is a linear combination

of e
(2n−1)

k+n, m

p2
|U(p2), e

(2n−1)
k+n,m |U(p) and e

(2n−1)

k+n,mp2 . Hence there exist constants u0, u1 and u2,

such that

e
(2n−1)
k+n,m |V (Γ2n−1gΓ2n−1) = u0 e

(2n−1)

k+n, m

p2
|U(p2) + u1 e

(2n−1)
k+n,m |U(p) + u2 e

(2n−1)

k+n,mp2 .

We remark that the constants u0, u1 and u2 depend on the choices of p, k, m and n. The
(N,R)-th Fourier coefficient of the form of the above RHS is

u0 h
k+ 1

2

(|DM1 |
)
p−k+ 1

2 f
k− 1

2
M1

∏
q|fM0

F̃q

(
M0; qk− 1

2
)

+ u1 h
k+ 1

2

(|DM1 |
)
f

k− 1
2

M1

∏
q|fM1

F̃q

(
M1; qk− 1

2
)

+ u2 h
k+ 1

2

(|DM1 |
)
pk− 1

2 f
k− 1

2
M1

∏
q|fM2

F̃q

(
M2; qk− 1

2
)
,

where M0 =
(

N 1
2p2 R

1
2p2

tR m
p2

)
and M2 =

(
N 1

2R
1
2
tR mp2

)
. Because h

k+ 1
2

(|DM1 |
) �= 0, we

obtain

p−(2n−1)(k− 1
2 )
∑

i

det D
−n− 1

2
i

∏
q|f

M1[diag(p−1t Di ,1)]

F̃q

(
M1[diag(p−1tDi, 1)]; qk− 1

2
)

(5.1)

= u0 p−k+ 1
2
∏

q|fM0

F̃q

(
M0; qk− 1

2
)+ u1

∏
q|fM1

F̃q

(
M1; qk− 1

2
)

+ u2 pk− 1
2
∏

q|fM2

F̃q

(
M2; qk− 1

2
)
.

We denote by c0(N,R), c1(N,R) and c2(N,R) the (N,R)-th Fourier coefficients of
e
(2n−1)

k+n, m

p2
|U(p2), e

(2n−1)
k+n,m |U(p) and e

(2n−1)

k+n,mp2 , respectively. We remark c0(N,R) = 0 if

p2 � |m. Furthermore, we remark that c0(N,R) = 0 if R /∈ p2Z2n−1, and c1(N,R) = 0 if
R /∈ pZ

2n−1.

Because the forms in the set
{
E

(2n−1)
m

d2 ,k
|U(d)

}
d
, where d runs over all positive-integers

such that d2|m, are linearly independent (see Lemma 3.1) and because of Proposition 4.2,
three forms e

(2n−1)

k+n, m

p2
|U(p2), e

(2n−1)
k+n,m |U(p) and e

(2n−1)

k+n,mp2 are linearly independent.

From now on we assume p2|m for simplicity. The proof of Theorem 1.2 for the case
p2 � |m is similar to the case p2|m.

There exist pairs of matrices (Nj ,Rj ) (j = 1, 2, 3) such that

det

⎛
⎝
⎛
⎝

c0(N1, R1) c1(N1, R1) c2(N1, R1)

c0(N2, R2) c1(N2, R2) c2(N2, R2)

c0(N3, R3) c1(N3, R3) c2(N3, R3)

⎞
⎠
⎞
⎠ �= 0 .
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For j = 1, 2, 3, we define

M
(j)

0 :=
⎛
⎜⎝

Nj
1

2p2 Rj

1

2p2 Rj
m

p2

⎞
⎟⎠ , M

(j)

1 :=
⎛
⎜⎝

Nj

1

2p
Rj

1

2p
Rj m

⎞
⎟⎠ , M

(j)

2 :=
⎛
⎜⎝

Nj
1

2
Rj

1

2
Rj mp2

⎞
⎟⎠ ,

and we put a 3 × 3 matrix

C
({

(Nj ,Rj )
}
j
; {Xq}q:prime

) :=

⎛
⎜⎜⎝
∏

q|f
M

(j)
i

F̃q

(
M

(j)

i ; Xq

)
⎞
⎟⎟⎠

j=1,2,3
i=0,1,2

.

Then from the identity (5.1) we have

p−(2n−1)(k− 1
2 )
∑

i

(det Di)
−n− 1

2

×

⎛
⎜⎜⎜⎜⎝

∏
q|f

M
(1)
1 [diag(p−1t Di ,1)]

F̃q

(
M

(1)
1 [diag(p−1tDi, 1)]; qk− 1

2
)

∏
q|f

M
(2)
1 [diag(p−1t Di ,1)]

F̃q

(
M

(2)
1 [diag(p−1tDi, 1)]; qk− 1

2
)

∏
q|f

M
(3)
1 [diag(p−1t Di ,1)]

F̃q

(
M

(3)
1 [diag(p−1tDi, 1)]; qk− 1

2
)

⎞
⎟⎟⎟⎟⎠

= C
({

(Nj ,Rj )
}
j
; {qk− 1

2 }q
)
⎛
⎜⎝

u0 pk− 1
2

u1

u2 p−k+ 1
2

⎞
⎟⎠ .

Hence we obtain
∑

i

(det Di)
−n− 1

2 C
({

(Nj ,Rj )
}
j
; {qk− 1

2 }q
)−1

×

⎛
⎜⎜⎜⎜⎝

∏
q|f

M
(1)
1 [diag(p−1t Di ,1)]

F̃q

(
M

(1)
1 [diag(p−1tDi, 1)]; qk− 1

2
)

∏
q|f

M
(2)
1 [diag(p−1t Di ,1)]

F̃q

(
M

(2)
1 [diag(p−1tDi, 1)]; qk− 1

2
)

∏
q|f

M
(3)
1 [diag(p−1t Di ,1)]

F̃q

(
M

(3)
1 [diag(p−1tDi, 1)]; qk− 1

2
)

⎞
⎟⎟⎟⎟⎠

= p(2n−1)(k− 1
2 )

⎛
⎜⎝

u0 pk− 1
2

u1

u2 p−k+ 1
2

⎞
⎟⎠ .

The RHS of the above identity does not depend on the choices of (Nj ,Rj ) (j = 1, 2, 3).
Furthermore, the above identity holds for infinitely many integer k. Therefore there exist
Laurent polynomials Φi(Xp) ∈ C[Xp + X−1

p ] (i = 0, 1, 2) which are independent of the
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choices of (Nj ,Rj ) (j = 1, 2, 3), such that
∑

i

(det Di)
−n− 1

2 C
({

(Nj ,Rj )
}
j
; {Xq}q

)−1

×

⎛
⎜⎜⎜⎜⎝

∏
q|f

M
(1)
1 [diag(p−1t Di ,1)]

F̃q

(
M

(1)
1 [diag(p−1 tDi, 1)]; Xq

)
∏

q|f
M

(2)
1 [diag(p−1t Di ,1)]

F̃q

(
M

(2)
1 [diag(p−1 tDi, 1)]; Xq

)
∏

q|f
M

(3)
1 [diag(p−1t Di ,1)]

F̃q

(
M

(3)
1 [diag(p−1 tDi, 1)]; Xq

)

⎞
⎟⎟⎟⎟⎠

=
⎛
⎝

Φ0(Xp)

Φ1(Xp)

Φ2(Xp)

⎞
⎠ .

In particular, we have
∑

i

det D
−n− 1

2
i

∏
q|f

M1[diag(p−1t Di ,1)]

F̃q

(
M1[diag(p−1 tDi, 1)]; Xq

)

= Φ0(Xp)
∏

q|fM0

F̃q

(
M0; Xq

)

+ Φ1(Xp)
∏

q|fM1

F̃q

(
M1; Xq

)+ Φ2(Xp)
∏

q|fM2

F̃q

(
M2; Xq

)
.

Therefore, by substituting Xq = αq in the above identity and by using the relations pfM0 =
fM1 = p−1fM2 and DM0 = DM1 = DM2 , we obtain

p−(2n−1)(k− 1
2 )C

(|DM1 |
)
f

k− 1
2

M1

∑
i

det D
−n− 1

2
i

×
∏

q|f
M1[diag(p−1t Di ,1)]

F̃q

(
M1[diag(p−1tDi, 1)]; αq

)

= p−(2n−1)(k− 1
2 )

⎧
⎨
⎩Φ0(αp) pk− 1

2 C
(|DM0 |

)
f

k− 1
2

M0

∏
q|fM0

F̃q

(
M0; αq

)

+ Φ1(αp) C
(|DM1 |

)
f

k− 1
2

M1

∏
q|fM1

F̃q

(
M1; αq

)

+ Φ2(αp) p−k+ 1
2 C
(|DM2 |

)
f

k− 1
2

M2

∏
q|fM2

F̃q

(
M2; αq

)
⎫⎬
⎭ .

Thus

φm|V (Γ2n−1gΓ2n−1)
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= p−(2n−1)(k− 1
2 )
(
pk− 1

2 φ m

p2
|U(p2), φm|U(p), p−k+ 1

2 φmp2

)
⎛
⎝

Φ0(αp)

Φ1(αp)

Φ2(αp)

⎞
⎠ .

Hence there exist Laurent polynomials Φj,l (Xp) ∈ C[Xp + X−1
p ] (j = 0, 1, 2, l =

0, . . . , 2n − 1) which satisfy

φm|(V0,2n−1(p
2), . . . , V2n−1,0(p

2))(5.2)

= p−(2n−1)(k− 1
2 )
(
pk− 1

2 φ m

p2
|U(p2), φm|U(p), p−k+ 1

2 φmp2

)

×
⎛
⎝

Φ0,0(αp) · · · Φ0,2n−1(αp)

Φ1,0(αp) · · · Φ1,2n−1(αp)

Φ2,0(αp) · · · Φ2,2n−1(αp)

⎞
⎠ .

Here the polynomials Φj,l (Xp) depend on the choices of p and m, but not on the choice of
f which is the preimage of the Duke-Imamoglu-Ibukiyama-Ikeda lift F . The m-th Fourier-
Jacobi coefficient e

(2n−1)
k+n,m of Siegel-Eisenstein series satisfies also the identity (5.2). Thus,

because of Theorem 1.1 and of Lemma 5.1, we obtain⎛
⎜⎝

Φ0,0(p
k− 1

2 ) · · · Φ0,2n−1(p
k− 1

2 )

Φ1,0(p
k− 1

2 ) · · · Φ1,2n−1(p
k− 1

2 )

Φ2,0(p
k− 1

2 ) · · · Φ2,2n−1(p
k− 1

2 )

⎞
⎟⎠=

⎛
⎝

0 1

p−n− 1
2 p−n− 1

2 (−1 + p δp|m)

0 p−2n+1

⎞
⎠A′

2,2n(p
−(k− 1

2 )) .

Furthermore, this identity holds for infinitely many k. Hence we obtain

(5.3)⎛
⎝

Φ0,0(Xp) · · · Φ0,2n−1(Xp)

Φ1,0(Xp) · · · Φ1,2n−1(Xp)

Φ2,0(Xp) · · · Φ2,2n−1(Xp)

⎞
⎠=

⎛
⎝

0 1

p−n− 1
2 p−n− 1

2 (−1 + p δp|m)

0 p−2n+1

⎞
⎠A′

2,2n(X
−1
p ) .

In particular, we get A′
2,2n(Xp) = A′

2,2n(X
−1
p ). Due to the identities (5.2) and (5.3), we

thus obtain Theorem 1.2.

5.4. Proof of Theorem 1.3.
We remark that the m-th Fourier-Jacobi coefficient φm of F belongs to J

(2n−1) cusp

k+n,m .
From the identity (2.1) in Section 2.4 and from Theorem 1.2 we obtain

φm(τ, 0)|(T0,2n−1(p
2), . . . , T2n−1,0(p

2))

= p2nk+n−1(φ m

p2
(τ, 0), φm(τ, 0), φmp2(τ, 0)

)

×
⎛
⎝

0 1
p−k−n p−k−n(−1 + p δp|m)

0 p−2k−2n+2

⎞
⎠A′

2,2n(αp).

Due to the identity F
((

τ 0
0 ω

))
=
∑
m>0

φm(τ, 0)e(mω), we have

∑
m>0

{
φ m

p2
(τ, 0) + p−k−n(−1 + p δp|m)φm(τ, 0) + p−2k−2n+2φmp2(τ, 0)

}
e(mω)
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= p−2k−2n+2 F

((
τ 0
0 ω

))∣∣∣∣
ω

T1,0(p
2) ,

where in the RHS we regard that the Hecke operator T1,0(p
2) acts on F

((
τ 0
0 ω

))
as a

function of ω ∈ H1 for a fixed τ ∈ H1. Therefore∑
m>0

φm(τ, 0)|(T0,2n−1(p
2), . . . , T2n−1,0(p

2))e(mω)

= p2nk+n−1
(

p−k−nF

((
τ 0
0 ω

))
, p−2k−2n+2F

((
τ 0
0 ω

))∣∣∣∣
ω

T1,0(p
2)

)
A′

2,2n(αp) .

We denote by 〈h1(ω), h2(ω)〉ω the Petersson inner product of two elliptic modular forms
h1, h2. The symbol λg (p2) denotes the eigenvalue of g for T1,0(p

2).

Because

〈
F

((
τ 0
0 ω

))
, g(ω)

〉

ω

= Ff,g(τ ) and because

〈
F

((
τ 0
0 ω

))∣∣∣∣
ω

T1,0(p
2), g(ω)

〉

ω

= λg (p2)Ff,g (τ ) ,

we obtain

Ff,g |(T0,2n−1(p
2), . . . , T2n−1,0(p

2))

=
〈∑

m>0

φm(τ, 0)|(T0,2n−1(p
2), . . . , T2n−1,0(p

2))e(mω), g(ω)

〉

ω

= p2nk+n−1
(
p−k−nFf,g , p−2k−2n+2λg (p2)Ff,g

)
A′

2,2n(αp) .

Therefore we proved Theorem 1.3.

5.5. Proof of Corollary 1.4.
Let {μ0, μ1, . . . , μ2n−1} be the Satake parameter of Ff,g at a prime p. We recall

A′
2,2n(Xp) = B ′

2,2n(p
3
2 −nXp, p

5
2 −nXp, . . . , p− 3

2 +nXp) ,

where the matrices A′
2,2n and B ′

2,2n are defined in Section 2.6. Because of the construction
of A′

2,2n(Xp), the matrix A′
2,2n(αp) determines a Satake parameter {μ2, . . . , μ2n−1} up to

the action of the Weyl group W2n−1. Hence we can take

{μ2, . . . , μ2n−1} = {p 3
2 −nαp, p

5
2 −nαp, . . . , p− 3

2 +nαp} .

Now, from Section 2.6 and Section 2.3, we recall

(ϕ(T0,2n−1(p
2)), ϕ(T1,2n−2(p

2)), . . . , ϕ(T2n−1,0(p
2)))

=
(

2n−1∏
i=2

Xi

)
(ϕ(T0,1(p

2)), ϕ(T1,0(p
2)))B ′

2,2n(X2, . . . , X2n−1)

and μ2
0μ1 · · · μ2n−1 = p(2n−1)k , where ϕ is the Satake isomorphism denoted in Section 2.6,

and where Tl,2n−l (p
2) (l = 0, . . . , 2n) is the Hecke operator denoted in 2.4. Furthermore,
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from a straightforward calculation we have

ϕ(T0,1(p
2)) = p−1X2

0X1 ,

ϕ(T1,0(p
2)) = p−1X2

0X1(pX−1
1 + (p − 1) + pX1) .

From Theorem 1.3 and the above relations, we have

p2nk+n−1
(
p−k−n, p−2k−2n+2λg (p2)

)
A′

2,2n(αp)

=
(

2n−1∏
i=2

μi

)
(p−1μ2

0μ1, p−1μ2
0μ1(pμ−1

1 + (p − 1) + pμ1))B
′
2,2n(μ2, . . . , μ2n−1) .

Hence, from the fact that the rank of the matrix A′
2,2n(αp) is two, we obtain

pμ−1
1 + (p − 1) + pμ1 = p−k−n+2λg (p2) .

On the other hand, we have λg (p2) = pk+n−2(pβ2
p + (p − 1) + pβ−2

p ). Thus we can take

μ1 = β2
p. Hence we obtain

{μ1, μ2, μ3, . . . , μ2n−1} =
{
β2

p, p
3
2 −nαp, p

5
2 −nαp, . . . , p− 3

2 +nαp

}

up to the action of the Weyl group W2n−1.
The standard L-function of Ff,g is

L(s,Ff,g , st) =
∏
p

{
(1 − p−s )

2n−1∏
i=1

{
(1 − μip

−s )(1 − μ−1
i p−s )

}}−1

=
∏
p

{
(1 − p−s )(1 − β2

pp−s )(1 − β−2
p p−s )

×
2n−2∏
i=1

{
(1 − αppi+ 1

2 −n−s )(1 − α−1
p p−i− 1

2 +n−s )
}}−1

= L(s, g, Ad)
∏
p

2n−2∏
i=1

{
(1 − αppi+ 1

2 −n−s )(1 − α−1
p pi+ 1

2 −n−s )
}−1

.

Since L(s, f ) =
∏
p

{
(1 − αppk− 1

2 −s )(1 − α−1
p pk− 1

2 −s )
}−1, we obtain Corollary 1.4.
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