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1. Introduction

In this paper, we give explicit generators of the module given by the direct sum over
k of vector valued Siegel modular forms of degree two of level 1 of weight detk Sym(j)
for j = 2, 4, 6. The results have been announced in [12] and [13] and also a version of
preprint was quoted in [7], but this is the first version containing precise proofs. Vector
valued Siegel modular forms seem to attract more attention nowadays in many respects,
like in Harder’s conjecture, cohomology of local systems, or in some liftings or lifting
conjectures (cf. [10], [7], [21], [14], [17] for example), and it seems worthwhile to publish
these results now. More precise contents are as follows. We denote by Ak,j (Γ2) the linear
space of Siegel modular forms of degree two of weight detk Sym(j) where Sym(j) is the
symmetric tensor representation of degree j and Γ2 is the full Siegel modular group of
degree two. When j = 0, this is nothing but the space of scalar valued Siegel modular
forms and we write Ak,0(Γ2) = Ak(Γ2). We define Aevensym(j)(Γ2) = ⊕

k:even Ak,j (Γ2) and

Aoddsym(j)(Γ2) = ⊕
k:odd Ak,j (Γ2). When j = 0, we write Aeven(Γ2) = Aevensym(0)(Γ2). Then

obviously Aevensym(j)(Γ2) or Aoddsym(j)(Γ2) is an Aeven(Γ2) module. T. Satoh gave the structure
of Aevensym(2)(Γ2) as an Aeven(Γ2) module in [22]. A rough content of our main theorem is as
follows.

THEOREM 1.1. We have the following results as modules over Aeven(Γ2).
(1) Aoddsym(2)(Γ2) is spaned by four generators of determinant weight 21, 23, 27, 29

and there is one fundamental relation between generators.
(2) Aeven

sym(4)(Γ2) is a free module over Aeven(Γ2) spanned by five free generators of
determinant weight 8, 10, 12, 14, 16.

(3) Aodd
sym(4)(Γ2) is a free module over Aeven(Γ2) spanned by five free generators of

determinant weight 15, 17, 19, 21, 23.
(4) Aevensym(6)(Γ2) is a free module over Aeven(Γ2) spanned by seven free generators

of determinant weight 6, 8, 10, 12, 14, 16, 18.
All these generators are given explicitly.
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Here by abuse of language we say that elements of Ak,j (Γ2) have determinant weight
k. By the way, by T. Satoh it is known that Aevensym(2)(Γ2) is spanned by 6 generators of
determinant weight 10, 14, 16, 16, 18, 22 and there are three fundamental relations between
generators. Some generalization for congruence sugroups of Γ2 of the above result for
j = 2 has been given by H. Aoki [1].

Precise construction of generators and structures will be given in the main text. Here
we explain some technical points. There are at least three ways to construct vector valued
Siegel modular forms.

(i) Eisenstein series.
(ii) Theta functions with harmonic polynomials.

(iii) Rankin-Cohen type differential operators.
Here (i) and (ii) are classical (cf. [3] for (i)). The Eisenstein series is defined only when k
is even. (ii) is very powerful but sometimes we need a complicated computer calculation.
The method (iii) is a way to construct new vector valued Siegel modular forms from known
scalar valued Siegel modular forms. Forms of smaller determinant weight than those of
given scalar valued forms cannot be constructed by this method, but this method is the
easiest if it is available: easy to anticipate which kind of forms can be constructed, and easy
to calculate large numbers of Fourier coefficients for applications, and so on. Actually in
order to prove (4) of the above Theorem, we need all (i), (ii), (iii), but we mainly use (iii)
for the other cases (1), (2), (3). For even determinant weight for sym(2), in [22] T. Satoh
defined this kind of differential operators on a pair of scalar valued Siegel modular forms.
We have already developped a general theory of this kind of operators in [11] and [5], and
in the latter we gave certain explicit differential operators to increase weight by sym(j).
One of new points in this paper is to take derivatives of three scalar valued Siegel modular
form of even weights to construct a vector valued Siegel modular forms of odd determiant
weight. We already used this kind of trick to construct odd weight or Neben type forms
in [2] (though the results in this paper had been obtained earlier). Rankin-Cohen type
differential operators are very useful to give this kind of parity change.

We shortly write the content of each section. After reviewing elementary definitions
and notation, we review a theory of Rankin-Cohen type differential operators and give
some new results of their explicit shapes in section 2. If you are only interested in the
structure theorems of vector valued Siegel modular forms, you can skip this section and
proceed directly to later sections, where we can study odd deteminant weight of Sym(2) in
section 3 (cf. Theorem 4.1), all weights of Sym(4) in section 4(cf. Theorem 5.1), and even
deteminant weight of Sym(6) in section 5 (cf. Theorem 6.1). We also give Theorem 4.2
on a structure of the kernel of the Witt operator on Asym(2)(Γ2) since we need it in another
paper on Jacobi forms [16].

Of course we could continue a similar structure theory to higher j though it would be
much more complicated. For example, from Tsushima’s dimension formula, it seems that
Aoddsym(6)(Γ2) andAsym(8)(Γ2) are also freeAeven(Γ2)modules, and we see thatAsym(10)(Γ2)

is not a free module. This obsrvation will be explained in section 7, together with some
mysterious open problem.
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Now we take all direct sum Abig = ⊕k,j≥0Ak,j (Γ2). We have the irreducible decom-
position of the tensor product of symmetric tensor representations as follows:

Sym(j)⊗ Sym(l) ∼=
∑

|j−l|≤j+l−2ν
0≤ν

det νSym(j + l − 2ν) .

This isomorphism is not canonical at all, but if we fix a linear isomorphism in the above
for each pair (j, l), we can define a product of elements of Abig by taking the tensor as a
product and identify it with an element ofAbig through the above isomorphisms. We do not
know if we can choose these isomorphisms so that the product is associative, but it would
be interesting to ask generators of this big “ring”. Since A4,j (Γ2) never vanishes for big j ,
there should exist infinitely many “generators”. But it would be also interesting to ask if
there is any notion of “weak vector valued Siegel modular forms” Abigweak as in the theory

of Jacobi forms in [6] and if there are finitely many “generators” of Abigweak . The structures
of Asym(j)(Γ2) for higher j and the tensor structures of the big ring is an open problem for
future.

2. Definitions and a Lemma for small weights

We review definitions and notation first, then give a lemma on dimensions. We denote
by Hn the Siegel upper half space of degree n. We denote by Sp(n,R) the real symplectic
group of size 2n and put Γn = Sp(n,Z) (the full Siegel modular group of degree n). We
denote by (Sym(j), Vj ) the symmetric tensor representation of GLn(C) of degree j . For

any Vj -valued holomorphic function F(Z) of Z ∈ H2 and g =
(
a b

c d

)
∈ Sp(2,R), we

write

(F |k,j [g])(Z) = det(cZ + d)−kSym(j)(cZ + d)−1F(gZ) .

We say that a Vj -valued holomorphic function F(Z) is a Siegel modular form of weight
detk Sym(j) of Γ2 if we have F |k,j [γ ] = F for any γ ∈ Γ2. When n = 2, Vj is identified
with homogeneous polynomials P(u1, u2) in u1, u2 of degree j and the action is given
by P(u) → P(uM) for M ∈ GL2(C), where u = (u1, u2). Under this identification,
Ak,j (Γ2) is the space of holomorphic functions F(Z, u) = ∑j

ν=0 Fν(Z)u
j−ν
1 uν2 such that

F(γZ, u) = det(cZ + d)kF (Z, u(cZ + d))

for any γ =
(
a b

c d

)
∈ Γ2. We say that F is a cusp form if Φ(F) := limλ→∞ F

(
τ 0
0 iλ

)
= 0, where τ ∈ H1. We denote the space of cusp forms by Sk,j (Γ2). When j = 0, we
simply write Ak(Γ2) = Ak,0(Γ2). It is easy to see that we have Ak,j (Γ2) = 0 for any odd
j and Ak,j (Γ2) = Sk,j (Γ2) for any odd k.

By Igusa [19], we have
∞⊕
k=0

Ak(Γ2) = C[φ4, φ6, χ10, χ12] ⊕ χ35C[φ4, φ6, χ10, χ12] .
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To fix a normalization, we review the definition of these Siegel modular forms. We define
each φi to be the Eisenstein series of weight i whose constant term is 1. Each form χ10 or

χ12 is the unique cusp form of weight 10 or 12 such that the coefficient at

(
1 1/2

1/2 1

)
is

1. We denote by χ35 the Siegel cusp form of weight 35 normalized so that the coefficient

at

(
3 1/2

1/2 2

)
is −1. For Z =

(
τ z

z ω

)
∈ H2, we put

A35(Z) =




4φ4 6φ6 10χ10 12χ12
∂1φ4 ∂1φ6 ∂1χ10 ∂1χ12
∂2φ4 ∂2φ6 ∂2χ10 ∂2χ12
∂3φ4 ∂3φ6 ∂3χ10 ∂3χ12


 ,

where we write

∂1 = (2πi)−1 ∂

∂τ
, ∂2 = (2πi)−1 ∂

∂z
, ∂3 = (2πi)−1 ∂

∂ω
.

Then as is shown in [2], we have χ35 = det(A35(Z))/(29 · 34).
Now we give some comments on dimensions which we use later. For j > 0, the

dimensions for dimAk,j (Γ2) is known for k > 4 in [24]. Here we give a lemma for
dimAk,j (Γ2) for small k and j for later use.

LEMMA 2.1. We have A2,j (Γ2) = S2,j (Γ2). We have Sk,j (Γ2) = 0 for all (k, j)
with 0 ≤ k ≤ 4 and j ≤ 14, and A4,j (Γ2) = 0 for all j ≤ 6.

Proof. For any F ∈ Ak,j (Γ2), we denote by WF the restriction of F to the diagonal.

Then the coefficient of uj1 of WF is the tensor of modular forms of one variable of weight
k + j and k. When k = 2, a modular form of weight 2 is zero. Since the Siegel Φ operator
factors through W , we have A2,j (Γ2) = S2,j (Γ2). Now as shown in [18], for k ≤ 4

we have dimAk,j (Γ2) ≤ dimW(Ak,j (Γ2)). If we write WF = ∑j
ν=0 fν(τ, ω)u

j−ν
1 uν2,

then for F ∈ Ak,j (Γ2), we have fν(τ, ω) = (−1)kfν(ω, τ ) and this is in the tensor of
Sj−ν+k(Γ1) and Sν+k(Γ1) for 1 ≤ ν ≤ j − 1 and in the tensor of Sj+k(Γ1) and Ak(Γ1)

for ν = 0. If F ∈ Sk,j (Γ2), f0(τ, ω) is in the tensor of Sj+k(Γ1) and Sk(Γ1). Since
Sm(Γ1) = 0 for m < 12, we see that the image W(F) of F ∈ Sk,j (Γ2) is zero unless
j−ν+k ≥ 12 and ν+k ≥ 12 for some ν. In this case, we have 2k+j ≥ 24 and this is not
satisfied for k ≤ 4 and j ≤ 14, so W(F) = 0 and hence F = 0 in these cases. By virtue of
Arakawa [3], for F ∈ Ak,j (Γ2), we have Φ(F) = f (τ)u

j

1 for some f ∈ Sk+j (Γ1). When
k ≤ 4 and j ≤ 6, we have Sk+j (Γ1) = 0, so we also have Ak,j (Γ2) = Sk,j (Γ2), but we
already have shown that the latters are zero for these k, j . �

By the way, by virtue of Freitag [8], we have always A0,j (Γ2) = 0. By vanishing of
Jacobi forms of weight 1 by Skoruppa, we also have A1,j (Γ2) = 0 for any j . There are
more cases such that we can show the vanishing in the similar ad hoc way as in the proof
above (e.g. see [18]).
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3. Review on differential operators

3.1. General theory. We review a characterization of the Rankin-Cohen type differ-
ential operators given in [11] restricting to the cases we need here (see also [5],[4]). We
consider Vj valued linear homogeneous holomorphic differential operators D with constant
coefficients acting on functions of (Z1, . . . , Zr) ∈ H2 ×· · ·×H2. For any Z = (zij ) ∈ H2,

we write ∂Z =
(

1+δij
2(2πi)

∂
∂zij

)
. We denote 2 × 2 symmetric matrices of variable compo-

nents by Ri . Then it is clear that we have D = QD

(
∂Z1, . . . , ∂Zr , u

)
for some polynomial

QD(R1, . . . , Rr , u) in components ofRi and homogeneous in ui of degree j . We fix natural
numbers ki (1 ≤ i ≤ r) and k. We consider the following condition on D.

CONDITION 3.1. For any holomorphic functions Fi(Zi) on H2,

Res(Zi)=(Z)(D((F1|k1[g])(Z1) · · · (Fr |kr [g])(Zr)))
= (
Res(Zi)=(Z)D(F1(Z1) · · ·Fr (Zr))

) |k1+···+kr+k,j [g]
for any g ∈ Sp(2,R), where Res is the restriction to replace all Zi to the same Z ∈ H2.

This condition means that if Fi ∈ Aki (Γ2), then we have

Res(Z1,...,Zr )=(Z,...,Z)
(
D(F1(Z1) · · ·Fr(Zr))

)
∈ Ak1+···+kr+k,j (Γ2) .

We have given a characterization of such D by the associated polynomialQ in [11]. Indeed,
consider the following conditions.

CONDITION 3.2. (1) For any A ∈ GL2, we have

Q(AR1
tA, . . . , ARr

tA, u) = det(A)kQ(R1, . . . , Rr , uA) .

(2) For 2 × di matrices Xi of variables components for 1 ≤ i ≤ r , the polynomials
Q(X1

tX1, . . . , Xr
tXr, u) are pluri-harmonic with respect to X = (X1, . . . , Xr) = (xij ),

i.e.
2(k1+···+kr )∑

ν=1

∂2Q

∂xiν∂xjν
= 0

for any 1 ≤ i, j ≤ 2.

For any such Q, we write DQ = Q(∂Z1 , . . . , ∂Zr , u). If a polynomial Q satisfies
the condition 3.2, then DQ satisfies the condition 3.1. On the contrary, if D satisfies the
condition 3.1, then there exists the unique QD which satisfies the condition 3.2 such that
D = QD(∂Z1, . . . , ∂Zr , u).

3.2. Brackets of two forms. For general j , in the case r = 2 and k = 0, the above Q
satisfying Condition 3.2 is given explicitly in [5] p. 460 Prop. 6.1 for general degree, and in
the case k > 0 of degree 2 in [20]. The degree two case for k = 0 is explained as follows.
For the sake of notational simplicity, we put R1 = R = (rij ) and R2 = S = (sij ) in the
previous section. Here R and S are 2 × 2 symmetric matrices. For any natural number k, l,
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m, we put

Qk,l,m(x, y) =
m∑
i=0

(−1)i
(
m+ l − 1

i

)(
m+ k − 1

m− i

)
xiym−i .

If we put r = r11u
2
1+2r12u1u2+r22u

2
2 and s = s11u1+2s12u1u2+s22, then the polynomial

Qk,l,m(r, s) in rij , sij , u1, u2 satisfies Condition 3.2 for k1 = k, k2 = l, j = 2m. In other
words, we have the following results. We put

m1 = u2
1
∂

∂τ1
+ u1u2

∂

∂z1
+ u2

2
∂

∂ω1
, m2 = u2

1
∂

∂τ2
+ u1u2

∂

∂z2
+ u2

2
∂

∂ω2
,

and

Dk,l,(k+l,j) = Qk,l,j/2(m1,m2) ,

where Zi =
(
τi zi
zi ωi

)
∈ H2 (i = 1, 2). For any F ∈ Ak(Γ2) and G ∈ Al(Γ2), we define

{F,G}Sym(j)(Z) = ResZ1=Z2=Z
(

Dk,l,(k+l,j/2)(F (Z1)G(Z2))

)
.

Then we have {F,G}Sym(j) ∈ Ak+l,j (Γ2). When j = 2, this is nothing but the operator
defined by T. Satoh[22] and given by

{F,G}Sym(2)(Z)=
(
kF
∂G

∂τ
− lG

∂F

∂τ

)
u2

1 +
(
kF
∂G

∂z
− lG

∂F

∂z

)
u1u2

+
(
kF
∂G

∂ω
− lG

∂F

∂ω

)
u2

2

(up to the difference of the choice of the coordinate). For the readers’ convenience, we
give also explicit expression of brackets for j = 4 which we use. For F ∈ Ak(Γ2) and
G ∈ Al(Γ2), we have

{F,G}Sym(4) =
(
l(l + 1)

2

∂2F

∂τ 2 G− (l + 1)(k + 1)
∂F

∂τ

∂G

∂τ
+ k(k + 1)

2
F
∂2G

∂τ 2

)
u4

1

+
(
l(l + 1)

∂2F

∂τ∂z
G− (k + 1)(l + 1)

(
∂F

∂z

∂G

∂τ
+ ∂F

∂τ

∂G

∂z

)

+k(k + 1)F
∂2G

∂τ∂z

)
u3

1u2 +
(
l(l + 1)

2

∂2F

∂z2 G+ l(l + 1)
∂2F

∂τ∂ω
G

−(k + 1)(l + 1)
∂F

∂ω

∂G

∂τ
− (k + 1)(l + 1)

∂F

∂z

∂G

∂z

+k(k + 1)

2
F
∂2G

∂z2 − (k + 1)(l + 1)
∂F

∂τ

∂G

∂ω
+ k(k + 1)F

∂2G

∂τ∂ω

)
u2

1u
2
2

+
(
l(l + 1)

∂2F

∂z∂ω
G− (k + 1)(l + 1)

(
∂F

∂ω

∂G

∂z
+ ∂F

∂z

∂G

∂ω

)
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+k(k + 1)F
∂2G

∂z∂ω

)
u1u

3
2

+
(
l(l + 1)

2

∂2F

∂ω2G− (k + 1)(l + 1)
∂F

∂ω

∂G

∂ω
+ k(k + 1)

2
F
∂2G

∂ω2

)
u4

2 .

An explicit shape of {F,G}sym(6) can be given similarly but omit it here since it is
lengthy and the general formula is already given above.

We give one more example from [5] p. 461. (Also note that a typo there is corrected in
[20] p. 374.) For any even natural number k, l, j , we define a polynomialQk,l,(2,j)(R, S, u)
in rij , sij , u1, u2 as follows:

Qk,l,(2,j)(R, S, u)= 4−1Q2(R, S)Qk+1,l+1,j/2(r, s)

+2−1((2l − 1) det(R)s − (2k − 1) det(S)r)

×
(
∂Qk+1,l+1,j/2

∂x
(r, s)− ∂Qk+1,l+1,j/2

∂y
(r, s)

)
,

where r , s are defined as before and we put

Q2(R, S)= (2k − 1)(2l − 1) det(R + S)− (2k − 1)(2k + 2l − 1) det(S)

−(2l − 1)(2k + 2l − 1) det(R) .

Then this Qk,l,(2,j) satisfies Condition 3.2. For F ∈ Ak(Γ2) andG ∈ Al(Γ2), we put

{F,G}det2 Sym(j) = Res(Zi)=(Z)
(
Qk,l,(2,j)(∂Z1, ∂Z2 , u)F (Z1)G(Z2)

)
.

Then we have {F,G}det2 Sym(j) ∈ Ak+l+2,j (Γ2).

3.3. Bracket of three forms. In case of bracket of two forms, we cannot construct odd
determinant weight from scalar valued Siegel modular forms of even weight. But if we take
three forms, we can do such a thing. This is a crucial point for our construction. In order to
construct vector valued Siegel modular forms of weight detk Sym(2) and detk Sym(4) for
odd k, we define brackets in the following way. We consider three 2 × 2 symmetric matrix
R = (rij ), S = (sij ), T = (tij ) and we prepare two polynomials. For natural numbers k1,
k2, k3, first we put

Qdet Sym(2)(R, S, T ) =∣∣∣∣∣∣
r11 s11 t11
2r12 2s12 2t12
k1 k2 k3

∣∣∣∣∣∣u2
1 − 2

∣∣∣∣∣∣
r11 s11 t11
k1 k2 k3
r22 s22 t22

∣∣∣∣∣∣u1u2 +
∣∣∣∣∣∣
k1 k2 k3

2r12 2s12 2t12
r22 s22 t22

∣∣∣∣∣∣ u2
2 .

For F ∈ Ak1(Γ2), G ∈ Ak2(Γ2), H ∈ Ak3(Γ2), we put

{F,G,H }detSym(2)

= Res(Zi)1≤i≤3=(Z)(Qdet Sym(2)(∂Z1, ∂Z2, ∂Z3)(F (Z1)G(Z2)H(Z3))).

Then we have {F,G,H }det Sym(2) ∈ Ak1+k2+k3+1,2(Γ2). More explicitly, forZ =
(
τ z

z ω

)
,

this can be written as

{F,G,H }detSym(2)(Z, u) =
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∂1F ∂1G ∂1H

∂2F ∂2G ∂2H

k1F k2G k3H

∣∣∣∣∣∣ u2
1 − 2

∣∣∣∣∣∣
∂1F ∂1G ∂1H

k1F k2G k3H

∂3F ∂3G ∂3H

∣∣∣∣∣∣ u1u2 +
∣∣∣∣∣∣
k1F k2G k3H

∂2F ∂2G ∂2H

∂3F ∂3G ∂3H

∣∣∣∣∣∣ u2
2 .

Next we consider the case of Sym(4). We define the following polynomial

Qdet Sym(4)(R, S, T , u) =
4∑
ν=0

Qν(R, S, T )u
4−ν
1 uν2 ,

whereQν(R, S, T ) are defined by

Q0 = (k2 + 1)

∣∣∣∣∣∣
(k1 + 1)r11 k2 k3

r2
11 s11 t11

r11r12 s12 t12

∣∣∣∣∣∣ − (k1 + 1)

∣∣∣∣∣∣
k1 (k2 + 1)s11 k3

r11 s2
11 t11

r12 s11s12 t12

∣∣∣∣∣∣ ,

Q1 = 2(k2 + 1)

∣∣∣∣∣∣
(k1 + 1)r12 k2 k3
r11r12 s11 t11

r2
12 s12 t12

∣∣∣∣∣∣ − 2(k1 + 1)

∣∣∣∣∣∣
k1 (k2 + 1)s12 k3
r11 s11s12 t11

r12 s2
12 t12

∣∣∣∣∣∣
+(k2 + 1)

∣∣∣∣∣∣
(k1 + 1)r11 k2 k3

r2
11 s11 t11

r11r22 s22 t22

∣∣∣∣∣∣ − (k1 + 1)

∣∣∣∣∣∣
k1 (k2 + 1)s11 k3

r11 s2
11 t11

r22 s11s22 t22

∣∣∣∣∣∣ ,

Q2 = 3(k2 + 1)

∣∣∣∣∣∣
(k1 + 1)r12 k2 k3
r11r12 s11 t11
r22r12 s22 t22

∣∣∣∣∣∣ − 3(k1 + 1)

∣∣∣∣∣∣
k1 (k2 + 1)s12 k3
r11 s11s12 t11
r22 s22s12 t22

∣∣∣∣∣∣ ,

Q3 = 2(k2 + 1)

∣∣∣∣∣∣
(k1 + 1)r12 k2 k3

r2
12 s12 t12

r12r22 s22 t22

∣∣∣∣∣∣ − 2(k1 + 1)

∣∣∣∣∣∣
k1 (k2 + 1)s12 k3

r12 s2
12 t12

r22 s12s22 t22

∣∣∣∣∣∣
+(k2 + 1)

∣∣∣∣∣∣
(k1 + 1)r22 k2 k3
r11r22 s11 t11

r2
22 s22 t22

∣∣∣∣∣∣ − (k1 + 1)

∣∣∣∣∣∣
k1 (k2 + 1)s22 k3
r11 s11s22 t11

r22 s2
22 t22

∣∣∣∣∣∣ ,

Q4 = (k2 + 1)

∣∣∣∣∣∣
(k1 + 1)r22 k2 k3
r22r12 s12 t12

r2
22 s22 t22

∣∣∣∣∣∣ − (k1 + 1)

∣∣∣∣∣∣
k1 (k2 + 1)s22 k3
r12 s22s12 t12

r22 s2
22 t22

∣∣∣∣∣∣ .
Taking F , G, H as before, we define

{F,G,H }detSym(4)

=Res(Zi)=(Z)
(
Qdet Sym(4)(∂Z1, ∂Z2, ∂Z3)(F (Z1)G(Z2)H(Z3))

)
.

Then we have {F,G,H }detSym(4) ∈ Ak1+k2+k3+1,4(Γ2). Explicit expression of {F,G,
H }det Sym(4) by concrete derivatives is similarly obtained as in {F,G,H }detSym(2) but we
omit it here since it is obvious but lengthy.
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4. Structure in case Sym(2)

In this section, we prove the following two theorems.

THEOREM 4.1. We have

Aoddsym(2)(Γ2)=Aeven(Γ2){φ4, φ6, χ10}det Sym(2) + Aeven(Γ2){φ4, φ6, χ12}detSym(2)

+Aeven(Γ2){φ4, χ10, χ12}detSym(2) + Aeven(Γ2){φ6, χ10, χ12}det Sym(2)

with the following fundamental relation

4φ4{φ6, χ10, χ12}detSym(2) − 6φ6{φ4, χ10, χ12}detSym(2)

+ 10χ10{φ4, φ6, χ12}detSym(2) − 12χ12{φ4, φ6, χ10}det Sym(2) = 0 .

For any holomorphic function F : H2 → V2, we define the Witt operator W by the
restriction to the diagonals H1 ×H1 given by

(WF)(τ, ω) = F

(
τ 0
0 ω

)
,

where τ , ω ∈ H1. For ε = even or odd , we write

A
ε,0
sym(2)(Γ2) = {F ∈ Aεsym(2)(Γ2);WF = 0} .

THEOREM 4.2. The modulesAeven,0sym(2)(Γ2) andAodd,0sym(2)(Γ2) are freeAeven(Γ2)mod-
ules and given by

A
even,0
sym(2)(Γ2)=Aeven(Γ2){φ4, χ10}Sym(2) ⊕ Aeven(Γ2){φ6, χ10}Sym(2)

⊕Aeven(Γ2){χ10, χ12}Sym(2),
A
odd,0
sym(2)(Γ2)=Aeven(Γ2){φ4, φ6, χ10}det Sym(2) ⊕ Aeven(Γ2){φ4, χ10, χ12}detSym(2)

⊕Aeven(Γ2){φ6, χ10, χ12}detSym(2) .

4.1. Module structure of odd determinant weight. Theorem 4.1 can be proved in
various ways but here we use the Fourier Jacobi expansion. For F ∈ Ak1,2(Γ2), G ∈
Ak2,2(Γ2), H ∈ Ak3,j (Γ2), we write

F(Z)= f0(τ )+ f1(τ, z)q
′ +O(q ′2) ,

G(Z)= g0(τ )+ g1(τ, z)q
′ +O(q ′ 2) ,

H(Z)= h0(τ )+ h1(τ, z)q
′ +O(q ′2) ,

where we write Z =
(
τ z

z ω

)
∈ H2 and q ′ = e2πiω. Here f0, g0, or h0 is an elliptic

modular form of weight k1, k2 or k3 and f1, g1, or h1 is a Jacobi form of index 1 of weight
k1, k2, or k3. We write ∂1 = (2πi)−1 ∂

∂τ
, ∂2 = (2πi)−1 ∂

∂z
and ∂3 = (2πi)−1 ∂

∂ω
as before.

For any elliptic modular forms f (τ) of weight k and g(τ ) of weight l, we put

{f, g}2 = kf ∂1g − lg∂1f,

{f, g}4 = 2−1k(k + 1)f ∂2
1g − (k + 1)(l + 1)(∂1f )(∂1g)+ 2−1l(l + 1)g∂2

1f .
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This is the usual Rankin-Cohen bracket and for each i = 2 or 4, {f, g}i is an elliptic
modular form of weight k+ l+ i. Also for Jacobi forms φ(τ, z) of weight k of index 1 and
ψ(τ, z) of weight l of index 1, we put

{φ,ψ}jac = ψ∂2φ − φ∂2ψ .

Then {φ,ψ}jac is a Jacobi form of weight k + l + 1 of index 2 (cf. [6] Th. 9.5). We can
define many similar differential operators of this sort. For example, for an elliptic modular
form f of weight k and a Jacobi form φ of weight l of index m, we put

{f, φ}∗ = kf (∂1 − (4m)−1∂2
2 )φ − (l − 1/2)φ∂1f .

Then we have {f, φ}∗ is a Jacobi form of weight k+ l+ 2 of indexm. This operator is used
implicitly in some calculations later in section 5 or 6 without explanation. The details will
be omitted.
By definition, we have

{F,G,H }det Sym(2) = ({f0, g0}2∂2h1 − {f0, h0}2∂2g1 + {g0, h0}2∂2f1)q
′ +O(q ′ 2))u2

1

+({f0, g0}2h1 − {f0, h0}2g1 + {g0, h0}2f1)q
′ + q ′ 2)u1u2

+(k1f0{g1, h1}jac − k2g0{f1, h1}jac + k3h0{f1, g1}jac)q ′ 2

+O(q ′3))u2
2 .

We apply these formulas to concrete cases. We denote by Ek(τ) the Eisenstein series
of Γ1 of weight k whose constant term is one and by∆ the Ramanujan Delta function. It is
well known that

φ4(Z)=E4(τ )+ 240E4,1(τ, z)q
′ +O(q ′ 2) ,

φ6(Z)=E6(τ )− 504E6,1(τ, z)q
′ +O(q ′ 2) ,

χ10(Z)= φ10,1(τ, z)q
′ +O(q ′ 2) ,

χ12(Z)= φ12,1(τ, z)q
′ +O(q ′ 2) ,

where q ′ = exp(2πiω). Here we are using the same notation and normalization as in [6] p.
38 for Jacobi forms. In particular, we have

E4,1(τ, z)= 1 + (126 + 56(ζ + ζ−1))q +O(q2) ,

E6,1(τ, z)= 1 − (330 + 88(ζ + ζ−1))q +O(q2) ,

φ10,1(τ, z)= (144)−1(E6E4,1 − E4E6,1) = (2πi)2z2∆(τ)+O(z4) ,

= (−2 + ζ + ζ−1)q + (36 − 16(ζ + ζ−1)− 2(ζ 2 + ζ−2))q2 +O(q3) ,

φ12,1(τ, z)= (144)−1(E2
4E4,1 − E6E6,1) = 12∆(τ)+O(z2) ,

= (10 + ζ + ζ−1)q + (−132 − 88(ζ + ζ−1)+ 10(ζ 2 + ζ−2))q2 +O(q3) ,

where q = e(τ ), ζ = e(z). We have {E4, E6}2 = −3456∆, {E4, E4}4 = 4800∆,
{E4, E6,1}∗ = −264φ12,1, {E6, E4,1}∗ = 252φ12,1. If we put φ23,2 = {φ10,1, φ12,1}jac,
then we have

φ23,2(τ, z) = −24(2πi)∆(τ)2z +O(z2)
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and in particular this is not zero. If we put φ11,2 = {E4,1, E6,1}jac/144 as in [6] p. 112,
then we have φ23,2 = 12∆φ11,2. We also have

{φ4, φ6, χ10}detSym(2) = (−3456∆(τ))(∂2φ10,1(τ, z)u
2
1 + φ10,1(τ, z)u1u2)q

′ +O(q ′2) ,

{φ4, φ6, χ12}detSym(2) = −3456∆(τ)(∂2φ12,1(τ, z)u
2
1 + φ12,1(τ, z)u1u2)q

′ +O(q ′2) ,

{φ4, χ10, χ12}detSym(2) =O(q ′ 2)u2
1 +O(q ′2)u1u2 + (4E4φ23,2q

′ 2 +O(q ′ 3))u2
2 .

The determinant B(Z) of the 3 × 3 matrix whose components are coefficients of u2
1,

u1u2 and u2
2 of the above three forms is equal to

4 · 122 · 34562∆4E4φ
2
11,2q

′ 4 +O(q ′5) �= 0 .

So, {φ4, φ6, χ10}det Sym(2), {φ4, φ6, χ12}detSym(2), {φ4, χ10, χ12}det Sym(2) are linearly inde-
pendent over Aeven(Γ2). Actually we can have more direct expression of this determinant.
For any n × n matrix A = (aij ) (1 ≤ i, j ≤ n), we write ãij the (i, j)-cofactor of A,
that is, (−1)i+j times the determinant of matrix subtracting the i-th row and j -th column
from A. Then an elementary linear algebra tells us that det((̃ai,j )2≤i,j≤n) = a11 det(A)n−2.
Applying this to the matrix A35(Z), we can show that det(B(Z)) = 4φ4 det(A35(Z)

2) =
4(2934)2φ4χ

2
35 which is not zero.

Now we see the relation. For the sake of simplicity, we put

F21,2 = {φ4, φ6, χ10}detSym(2) ,

F23,2 = {φ4, φ6, χ12}detSym(2) ,

F27,2 = {φ4, χ10, χ12}detSym(2) ,

F29,2 = {φ6, χ10, χ12}detSym(2) .

By definition, the coefficient of 4φ4F29,2 − 6φ6F27,2 + χ10F23,2 − χ12F21,2 of u2
1, u1u2 or

u2
2 is given by∣∣∣∣∣∣∣∣

4φ4 6φ6 10χ10 12χ12
∂1φ4 ∂1φ6 ∂1χ10 ∂1χ12
∂2φ4 ∂2φ6 ∂2χ10 ∂2χ12
4φ4 6φ6 10χ10 12χ12

∣∣∣∣∣∣∣∣
= −

∣∣∣∣∣∣∣∣
4φ4 6φ6 10χ10 12χ12
∂1φ4 ∂1φ6 ∂1χ10 ∂1χ12
4φ4 6φ6 10χ10 12χ12
∂3φ4 ∂3φ6 ∂3χ10 ∂3χ12

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
4φ4 6φ6 10χ10 12χ12
4φ4 6φ6 10χ10 12χ12
∂2φ4 ∂2φ6 ∂2χ10 ∂2χ12
∂3φ4 ∂3φ6 ∂3χ10 ∂3χ12

∣∣∣∣∣∣∣∣
= 0 .

So we have the relation in the theorem. Now fix an odd natural number k and assume that

F1F21,2 + F2F23,2 + F3F27,2 + F4F29,2 = 0

for some F1 ∈ Ak−21(Γ1), F2 ∈ Ak−23(Γ2), F3 ∈ Ak−27(Γ2) and F4 ∈ Ak−29(Γ2). Then
by the above relation and the linear independence of F21,2, F23,2, F27,2, we have

(4φ4F1 + χ12F4)F21,2 + (4φ4F2 − 10χ10F4)F23,2 + (4φ4F3 + 6φ6F4)F27,2 = 0 .

So we have 4φ4F1 + χ12F4 = 4φ4F2 − 10χ10F4 = 4φ4F3 + 6φ6F4 = 0. Since C[φ4, φ6,
χ10, χ12] is a weighted polynomial ring, we have F4 = 4φ4F5 for some F5 ∈ Ak−33(Γ2)
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and F1 = −χ12F5, F2 = 10χ10F5, F3 = −6φ6F5. So we have

F1F21,2 + F2F23,2 + F3F27,2 + F4F29,2

= F5(4φ4F29,2 − 6φ6F27,2 + 10χ10F21,2 − 12χ12F29,2) .

So the relation in the theorem is the fundamental relation. Finally we must show that these
generates the whole Aoddsym(2)(Γ2). By the dimension formula of Tsushima [24] and Lemma
2.1, we have ∑

k:odd
dimAk,2(Γ2)t

k = t21 + t23 + t27 + t29 − t33

(1 − t4)(1 − t6)(1 − t10)(1 − t12)
.

By the result we proved in the above, the sum below is a direct sum.

A∗ = Aeven(Γ2)F21,2 ⊕ Aeven(Γ2)F23,2 ⊕Aeven(Γ2)F27,2 ⊕ C[φ6, χ10, χ12]F29,2 .

So it is obvious that
∞∑

k:odd
dim(A∗ ∩ Ak,2(Γ2))t

k = t21 + t23 + t27

(1 − t4)(1 − t6)(1 − t10)(1 − t12)

+ t29

(1 − t6)(1 − t10)(1 − t12)
.

But this is equal to the generating function of Ak,2(Γ2) for odd k, so we have A∗ =
Aoddsym(2)(Γ2). q.e.d.

4.2. The kernel of the Witt operator. We first prove the even weight case. By [22],
Aevensym(2)(Γ2) is spanned by 6 Rankin-Cohen type bracket for a pair among φ4, φ6, χ10, χ12.

Since χ10 = O(z2), we haveW(∂iχ10) = 0 for i = 1, 2, 3, so we haveW({φ4, χ10}Sym(2))
= W({φ6, χ10}Sym(2)) = W({χ10, χ12}Sym(2)) = 0. Then by the structure theorem of [22],
we see that

W(Aevensym(2)(Γ2)) = W(Aeven(Γ2))W({φ4, φ6}Sym(2))
+W(Aeven(Γ2))W({φ4, χ12}Sym(2))+ C[W(φ6),W(χ12)]W({φ6, χ12}Sym(2)) .

It is obvious and well known that three functions W(φ4), W(φ6) and W(χ12) are alge-
braically independent. Assume that

F1W({φ4, φ6}Sym(2))+ F2W({φ4, χ12}Sym(2))+ F3W({φ6, χ12}Sym(2)) = 0

for F1, F2 ∈ W(Aeven(Γ2)) and F3 ∈ C[W(φ6),W(χ12)]. By the relation

4φ4{φ6, χ12}Sym(2) − 6φ6{φ4, χ12}Sym(2) + 12χ12{φ4, φ6}Sym(2) = 0 ,

we have

4W(φ4)W({φ6, χ12}Sym(2))− 6W(φ6)W({φ4, χ12}Sym(2))
+ 12W(χ12)W({φ4, φ6}Sym(2)) = 0 .

So we have

(4W(φ4)F1 − 12W(χ12)F3)W({φ4, φ6}Sym(2))
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+ (4W(φ4)F2 + 6W(φ6)F3)W({φ4, χ12}Sym(2)) = 0 .

We have

W({φ4, φ6}Sym(2)) = 1278(∆(τ)E4(ω)E6(ω)u
2
1 + E4(τ )E6(τ )∆(ω)u

2
2) ,

W({φ4, χ12}Sym(2)) = −240(E6(τ )∆(τ)E4(ω)∆(ω)u
2
1 + E4(τ )∆(τ)E6(ω)∆(ω)u

2
2) ,

and∣∣∣∣ ∆(τ)E4(ω)E6(ω) E4(τ )E6(τ )∆(ω)

E6(τ )∆(τ)E4(ω)∆(ω) E4(τ )∆(τ)E6(ω)∆(ω)

∣∣∣∣
= E4(τ )∆(τ)E4(ω)E6(ω)(∆(τ)E6(ω)

2 − E6(τ )
2∆(ω)) �= 0 .

So we have 4W(φ4)F1 = 12W(χ12)F3 and 4W(φ4)F2 = −6W(χ6)F3. Since F3 ∈ C[W
(φ6),W(χ12)], we have F3 = 0 and F1 = F2 = 0. So we prove the case of even determi-
nant weight. When the determinant weight is odd, then we see thatW({F,G,H }det Sym(2))

= 0 when F , G, or H is χ10. We see easily that W({φ4, φ6, χ12}Sym(2)) �= 0. But
χ10{φ4, φ6, χ12}Sym(2) is contained in the modules spanned by the other generators, so we
are done. q.e.d.

We can give an alternative proof of this theorem by using the surjectivity of the Witt
operator (cf. [18]) and the dimension formulas.

5. Structure in case Sym(4)

In this section, we prove the following theorem.

THEOREM 5.1. The two modules Aevensym(4)(Γ2) and Aoddsym(4)(Γ2) are free Aeven(Γ2)

module and explicitly given by

Aevensym(4)(Γ2) =Aeven(Γ2){φ4, φ4}Sym(4) ⊕ Aeven(Γ2){φ4, φ6}Sym(4)
⊕ Aeven(Γ2){φ4, φ6}det 2Sym(4) ⊕ Aeven(Γ2){φ4, χ10}Sym(4)
⊕ Aeven(Γ2){φ6, χ10}Sym(4) ,

and

Aoddsym(4)(Γ2)=Aeven(Γ2){φ4, φ4, φ6}detSym(4) ⊕ Aeven(Γ2){φ4, φ6, φ6}det Sym(4)

⊕Aeven(Γ2){φ4, φ4, χ10}detSym(4) ⊕ Aeven(Γ2){φ4, φ4, χ12}detSym(4)

⊕Aeven(Γ2){φ4, φ6, φ12}detSym(4) .

By Tsushima’s dimension formula in [24] and Lemma 2.1, we have

∞∑
k=0

dimAk,4(Γ2)t
k = (1 + t7)(t8 + t10 + t12 + t14 + t16)

(1 − t4)(1 − t6)(1 − t10)(1 − t12)
.

By seeing this, it is obvious that to prove the assertion of Theorem 5.1, all we should
do is to prove the linear independence of generators over Aeven(Γ2). We sometimes iden-
fity F(Z) = ∑4

i=0 fi(Z)u
4−i
1 ui2 ∈ Ak,4(Γ2) with a vector t (f0(Z), f1(Z), . . . , f4(Z)).
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Since there are 5 generators for each of Aevensym(4) or Aoddsym(4), we have two 5 × 5 ma-
trix Beven(Z) whose column vectors are {φ4, φ4}Sym(4), {φ4, φ6}Sym(4), {φ4, φ6}det 2Sym(4),
{φ4, χ10}Sym(4), {φ4, χ12}Sym(4) in this order and Bodd(Z) whose columns are generators in
the order as appearing in the theorem. We must show that det(Beven(Z)) and det(Bodd(Z))
are not identically zero as holomorphic functions. The proof of this fact is quite technical
and maybe there are several ways to show this. We sketch one proof. We first consider
Beven(Z). We have {φ4, φ4}sym(4) = 4800∆u4

1 + O(q ′), where q ′ = e2πiω. All the other
generators are divisible by q ′, so we have det(Beven(Z)) = 4800∆(Beven(Z))11 +O(q ′ 5)

where (∗)11 denotes the (1, 1) cofactor for any matrix ∗. By definition, {φ4, φ6}Sym(4)/840
is given modulo q ′ 2 by q ′ times the following vector


∗

12(E6∂1∂2E4,1 − E4∂1∂2E6,1)− 10∂1E6∂2E4,1 + 21∂1E4∂2E6,1

6E6(∂
2
2E4,1 + 2∂1E4,1)+ 21∂1E4E6,1 − 10∂1E6E4,1 − 6E4(∂

2
2E6,1 + 2∂1E6,1)

12(E6∂2E4,1 − E4∂2E6,1)

6(E6E4,1 − E4E6,1)


 ,

where ∗ is a certain function of τ and ω. We write E′
i = ∂1Ei and E′′

i = ∂2
1Ei for i = 4, 6.

By using the relations

144∂i2φ10,1 =E6∂
i
2E4,1 − E4∂

i
2E6,1 ,

144∂1∂2φ10,1 =E6∂1∂2E4,1 − E4∂1∂2E6,1 + E′
6∂2E4,1 − E′

4∂2E6,1 ,

the above vector is equal to


∗
12 · 144∂1∂2φ10,1 + 11(3E′

4∂2E6,1 − 2E′
6∂2E4,1)

6 · 144(∂2
2φ10,1 + 2∂1φ10,1)+ 11(3E′

4E6,1 − 2E′
6E4,1)

12 · 144∂2φ10,1
6 · 144φ10,1


 .

In the same way, we have

{φ4, χ10}Sym(4) = q ′




∗
−55E′

4∂2φ10,1 + 20E4∂1∂2φ10,1

−55E′
4φ10,1 + 10E4(∂

2
2φ10,1 + 2∂1φ10,1)

20E4∂2φ10,1

10E4φ10,1




+O(q ′2) ,

{φ6, χ10}Sym(4) = q ′




∗
−77E′

6∂2φ10,1 + 42E6∂1∂2φ10,1

−77E′
6φ10,1 + 21E6(∂

2
2φ10,1 + 2∂1φ10,1)

42E6∂2φ10,1

21E6φ10,1




+O(q ′2) ,
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and

{φ4, φ6}det2 Sym(4) = −32598720q ′ ×




∗
∗
∗

2∂2φ12,1
φ12,1


 +O(q ′ 2) .

We can show easily that {φ4, χ10}Sym(4)− 10E4{φ4, φ6}Sym(4)/(840 × 6× 144) is given by


∗
−220∆∂2E4,1
−220∆E4,1

0
0


 ,

and {φ6, χ10}Sym(4) − 21E6{φ4, φ6}Sym(4)/(840 × 6 × 144) by


∗
−462∆∂2E6,1
−462∆E6,1

0
0


 .

So we have

det(Beven(Z))

= c1∆

∣∣∣∣∆∂2E4,1 ∆∂2E6,1
∆E4,1 −∆E6,1

∣∣∣∣ ×
∣∣∣∣∂2φ10,1 ∂2φ12,1
φ10,1 φ12,1

∣∣∣∣ q ′ 4 +O(q ′ 5)

= c2∆
4φ2

11,2q
′ 4 +O(q ′ 5) ,

where c1, c2 are certain non-zero constants. So we prove detBeven(Z) is not identically
zero and theorem follows for Aevensym(4)(Γ2). Now we sketch the proof of detBodd(Z) �= 0.
We use the following relations.

{E4, E6}2 = −3456∆ ,

{E6, E6}2 = 0 ,

{E4, E4}4 = 4800∆ ,

{E4, E6}4 = 0 ,

{E4,1, E6,1}jac = 144φ11,2 .

By definition of the bracket, we have

{φ4, φ4, φ6}detSym(4) = 4147200




∗
∗

−3∆∂2E4,1
−2∆E4,1

0


 q ′ +O(q ′2) ,



66 T. IBUKIYAMA

{φ4, φ6, φ6}detSym(4) = 4354560




∗
∗

3∆∂2E6,1
2∆E6,1

0


 q ′ +O(q ′2) ,

{φ4, φ4, χ10}det Sym(4) = 4800



∆∂2φ10,1
−2∆φ10,1

0
0
0


 q ′ +O(q ′2) ,

{φ4, φ4, χ12}det Sym(4) = 4800



∆∂2φ12,1
−2∆φ12,1

0
0
0


 q ′ +O(q ′2) ,

{φ4, φ6, χ12}detSym(4) = 5040 · 144




∗
∗
∗
∗

−φ12,1∂2φ10,1 + φ10,1∂2φ12,1


 q ′ 2 +O(q ′3) .

So by noting φ12,1∂2φ10,1 − φ10,1∂2φ12,1 = 12∆φ11,2, we see that

detBodd(Z) = c ×∆6φ3
11,2q

′ 6 +O(q ′ 7)

for some non-zero large constant c, hence this is not zero. So we prove Theorem 5.1. It is
plausible that each detBeven(Z) or detBodd(Z) is a constant multiple of χ2

35 and χ3
35, since

χ35 = −∆2φ11,2q
′2 +O(q ′3).

6. Structure in case Sym(6)

First we see dimension formulas. By Tsushima’s dimension formula and Lemma 2.1,
we have

∞∑
k=0

dimAk,6(Γ2) = (1 + t5)(t6 + t8 + t10 + t12 + t14 + t16 + t18)

(1 − t4)(1 − t6)(1 − t10)(1 − t12)
.

We have the following table of dimensions. So we must construct a form in each A6,6(Γ2),

k 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
dimAk,6 0 1 0 1 0 2 1 3 1 4 2 6 3 9 4
dim Sk,6 0 0 0 1 0 1 1 2 1 3 2 5 3 7 4
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A8,6(Γ2) or A10,6(Γ2). There is no way to construct A6,6(Γ2) by the Rankin-Cohen type
bracket since the deteminant weight should be at least 4 + 4 = 8 by such construction.
Also we see by definition that {φ4, φ4}Sym(6) = 0 and {φ4, φ4}det 2Sym(6) = 0, so we cannot
construct A8,6(Γ2) or A10,6(Γ2) by this method, and we need other constructions. We use
Eisenstein series and theta functions with harmonic polynomials. First we define theta
functions in general. For a natural number m and vectors x = (xi), (yi) ∈ Cm, we define
(x, y) = ∑m

i=1 xiyi . We assume m ≡ 0 mod 8 and fix an even unimodular lattice L ⊂ Rm

and an integer k ≥ 0. For any a, b ∈ Cm such that (a, a) = 0, (b, b) = 0, (a, b) = 0, we
put

θL,a,b,k,ν(Z) =∑
x,y∈L

(x, a)j−ν(y, a)ν
∣∣∣∣(x, a) (y, a)

(x, b) (y, b)

∣∣∣∣k eπi((x,x)τ+2(x,y)z+(y,y)ω) .

We define

θL,a,b,(k,j)(Z) =
j∑
ν=0

(
j

ν

)
θL,a,b,k,ν(Z)u

j−ν
1 uν2 .

Then it is well-known and easy to see that we have θL,a,b,(k,j)(Z) ∈ Am/2+k,j (Γ2) (cf. [9]).
When k > 0, this is also a cusp form. Now we take the even unimodular lattice E8 ⊂ R8

of rank 8 which is unique up to isometry. More explicitly, E8 is given as follows as in [23].

E8 =
{
x = (xi)1≤i≤8 ∈ Q8; 2xi ∈ Z, xi − xj ∈ Z,

8∑
i=1

xi ∈ 2Z

}
.

We put

a = (2, 1, i, i, i, i, i, 0) ,

b= (1,−1, i, i, 1,−1,−i.i) .
We define X8,6 ∈ A8,6(Γ2) and X10,6 ∈ A10,6(Γ2) by

X8,6(Z)= θE8,a,b,(4,6)(Z)/111456000 ,

X10,6(Z)= θE8,a,b,(6,6)(Z)/450252000 .

By computer calculation, we can show that both forms do not vanish identically. Here
both X8,6(Z) and X10,6(Z) are cusp forms. Now we must construct A6,6(Γ2) also. Since
θL,a,b,(k,j) is a cusp form when k > 0 and rank(L) ≡ 0 mod 8, we cannot construct a
form in A6,6(Γ2) by theta functions. But by virtue of Arakawa [3] Prop. 1.2, for any
f ∈ Sk+j (Γ2) with even k ≥ 6 and even j ≥ 0, we have the Klingen type Eisenstein
series Ek,j (f ) ∈ Ak,j (Γ2) such that Φ(Ek,j (f )) = f (τ)u6

1. So for the Ramanujan Delta
function ∆ ∈ S12(Γ1), we have E6,6(∆) ∈ A6,6(Γ2). Now we can state our theorem.

THEOREM 6.1. The module Aevensym(6)(Γ2) is a free Aeven(Γ2) module and given ex-
plicitly by

Aevensym(6)(Γ2)=Aeven(Γ2)E6,6(∆)⊕ Aeven(Γ2)X8,6 ⊕ Aeven(Γ2)X10,6

⊕Aeven(Γ2){φ4, φ6}det2 Sym(6) ⊕ Aeven(Γ2){φ4, χ10}Sym(6)
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⊕Aeven(Γ2){φ4, χ12}Sym(6) ⊕ Aeven(Γ2){φ6, χ12}Sym(6) .
The point of the proof is again to show the linear independence of the generators.

We can show that the determinant of the 7 × 7 matrix C(Z) whose columns consist of
generators is equal to c∆6φ3

11,2q
′ 6 +O(q ′7) with some non-zero constant c. We can show

this by similar calculation as in the last section and we sketch the proof here. By definition,
we have E6,6(∆) = ∆u6

1 + O(q ′). All the other generators are divisible by q ′, so we
have det(C(Z)) = ∆C(Z)11 + O(q ′7) where C(Z)11 is the (1, 1) cofactor of C(Z). So
it is enough to show that C(Z)11 = c(τ, z)q ′ 6 + O(q ′ 7) for a function c(τ, z) which
is not identically zero. To calculate c(τ, z), we need the first Fourier-Jacobi coefficients
of 6 generators except for E6,6(∆), in particular the coefficients of u6−i

1 ui2 for i > 0.
Except for X8,6 and X10,6, we can obtain these from the definition. As for X8,6 and X10,6,
to determine the Fourier-Jacobi coefficient of index one, (i.e. the coefficient of q ′ in the
Fourier expansion), we use a general theory of Fourier-Jacobi expansion of vector valued
forms in [15]. Fourier-Jacobi coefficients of index m of a vector valued Siegel modular
form F of weight detk Sym(j) is a linear combination of usual Jacobi forms of weight
k + ν (0 ≤ ν ≤ j) of index m and their derivatives (cf. [15] Theorem 2.1). Since the
space of Jacobi forms of index one is known, we can obtain the Fourier-Jacobi coefficient
of index one of F if we have enough Fourier coefficients of F . We omit the details of the
calculation, but by this method we see that the coefficient of q ′ of X8,6 is given by



∗
− 11

19∂
3
2φ10,1 + 6

19∂1∂2φ10,1 + 5
19∂2φ12,1

− 30
19∂

2
2φ10,1 + 6

19∂1φ10,1 + 5
19φ12,1

−2∂2φ10,1
−φ10,1

0
0



,

and that of X10,6 is by


∗
78
133 ∂

5
2φ10,1 − 120

133 ∂
3
2 ∂1φ10,1 + 30

133 ∂2∂
2
1φ10,1 + 1045

161 E4∂2φ10,1 − 325
437 ∂

3
2φ12,1 + 150

437 ∂2∂1φ12,1

1045
161 E4φ10,1 − 900

19·23 ∂
2
2φ12,1 + 150

19·23 ∂1φ12,1 + 330
133 ∂

4
2φ10,1 + 30

133 ∂
2
1φ10,1 − 330

133 ∂1∂
2
2φ10,1

− 50
19 ∂2φ12,1 + 110

19 ∂
3
2φ10,1 − 60

19 ∂1∂2φ10,1

− 25
19φ12,1 + 150

19 ∂
2
2φ10,1 − 30

19 ∂1φ10,1

6∂2φ10,1
2φ10,1




,
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where ∗ are certain functions of τ and z. For the sake of simplicity, we write F12,6 =
{φ4, φ6}det2 Sym(6)/11642400. Then the coefficient of q ′ of F12,6 is given by



∗
c1(τ, z)

c2(τ, z)

126
23 E4∂2φ10,1 + 65

23∂
3
2φ12,1 − 30

23∂1∂2φ12,1

63
23E4φ10,1 + 90

23∂
2
2φ12,1 − 15

23∂1φ12,1

3∂2φ12,1
φ12,1



,

where

c1(τ, z)= 35

12
E6∂2φ10,1 − 49

60
E4∂2φ12,1 − 14

23
∂1(E4∂2φ10,1)

+35

23
E4∂

3
2φ10,1 + 63

230
∂5

2φ12,1 − 42

115
∂3

2∂1φ12,1 + 9

115
∂2∂

2
1φ12,1,

c2(τ, z)= 35

12
E6φ10,1 − 49

60
E4φ12,1 − 14

23
∂1(E4φ10,1)

+98

23
E4∂

2
2φ10,1 + 273

230
∂4

2φ12,1 − 117

115
∂1∂

2
2φ12,1 + 9

115
∂2

1φ12,1 .

Coefficients of q ′ of each {φ4, χ10}Sym(6), {φ4, χ12}Sym(6) and {φ6, χ12}Sym(6) are given by


∗
396E

′′
4(∂2φ10,1)− 360E

′
4(∂1∂2φ10,1)+ 60E4(∂

2
1∂2φ10,1)

396E
′′
4φ10,1 − 180E

′
4(2∂1φ10,1 + ∂2

2φ10,1)+ 60E4(∂
2
1φ10,1 + ∂1∂

2
2φ10,1)

−360E
′
4(∂2φ10,1)+ 20E4(6(∂1∂2φ10,1)+ ∂3

2φ10,1)

−180E
′
4φ10,1 + 60E4(∂1φ10,1 + ∂2

2φ10,1)

60E4(∂2φ10,1)

20E4(φ10,1)



,




∗
546E

′′
4(∂2φ12,1)− 420E

′
4(∂1∂2φ12,1)+ 60E4(∂

2
1∂2φ12,1)

546E
′′
4φ12,1 − 210E

′
4(2∂1φ12,1 + ∂2

2φ12,1)+ 60E4(∂
2
1φ12,1 + ∂1∂

2
2φ12,1)

−420E
′
4(∂2φ12,1)+ 20E4(6(∂1∂2φ12,1)+ ∂3

2φ12,1)

−210E
′
4φ12,1 + 60E4(∂1φ12,1 + ∂2

2φ12,1)

60E4(∂2φ12,1)

20E4(φ12,1)



,
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and 


∗
728E

′′
6(∂2φ12,1)− 784E

′
6(∂1∂2φ12,1)+ 168E6(∂

2
1∂2φ12,1)

728E
′′
6φ12,1 − 392E

′
6(2∂1φ12,1 + ∂2

2φ12,1)+ 168E6(∂
2
1φ12,1 + ∂1∂

2
2φ12,1)

−784E
′
6(∂2φ12,1)+ 56E6(6(∂1∂2φ12,1)+ ∂3

2φ12,1)

−392E
′
6φ12,1 + 168E6(∂1φ12,1 + ∂2

2φ12,1)

168E6(∂2φ12,1)

56E6(φ12,1)



,

respectively. Now we put

G14,6 = {φ4, χ10}Sym(6) − 10E4X10,6 + 60E6X8,6 ,

G16,6 = {φ4, χ12}Sym(6) − 20E4F12,6 − 70E2
4X8,6 ,

G18,6 = {φ6, χ12}Sym(6) − 56E6F12,6 − 196E4E6X8,6 .

Then the coefficients of q ′ of G14,6, G16,6 and G18,6 are given by


∗
∗
∗

20E4∂2φ12,1
10E4φ12,1

0
0



,




∗
∗
∗

140E6∂2φ12,1
70E6φ12,1

0
0



, and




∗
∗
∗

392E2
4∂2φ12,1

196E2
4φ12,1
0
0



,

respectively, where ∗ are certain functions of τ and z. If we put H16,6 = G16,6 − 7(E6/

E4)G14,6 and H18,6 = G18,6 − (196/10)E4G14,6, then by computer calculation, we see
that the coefficients of q ′ of H16,6 and H18,6 are given by

120960(E4)
−1




∗
∆∂2φ12,1
∆φ12,1

0
0
0
0



, and 282240




∗
∆∂2φ10,1
∆φ10,1

0
0
0
0



,

respectively. So det(C(Z)) is a non-zero constant times

det(E6,6(∆),X8,6,X10,6, F12,6,G14,6,H16,6,H18,6)
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and the (1,1) cofactor of this is a non-zero constant times∣∣∣∣∣∣∣∣∣∣∣∣

∗ ∗ ∗ ∗ (E4)
−1∆∂2φ12,1 ∆∂2φ10,1

∗ ∗ ∗ ∗ (E4)
−1∆φ12,1 ∆φ10,1

−2∂2φ10,1 ∗ ∗ 20E4∂2φ12,1 0 0
−φ10,1 ∗ ∗ 10E4φ12,1 0 0

0 6∂2φ10,1 3∂2φ12,1 0 0 0
0 2φ10,1 φ12,1 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣
.

This is a constant multiple of∆5φ3
11,2. So det(C(Z)) is a non-zero constant times∆6φ3

11,2,
so this is not identically zero. So we prove Theorem 6.1. It is plausible that det(C(Z)) is a
constant multiple of χ3

35.

7. Concluding remarks

We give here two concluding remarks.

REMARK 1. When are AevenSym(j)(Γ2) or AoddSym(j)(Γ2) free?
By Tsushima’s dimension formula, Satake’s surjectivity of the Φ-operator, and by some
ad-hoc arguments, we can calculate the generating functions of dimensions ofAk,j (Γ2) for
small j . We can show∑

k:odd
dimAk,6(Γ2)t

k = t11 + t13 + t15 + t17 + t19 + t21 + t23

(1 − t4)(1 − t6)(1 − t10)(1 − t12)
,

∑
k:even

dimAk,8(Γ2)t
k = t4 + t8 + 2t10 + 2t12 + t14 + t16 + t18

(1 − t4)(1 − t6)(1 − t10)(1 − t12)
,

∑
k:odd

dimAk,8(Γ2)t
k = t9 + t11 + t13 + 2t15 + 2t17 + t19 + t23

(1 − t4)(1 − t6)(1 − t10)(1 − t12)
,

∑
k:even

dimAk,10(Γ2)t
k

= t6 + t8 + 2t10 + 2t12 + 3t14 + 2t16 + t18 + t20 − t24 − t26

(1 − t4)(1 − t6)(1 − t10)(1 − t12)
.

Since we have ∑
k:even

dimAk(Γ2) = 1

(1 − t4)(1 − t6)(1 − t10)(1 − t12)
,

it is very likely that AoddSym(6)(Γ2), AevenSym(8)(Γ2), AoddSym(8)(Γ2) are also free Aeven(Γ2) mod-
ules, each spanned by elements with determinant weights of the powers of t appearing in
the numerator of the generating functions. On the other hand, as for Aevensym(10)(Γ2), by the
above generating function, we can see that there are no homogeneous free generators over
Aeven(Γ2). (Actually this means that Aevensym(10)(Γ2) does not have either inhomogeneous
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free generators over Aeven(Γ2). Indeed T. Hibi informed the author answering to his ques-
tion that Juergen Herzog proved the following claim. Let R be a graded ring such that R0
is a field and M a finitely generated graded module over R. If M has (not necessarily ho-
mogeneous) free generators over R, then we have homogeneous free generators of M over
R.)

REMARK 2. Problem on mysterious weights.
In general, if we take fi ∈ Aki,Sym(j)(Γ2) for i = 1, . . . , j + 1 and identify fi as a j + 1
dimensional vector of functions on H2, then det(f1, . . . , fj+1) is a scalar valued Siegel
modular form of Γ2 of weight

k1 + k2 + · · · + kj+1 + j (j + 1)/2 .

We already note that when we take free generators ofAevensym(4)(Γ2), Aoddsym(4)(Γ2) andAevensym(6)
(Γ2), then the above weight of the deteminant of generators is 70 = 35 × 2, 70 = 35 ×
2, or 105 = 35 × 3, respectively. Also by judging from the first non-vanishing Fourier
Jacobi coefficients, it is very plausible that these are constant multiples of χ2

35, χ2
35 and

χ3
35, respectively. Now let’s believe the conjecture on free modules in Remark 1. Then

surprisingly the similar weights of the determinant are all multiples of 35. Indeed we have
11 + 13 + 15 + 17 + 19 + 21 + 23 + 21 = 140 = 35 × 4 for Aoddsym(6)(Γ2), 4 + 8 + 2 ×
10 + 2 × 12 + 14 + 16 + 18 + 36 = 140 = 35 × 4 for Aevensym(8)(Γ2) and 9 + 11 + 13 +
2 × 15 + 2 × 17 + 19 + 23 + 36 = 175 = 35 × 5 for Aoddsym(8)(Γ2). It is natural to ask if
all these determinants are constant mutiples of powers of χ35. We can make a bolder guess
including the case when Asym(j)(Γ2) itself is not free. Assume that f1 ∈ Ak1,j (Γ2), . . . ,
fj+1 ∈ Akj+1,j (Γ2) are free over Aeven(Γ2) and ki mod 2 are the same. Assume that

k1 + · · · + kj+1 + j (j + 1)/2 = 35q + r

with 0 ≤ r < 35. Then, is the determinant det(f1, . . . , fj+1) divisible by χq35? We can
show that this is true at least for generators of Asym(2)(Γ2).

8. Appendix

Fourier coefficients of the generators which appear in the previous sections are easily
calculated by Fourier coefficients of the ring generators ofAeven(Γ2) except forX8,6,X10,6.
The ring generators φ4, φ6, χ10, χ12 of Aeven(Γ ) are all Saito-Kurokawa lifts and their
Fourier coefficients are very easy to calculate. Here we give tables of Fourier coefficients
for the remaining cases, i.e. forX8,6 andX10,6, which we used implicitly in the calculation

of section 6. For any half integral matrix T =
(
a b/2
b/2 c

)
, we denote by (a, c, b, i) the

coefficients of u6−i
1 ui2 at T of X8,6 or X10,6. Then we have
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(a, c, b, i) X8,6 X10,6
(1, 1, 0, 0) 0 −4
(1, 1, 0, 1) 0 0
(1, 1, 0, 2) 2 −10
(1, 1, 0, 3) 0 0
(1, 1, 0, 4) 2 −10
(1, 1, 0, 5) 0 0
(1, 1, 0, 6) 0 −4
(1, 1, 1, 0) 0 2
(1, 1, 1, 1) 0 6
(1, 1, 1, 2) −1 5
(1, 1, 1, 3) −2 0
(1, 1, 1, 4) −1 5
(1, 1, 1, 5) 0 6
(1, 1, 1, 6) 0 2
(2, 1, 0, 0) 24 504
(2, 1, 0, 1) 0 0
(2, 1, 0, 2) −12 −2940
(2, 1, 0, 3) 0 0
(2, 1, 0, 4) −36 60
(2, 1, 0, 5) 0 0
(2, 1, 0, 6) 0 72
(2, 1, 1, 0) −16 −224
(2, 1, 1, 1) −24 1464
(2, 1, 1, 2) −8 1600
(2, 1, 1, 3) 32 240
(2, 1, 1, 4) 16 40
(2, 1, 1, 5) 0 −96
(2, 1, 1, 6) 0 −32
(2, 1, 2, 0) 4 −28
(2, 1, 2, 1) 12 −84
(2, 1, 2, 2) 14 −130
(2, 1, 2, 3) 8 −120
(2, 1, 2, 4) 2 −70
(2, 1, 2, 5) 0 −24
(2, 1, 2, 6) 0 −4
(3, 1, 0, 0) −208 12368
(3, 1, 0, 1) 0 0
(3, 1, 0, 2) −64 26480
(3, 1, 0, 3) 0 0
(3, 1, 0, 4) 272 320
(3, 1, 0, 5) 0 0
(3, 1, 0, 6) 0 −544
(3, 1, 1, 0) 132 −3906
(3, 1, 1, 1) 372 −9906
(3, 1, 1, 2) 273 −11865
(3, 1, 1, 3) −198 −3720
(3, 1, 1, 4) −99 −1365
(3, 1, 1, 5) 0 594
(3, 1, 1, 6) 0 198

(a, c, b, i) X8,6 X10,6
(3, 1, 2, 0) −24 −2304
(3, 1, 2, 1) −168 −5208
(3, 1, 2, 2) −228 −1500
(3, 1, 2, 3) −144 1680
(3, 1, 2, 4) −36 1140
(3, 1, 2, 5) 0 432
(3, 1, 2, 6) 0 72
(3, 1, 3, 0) −4 26
(3, 1, 3, 1) −12 78
(3, 1, 3, 2) −13 125
(3, 1, 3, 3) −6 120
(3, 1, 3, 4) −1 65
(3, 1, 3, 5) 0 18
(3, 1, 3, 6) 0 2
(4, 1, 0, 0) 0 −172992
(4, 1, 0, 1) 0 0
(4, 1, 0, 2) 576 480
(4, 1, 0, 3) 0 0
(4, 1, 0, 4) −1056 −2880
(4, 1, 0, 5) 0 0
(4, 1, 0, 6) 0 2112
(4, 1, 1, 0) 0 44880
(4, 1, 1, 1) −2280 −33240
(4, 1, 1, 2) −2040 −21600
(4, 1, 1, 3) 480 22800
(4, 1, 1, 4) 240 10200
(4, 1, 1, 5) 0 −1440
(4, 1, 1, 6) 0 −480
(4, 1, 2, 0) 0 38624
(4, 1, 2, 1) 960 50976
(4, 1, 2, 2) 1568 20240
(4, 1, 2, 3) 1088 −9600
(4, 1, 2, 4) 272 −7840
(4, 1, 2, 5) 0 −3264
(4, 1, 2, 6) 0 −544
(4, 1, 3, 0) 0 2992
(4, 1, 3, 1) 120 4872
(4, 1, 3, 2) 184 1120
(4, 1, 3, 3) 96 −1200
(4, 1, 3, 4) 16 −920
(4, 1, 3, 5) 0 −288
(4, 1, 3, 6) 0 −32
(5, 1, 0, 0) 6000 640800
(5, 1, 0, 1) 0 0
(5, 1, 0, 2) 600 −825000
(5, 1, 0, 3) 0 0
(5, 1, 0, 4) 1800 −3000
(5, 1, 0, 5) 0 0
(5, 1, 0, 6) 0 −3600

(a, c, b, i) X8,6 X10,6
(5, 1, 1, 0) −3040 −116690
(5, 1, 1, 1) 6072 451242
(5, 1, 1, 2) 6325 421135
(5, 1, 1, 3) 506 −60720
(5, 1, 1, 4) 253 −31625
(5, 1, 1, 5) 0 −1518
(5, 1, 1, 6) 0 −506
(5, 1, 2, 0) −480 −173280
(5, 1, 2, 1) −3072 2112
(5, 1, 2, 2) −5760 14880
(5, 1, 2, 3) −4224 30720
(5, 1, 2, 4) −1056 28800
(5, 1, 2, 5) 0 12672
(5, 1, 2, 6) 0 2112
(5, 1, 3, 0) 480 −29970
(5, 1, 3, 1) −72 −46098
(5, 1, 3, 2) −915 −22305
(5, 1, 3, 3) −594 720
(5, 1, 3, 4) −99 4575
(5, 1, 3, 5) 0 1782
(5, 1, 3, 6) 0 198
(5, 1, 4, 0) 40 −460
(5, 1, 4, 1) 72 −1128
(5, 1, 4, 2) 50 −1210
(5, 1, 4, 3) 16 −720
(5, 1, 4, 4) 2 −250
(5, 1, 4, 5) 0 −48
(5, 1, 4, 6) 0 −4
(6, 1, 0, 0) −25200 −123888
(6, 1, 0, 1) 0 0
(6, 1, 0, 2) −17016 3705480
(6, 1, 0, 3) 0 0
(6, 1, 0, 4) 1464 85080
(6, 1, 0, 5) 0 0
(6, 1, 0, 6) 0 −2928
(6, 1, 1, 0) 8400 237312
(6, 1, 1, 1) −120 −1055784
(6, 1, 1, 2) −2856 −1057920
(6, 1, 1, 3) −5472 1200
(6, 1, 1, 4) −2736 14280
(6, 1, 1, 5) 0 16416
(6, 1, 1, 6) 0 5472
(6, 1, 2, 0) 8400 −190800
(6, 1, 2, 1) 8400 −1683600
(6, 1, 2, 2) 11400 −897000
(6, 1, 2, 3) 7200 −84000
(6, 1, 2, 4) 1800 −57000
(6, 1, 2, 5) 0 −21600
(6, 1, 2, 6) 0 −3600
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(a, c, b, i) X8,6 X10,6
(6, 1, 3, 0) −3600 21120
(6, 1, 3, 1) −3960 22680
(6, 1, 3, 2) 840 86400
(6, 1, 3, 3) 1440 39600
(6, 1, 3, 4) 240 −4200
(6, 1, 3, 5) 0 −4320
(6, 1, 3, 6) 0 −480
(6, 1, 4, 0) −600 −5688
(6, 1, 4, 1) −1200 3984
(6, 1, 4, 2) −876 15780
(6, 1, 4, 3) −288 12000
(6, 1, 4, 4) −36 4380
(6, 1, 4, 5) 0 864
(6, 1, 4, 6) 0 72
(7, 1, 0, 0) 32256 −2458624
(7, 1, 0, 1) 0 0
(7, 1, 0, 2) 58112 −5608960
(7, 1, 0, 3) 0 0
(7, 1, 0, 4) −12544 −290560

(a, c, b, i) X8,6 X10,6
(7, 1, 0, 5) 0 0
(7, 1, 0, 6) 0 25088
(7, 1, 1, 0) 10656 −3184776
(7, 1, 1, 1) −40896 −1507464
(7, 1, 1, 2) −36612 −1298700
(7, 1, 1, 3) 8568 408960
(7, 1, 1, 4) 4284 183060
(7, 1, 1, 5) 0 −25704
(7, 1, 1, 6) 0 −8568
(7, 1, 2, 0) −40752 3663744
(7, 1, 2, 1) −28176 7733712
(7, 1, 2, 2) −8232 4172040
(7, 1, 2, 3) 5856 281760
(7, 1, 2, 4) 1464 41160
(7, 1, 2, 5) 0 −17568
(7, 1, 2, 6) 0 −2928
(7, 1, 3, 0) 10116 661318
(7, 1, 3, 1) 21252 974226
(7, 1, 3, 2) 9361 26455

(a, c, b, i) X8,6 X10,6
(7, 1, 3, 3) 1518 −212520
(7, 1, 3, 4) 253 −46805
(7, 1, 3, 5) 0 −4554
(7, 1, 3, 6) 0 −506
(7, 1, 4, 0) 3888 88592
(7, 1, 4, 1) 8448 11712
(7, 1, 4, 2) 6464 −96400
(7, 1, 4, 3) 2176 −84480
(7, 1, 4, 4) 272 −32320
(7, 1, 4, 5) 0 −6528
(7, 1, 4, 6) 0 −544
(7, 1, 5, 0) −36 434
(7, 1, 5, 1) −60 1050
(7, 1, 5, 2) −37 1085
(7, 1, 5, 3) −10 600
(7, 1, 5, 4) −1 185
(7, 1, 5, 5) 0 30
(7, 1, 5, 6) 0 2
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