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Abstract. We give evaluation formulas for certain Dirichlet series involving hyper-
bolic factors at some integer points in terms of π and the lemniscate constant, which have
the same flavour as the classical formulas due to Cauchy, Mellin and Ramanujan. We then
prove analogous formulas for double series involving hyperbolic functions. These formu-
las are shown via the functional equation for Barnes multiple zeta-functions, proved in a
previous paper of the authors.

1. Introduction

Let N, N0, Z, Z∗, Q, R and C be the sets of natural numbers, nonnegative integers,
rational integers, non-zero integers, rational numbers, real numbers and complex numbers,
respectively. Let i = √−1.

For τ ∈ C with �τ > 0, we define

S(s; τ ) =
∞∑

m=1

(−1)m

sinh(mπi/τ)ms
(s ∈ C) .(1.1)

It is to be noted that S(s; τ ) is holomorphic for all s ∈ C.
This series was first studied by Cauchy [5], who discovered the following fascinating

formulas:

S(4k − 1; i) =
∞∑

m=1

(−1)m

sinh(mπ)m4k−1

= (2π)4k−1

2

2k∑
j=0

(−1)j+1 B2j (1/2)

(2j)!
B4k−2j (1/2)

(4k − 2j)! ,

(1.2)

S(−1; i) =
∞∑

m=1

(−1)mm

sinh(mπ)
= − 1

4π
,(1.3)

127
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S(−4k − 1; i) =
∞∑

m=1

(−1)mm4k+1

sinh(mπ)
= 0 ,(1.4)

for k ∈ N, where Bn(x) is the n-th Bernoulli polynomial defined by

text

et − 1
=

∞∑
n=0

Bn(x)
tn

n! .

In particular, (1.4) implies that s = −4k − 1 (k ∈ N) may be regarded as “trivial zeros” of
S(s; i).

More generally, Mellin [13] proved

α−N

∞∑
m=1

(−1)m+1

sinh(mα)m2N+1 − (−β)−N

∞∑
m=1

(−1)m+1

sinh(mβ)m2N+1

= 22N+1π

N+1∑
j=0

(−1)j
B2j (1/2)

(2j)!
B2N+2−2j (1/2)

(2N + 2 − 2j)!α
N+1−jβj ,

(1.5)

where N is any integer, α and β are positive numbers such that αβ = π2. Later these were
recovered by several mathematicians (for the details, see Berndt [3]).

It is well-known that Ramanujan discovered
∞∑

m=1

m

e2πm − 1
= 1

24
− 1

8π
,

∞∑
m=1

m3

e2πm − 1
= 1

80

(�

π

)4 − 1

240
,

∞∑
m=1

m5

e2πm − 1
= 1

504
,

(1.6)

and so on (see Berndt [4, Chapter 14]), where

(1.7) � = 2
∫ 1

0

dx√
1 − x4

= Γ (1/4)2

2
√

2π
= 2.622057 · · ·

is the lemniscate constant. The left-hand sides of formulas (1.6) can also be regarded as
series involving hyperbolic functions. From the results mentioned above we may expect
that various series involving hyperbolic functions are sometimes evaluated in terms of π

and � .
In this paper, we first evaluate S(−4k + 1; i) (k ∈ N) in terms of π and � (see

Theorem 3.2 and Example 3.3), by using the functional equation of Barnes double zeta-
functions given in our previous paper [10]. Also we evaluate S(−6k + 1; ρ) (k ∈ N),
where ρ = e2πi/3 (see Theorem 3.5 and Example 3.6). These are analogues of (1.6).

The reason why we only consider the cases τ = i, ρ is mentioned at the end of Section
3 (Remark 3.7).

Our theory on the evaluation of S(s; τ ) is closely related with the theory of some
double series (such as Barnes zeta-functions and Eisenstein series), as we will see in Section
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3. Therefore it is a natural problem to consider certain double analogues of S(s; τ ) itself.
For example, certain double series of Eisenstein type involving hyperbolic functions such
as ∑

n∈Z

∑
m∈Z∗

(−1)n

sinh(mπ)(m + ni)k
,

∑
n∈Z

∑
m∈Z∗

1

sinh(mπ)2(m + ni)k

are studied in [16, 17] and [11]. Another direction of generalization can be found in [10],
where we study the series whose each term includes two (or more) hyperbolic factors in the
denominator, and prove, for example,

∞∑
m=1

(−1)m

sinh(mπi/ρ) sinh(mπi/ρ2)m4
=

∞∑
m=1

1

sinh(mπi/ρ)2m4
= − 1

5670
π4 .

In this paper we consider another type of double analogue of S(s; i) defined by

(1.8) S2(s; i) =
∑

m∈Z∗

∑
n∈Z∗

m+n>0

(−1)m+n

sinh(mπ) sinh(nπ)(m + n)s
(s ∈ C) .

We evaluate S2(−4k; i) (see Theorem 4.1) and S2(4k; i) (see Theorem 4.7) for k ∈ N. A
key fact for the proof is the existence of trivial zeros (1.4) of S(s; i) (see Remark 4.9).

2. Preliminary results on Eisenstein series

We begin with recalling several known results on Eisenstein series. Let

(2.1) G2j (τ ) =
∑
m∈Z

∑
n∈Z

(m,n) �=(0,0)

1

(m + nτ)2j

be the Eisenstein series, where j ∈ N and τ ∈ C with �τ > 0. Note that even if j = 1, we
define G2(τ ) by (2.1) which converges not absolutely but conditionally. Denote the lattice
Z + Zτ by L(τ) and define the Weierstrass ℘-function by

℘(z; L(τ)) = 1

z2 +
∑

λ∈L(τ )
λ�=0

(
1

(z − λ)2 − 1

λ2

)
.(2.2)

Then we see that

(2.3) ℘(z; L(τ)) = 1

z2 +
∞∑

j=1

(2j + 1)G2j+2(τ )z2j

(see, for example, [9, Chapter 1, §6]). When τ = i, we have G2(i) = −π , and

(2.4) G4k(i) = E4k
(2�)4k

(4k)! , G4k+2(i) = 0 (k ∈ N) ,

where E4k ∈ Q. The numbers E4k (k ∈ N) are called Hurwitz numbers, because (2.4) is due
to Hurwitz [7]. For example, we see that

(2.5) G4(i) = 1

15
� 4 , G8(i) = 1

525
� 8 , G12(i) = 2

53625
� 12, . . .
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(see [12]). Analogously, Katayama [8, (6.8)] showed that

(2.6)
∑
m∈Z

∑
n∈Z

1

(2m + 1 + (2n + 1)i)4k = E (1,1)
4k

(2�)4k

(4k)! (k ∈ N)

with E (1,1)
4k ∈ Q (k ∈ N), which Katayama called 2-division Hurwitz numbers. The values

of E (1,1)
4k are, for example,

E (1,1)
4 = − 1

25 , E (1,1)
8 = 32

29 , E (1,1)
12 = −34 · 7

213 , · · · .

In the case τ = ρ = e2πi/3, it holds that G6k(ρ) ∈ Q · �̃ 6k (k ∈ N), where

�̃ = Γ (1/3)3

24/3π
= 2.4286506 · · ·

(see [14, 18]). For example, we have

G6(ρ) = �̃ 6

35
, G12(ρ) = �̃ 12

7007
, G18(ρ) = �̃ 18

1440257
, . . .(2.7)

3. Barnes zeta-functions and S(s; τ )

Now we recall the Barnes multiple zeta-function [1, 2] defined by

(3.1) ζn(s, a; ω1, . . . , ωn) =
∞∑

m1=0

· · ·
∞∑

mn=0

1

(a + ω1m1 + · · · + ωnmn)s

for a, ω1, . . . , ωn ∈ H(θ) for some θ ∈ R, where

H(θ) = {z = rei(θ+φ) ∈ C | r > 0,−π/2 < φ < π/2}
is the open half plane whose boundary line is vertical with eiθ . Then ζn(s, a; ω1, . . . , ωn)

converges absolutely and uniformly on any compact subset in �s > n, and is continued
meromorphically to the whole complex plane.

Recently we showed the following functional equation.

THEOREM 3.1 ([10], Theorem 2.1). For y ∈ [0, 1),

ζn(s, a(y); ω1, . . . , ωn) = − 2πi

Γ (s)(e2πis − 1)

×
n∑

k=1

∑
m∈Z∗

ω−1
k

( n∏
j=1
j �=k

e(2mπiωj /ωk)y

e2mπiωj /ωk − 1

)
(2mπiω−1

k )s−1e2mπiy,

where
a(y) = ω1(1 − y) + · · · + ωn(1 − y) ∈ H(θ) ,

and the argument of 2mπiω−1
k is to be taken as (π/2) − arg ωk . Note that the right-hand

side converges absolutely uniformly on the whole space C if 0 < y < 1, and on the region
�s < 0 if y = 0.
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This theorem connects the Barnes multiple zeta-function with Dirichlet series involv-
ing hyperbolic functions. In particular when (n, y, ω1, ω2) = (2, 1/2, 1, i), we can obtain

(3.2) ζ2(s, a(1/2); 1, i) = (2π)s

2Γ (s)
(
eπis + 1

) (
eπis/2 + 1

) ∑
m∈Z∗

(−1)mms−1

sinh(mπ)

for any s ∈ C. Note that, by calculating the values at nonpositive integers on both sides of
(3.2), we can obtain Cauchy’s formula (1.2) (see [10, Corollary 6.2 and Corollary 6.3]).

On the other hand, when s is a positive integer, (3.2) gives the following consequence.
We can easily see that, for k ∈ N,∑

m∈Z

∑
n∈Z

1

(2m + 1 + (2n + 1)i)4k
= 4

24k

∞∑
m=0

∞∑
n=0

1

(m + 1/2 + (n + 1/2)i)4k

= 4

24k
ζ2(4k, a(1/2); 1, i)

(3.3)

(divide the left-hand side into four parts according to the signs of 2m + 1 and 2n + 1, and
use the fact (p − qi)4 = (q + pi)4). Hence, by combining (2.6), (3.2) and (3.3), we obtain
the following theorem.

THEOREM 3.2. For k ∈ N,

(3.4) S(−4k + 1; i) =
∞∑

m=1

(−1)mm4k−1

sinh(mπ)
= 24k−2

k
E (1,1)

4k

(�

π

)4k

.

EXAMPLE 3.3.

S(−3; i) =
∞∑

m=1

(−1)mm3

sinh(mπ)
= −1

8

(�

π

)4
,

S(−7; i) =
∞∑

m=1

(−1)mm7

sinh(mπ)
= 9

16

(�

π

)8
,

S(−11; i) =
∞∑

m=1

(−1)mm11

sinh(mπ)
= −189

8

(�

π

)12
,

S(−15; i) =
∞∑

m=1

(−1)mm15

sinh(mπ)
= 130977

32

(�

π

)16
,

S(−19; i) =
∞∑

m=1

(−1)mm19

sinh(mπ)
= −16110171

8

(�

π

)20
.

Next we consider the case τ = ρ = e2πi/3. We first show

(3.5)
∑
m∈Z

∑
n∈Z

1

(2m + 1 + (2n + 1)ρ)6k
= 1

3

(
1 − 1

26k

)
G6k(ρ) (k ∈ N) .
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To show this, we divide the definition (2.1) of G6k(ρ) as A00 + A01 + A10 + A11, where
Aij denotes the partial sum running over m and n with m ≡ i and n ≡ j (mod 2). Since
ρ3 = 1 and ρ2 = −ρ − 1, we see that

(2m + (2n + 1)ρ)6k = (−2mρ − (2n + 1)ρ2)6k

= (−2mρ + (2n + 1)(ρ + 1))6k = (2n + 1 + (2n − 2m + 1)ρ)6k ,

from which we find A01 = A11. Similarly we see that A10 = A01. On the other hand it is
obvious that A00 = 2−6kG6k(ρ). Since A11 is equal to the left-hand side of (3.5), collecting
the above results we obtain the conclusion.

From Theorem 3.1 we can deduce the following.

LEMMA 3.4. For �s > 2, we have

(−ρ)s
∞∑

m=0

∞∑
n=0

1

(m + 1/2 + (n + 1/2)ρ)s

+
∞∑

m=0

∞∑
n=0

1

(m + 1/2 + (n + 1/2)(−ρ−1))s

= (2π)se−πis/2

2Γ (s)
(
eπis + 1

) ∑
m∈Z∗

(−1)mms−1

sinh(mπi/ρ)
,

(3.6)

where (−ρ)s = (e−πiρ)s .

Proof. Using Theorem 3.1 with (n, y, ω1, ω2) = (2, 1/2, 1, ρ) and (n, y, ω1, ω2) =
(2, 1/2, 1,−ρ−1), where −ρ−1 = eπi/3, we find that the left-hand side of (3.6) is equal to

− 2πi

Γ (s)(e2πis − 1)
B ,

where

B = (−ρ)s
∑

m∈Z∗

(−1)memπiρ

e2mπiρ − 1
(2mπi)s−1 + 1

ρ
(−ρ)s

∑
m∈Z∗

(−1)memπi/ρ

e2mπi/ρ − 1
(2mπi/ρ)s−1

+
∑
m∈Z∗

(−1)memπi/ρ

1 − e2mπi/ρ
(2mπi)s−1 − ρ

∑
m∈Z∗

(−1)memπiρ

1 − e2mπiρ
(2mπρ/i)s−1 .

The first and the fourth sums of B cancel with each other, and the remaining part (the
second and the third sums) gives

B = −1 + e−πis

2

∑
m∈Z∗

(−1)m(2mπi)s−1

sinh(mπi/ρ)
,

which implies the lemma. �
Putting s = 6k (k ∈ N) in equation (3.6) and noting

26k
∑
m∈Z

∑
n∈Z

1

(2m + 1 + (2n + 1)ρ)6k
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= 2

{ ∞∑
m=0

∞∑
n=0

1

(m + 1/2 + (n + 1/2)ρ)6k

+
∞∑

m=0

∞∑
n=0

1

(m + 1/2 + (n + 1/2)(−ρ−1))6k

}
(which can be seen by dividing the left-hand side into four parts according to the signs of
2m + 1 and 2n + 1, and using the fact (p − qρ)6 = (q + p(−ρ−1))6), we have

(3.7)
∑
m∈Z∗

(−1)mm6k−1

sinh(mπi/ρ)
= 2(−1)k(6k − 1)!

π6k

∑
m∈Z

∑
n∈Z

1

(2m + 1 + (2n + 1)ρ)6k

for k ∈ N. Hence, combining (3.5) and (3.7), we obtain the following.

THEOREM 3.5. For k ∈ N,

(3.8) S(−6k + 1; ρ) ∈ Q ·
(

�̃

π

)6k

.

EXAMPLE 3.6. Substituting (2.7) into (3.5), and using (3.7), we obtain the follow-
ing:

S(−5; ρ) =
∞∑

m=1

(−1)mm5

sinh(mπi/ρ)
= −9

8

(
�̃

π

)6

,

S(−11; ρ) =
∞∑

m=1

(−1)mm11

sinh(mπi/ρ)
= 30375

16

(
�̃

π

)12

,

S(−17; ρ) =
∞∑

m=1

(−1)mm17

sinh(mπi/ρ)
= −658560375

8

(
�̃

π

)18

.

REMARK 3.7. The principle of the proofs of theorems in this section is to express
the special values of S(s; τ ) in terms of Eisenstein series, and use known facts on Eisenstein
series. Those expressions are proved by using specific properties of numbers i and ρ. In
general, S(s; τ ) can be written in terms of Barnes multiple zeta-functions by Theorem 3.1,
but Eisenstein series is usually a linear combination of (two or more) Barnes zeta-functions,
so the above argument cannot be applied to other values of τ . This is the reason why we
only consider the cases τ = i, ρ in this section.

4. Some relations among S2(s; i) and S(s; i)

In this section, we will give some relation formulas among S2(s; i) and S(s; i). First
we prove the following theorem concerning the values at negative integers.

THEOREM 4.1. For p ∈ N,

S2(−4p; i) = −4p

π
S(−4p + 1; i) = −24p

π
E (1,1)

4p

(�

π

)4p

.(4.1)
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In order to prove this theorem, we prepare some notation and lemmas. Let

h(t) = et − e−t + eit − e−it

i
= 4

∞∑
j=0

t4j+1

(4j + 1)! ,(4.2)

and

(4.3) J (t) =
∞∑

n=1

(−1)nh(nt)

sinh(nπ)
+ t

π
(|t| < π) .

The right-hand side of (4.3) is absolutely convergent when |t| < π , so is holomorphic.
Substituting (4.2) into (4.3), and using (1.3) and (1.4), we have

J (t) = 4
∞∑

j=0

S(−4j − 1; i)
t4j+1

(4j + 1)! + t

π

= 4S(−1; i)t + t

π
= 0 (|t| < π) .

(4.4)

Let

(4.5) F(t) =
∑

m∈Z∗

(−1)memt

sinh(mπ)
· J (t) .

Then F(t) is absolutely convergent when |t| < π . By (4.4), we have F(t) ≡ 0 for |t| < π .
Substituting (4.2) and (4.3) into (4.5), we have

F(t) =
∑

m∈Z∗

∞∑
n=1

(−1)m+n
{
e(m+n)t − e(m−n)t + i−1e(m+ni)t − i−1e(m−ni)t

}
sinh(mπ) sinh(nπ)

+ t

π

∑
m∈Z∗

(−1)memt

sinh(mπ)
.

(4.6)

In the numerator of the first part on the right-hand side of (4.6), replacing −n by n in the
second and fourth terms in braces and using sinh(−x) = − sinh(x), we can rewrite (4.6) as

F(t) =
∑

m∈Z∗

∑
n∈Z∗

(−1)m+n
{
e(m+n)t + i−1e(m+ni)t

}
sinh(mπ) sinh(nπ)

+ t

π

∑
m∈Z∗

(−1)memt

sinh(mπ)
.(4.7)

We further let

F̃ (t) =
∑

m∈Z∗

∑
n∈Z∗

m+n�=0

(−1)m+ne(m+n)t

sinh(mπ) sinh(nπ)

+ 1

i

∑
m∈Z∗

∑
n∈Z∗

(−1)m+ne(m+ni)t

sinh(mπ) sinh(nπ)
+ t

π

∑
m∈Z∗

(−1)memt

sinh(mπ)
.

(4.8)

Then F̃ (t) is absolutely convergent for |t| < π , hence we can write

F̃ (t) =
∞∑

j=0

D̃j
tj

j ! .
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LEMMA 4.2.

D̃0 =
∑

m∈Z∗

1

sinh2(mπ)
, D̃j = 0(j ≥ 1) .

Proof. Comparing (4.7) and (4.8), we have

F(t) = F̃ (t) −
∑

m∈Z∗

1

sinh2(mπ)
.

Since F(t) ≡ 0 for |t| < π , we complete the proof. �
We let

T2(k; i) =
∑
m∈Z∗

∑
n∈Z∗

m+n�=0

(−1)m+n

sinh(mπ) sinh(nπ)(m + n)k

+ 1

i

∑
m∈Z∗

∑
n∈Z∗

(−1)m+n

sinh(mπ) sinh(nπ)(m + ni)k
(k ∈ Z) .

(4.9)

LEMMA 4.3. For j ∈ N0,

D̃j = T2(−j ; i) + j

π
S(1 − j ; i) .

Proof. Considering the Maclaurin expansion of et in (4.8) and using (4.9), we have

F̃ (t) =
∞∑

j=0

T2(−j ; i)
tj

j ! + 1

π

∞∑
j=0

S(−j ; i)
tj+1

j !

=
∞∑

j=0

{
T2(−j ; i) + j

π
S(1 − j ; i)

}
tj

j ! .

Thus we complete the proof. �
Proof of Theorem 4.1. When k = −4p (p ∈ N), the second sum on the right-hand

side of (4.9) is

I :=
∑

m∈Z∗

∑
n∈Z∗

(−1)m+n(m + ni)4p

sinh(mπ) sinh(nπ)
.

But we see that I = 0, because, replacing m by −m in I , we have

I = −
∑

m∈Z∗

∑
n∈Z∗

(−1)m+n(−m + ni)4p

sinh(mπ) sinh(nπ)

= −i4p
∑

m∈Z∗

∑
n∈Z∗

(−1)m+n(mi + n)4p

sinh(mπ) sinh(nπ)
= −I.

Therefore

T2(−4p; i) = S2(−4p; i) .(4.10)



136 Y. KOMORI, K. MATSUMOTO, and H. TSUMURA

Combining this with T2(−j ; i) + j
π
S(1 − j ; i) = 0 (for j ∈ N), which follows from

Lemmas 4.2 and 4.3, we obtain the first equation of Theorem 4.1. The second equation of
Theorem 4.1 follows from Theorem 3.2. �

Next we evaluate S2(4p; i) (p ∈ N). For this aim, we prepare the following three
lemmas. Note that the former two lemmas are quoted from the previous papers of the
third-named author.

LEMMA 4.4 ([16] Theorem 3.1). For k ∈ N0, let

G2k+1(i) =
∑
n∈Z

′ ∑
m∈Z∗

(−1)n

sinh(mπ)(m + ni)2k+1 ,(4.11)

where
∑′ means that, when k = 0, we first sum in the region |n| ≤ N and then take the

limit N → ∞. Then

G2k+1(i) = 2(−1)k+1

π

k∑
j=0

(
21−2k+2j − 1

)
ζ(2k − 2j)(4.12)

× {(−1)jG2j+2(i) + 2ζ(2j + 2)} ,

where ζ(s) is the Riemann zeta-function.

LEMMA 4.5 ([15] Lemma 8). Suppose {Pk}k≥0 and {Qk}k≥0 are sequences which
satisfy the relations

k∑
µ=0

Pk−µ
(iπ)2µ

(2µ + 1)! = Qk

for any k ∈ N0. Then the relation

Pk = −2
k∑

ν=0

(
21−2k+2ν − 1

)
ζ(2k − 2ν)Qν

holds for any k ∈ N0.

LEMMA 4.6. For p ∈ N0,

1

π
G2p+1(i) =

p∑
j=0

{
T2(2p − 2j ; i) + 2j − 2p

π
S(2p + 1 − 2j ; i)

}
(iπ)2j

(2j + 1)! .(4.13)

Proof. Let θ ∈ (−π, π), and let

C(θ) =i
∑
n∈Z∗

∑
m∈Z∗

m+n�=0

(−1)m+n sin((m + n)θ)

sinh(mπ) sinh(nπ)(m + n)2p+1

− i
∑
n∈Z∗

′ ∑
m∈Z∗

(−1)m+n sinh((m + ni)iθ)

sinh(mπ) sinh(nπ)(m + ni)2p+1

− (2p + 1)i

π

∑
m∈Z∗

(−1)m sin(mθ)

sinh(mπ)m2p+2 + iθ

π

∑
m∈Z∗

(−1)m cos(mθ)

sinh(mπ)m2p+1 .

(4.14)
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Since |θ | < π , all of the above sums are convergent absolutely. Hence, using the Maclaurin
expansions of sin x, cos x and sinh x and applying Lemma 4.3, we have

C(θ) =
∞∑

j=0

{
T2(2p − 2j ; i) + 2j − 2p

π
S(2p + 1 − 2j ; i)

}
(iθ)2j+1

(2j + 1)!

=
p∑

j=0

{
T2(2p − 2j ; i) + 2j − 2p

π
S(2p + 1 − 2j ; i)

}
(iθ)2j+1

(2j + 1)!

+
∞∑

j=p+1

D̃2j−2p

(iθ)2j+1

(2j + 1)! .

(4.15)

By Lemma 4.2, we have D̃j−p = 0 for j ≥ p + 1. Therefore the right-hand side of (4.15)
are continuous for any θ ∈ R. On the other hand, the first, the third, and the fourth sums on
the right-hand side of (4.14) are clearly convergent uniformly in θ ∈ R, hence continuous
for any θ ∈ R. Next we claim that the second sum on the right-hand side of (4.14) is
continuous for θ ∈ (−π, π]. (Note here that our original proof of this claim was erroneous.
The following proof of the claim is due to the referee.)

To show this claim, it is enough to consider the case p = 0. Then

sinh((m + ni)iθ) = 1

2

(
eimθ−nθ − e−imθ+nθ

)
,

and the contribution of eimθ−nθ (n > 0) and of e−imθ+nθ (n < 0) to the second sum are
obviously absolutely convergent for any θ ∈ R. The contribution of the remaining part is
(with replacing n by −n when n < 0)

lim
N→∞

{
−

N∑
n=1

∑
m∈Z∗

(−1)m+ne−imθ+nθ

2 sinh(mπ) sinh(nπ)(m + ni)

−
N∑

n=1

∑
m∈Z∗

(−1)m+neimθ+nθ

2 sinh(mπ) sinh(nπ)(m − ni)

}

= −1

2
lim

N→∞

{ N∑
n=1

∞∑
m=1

(−1)m+ne−imθ+nθ

sinh(mπ) sinh(nπ)(m + ni)

+
N∑

n=1

∞∑
m=1

(−1)m+neimθ+nθ

sinh(−mπ) sinh(nπ)(−m + ni)

+
N∑

n=1

∞∑
m=1

(−1)m+neimθ+nθ

sinh(mπ) sinh(nπ)(m − ni)

+
N∑

n=1

∞∑
m=1

(−1)m+ne−imθ+nθ

sinh(−mπ) sinh(nπ)(−m − ni)

}
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= − lim
N→∞

{ ∞∑
m=1

(−1)me−imθ

sinh(mπ)

N∑
n=1

(−1)nenθ

sinh(nπ)(m + ni)

+
∞∑

m=1

(−1)meimθ

sinh(mπ)

N∑
n=1

(−1)nenθ

sinh(nπ)(m − ni)

}

= lim
N→∞

{
−

∞∑
m=1

(−1)m2m cos(mθ)

sinh(mπ)

N∑
n=1

(−1)nenθ

sinh(nπ)(m2 + n2)

+
∞∑

m=1

(−1)m2 sin(mθ)

sinh(mπ)

N∑
n=1

(−1)nenθ

sinh(nπ)

n

(m2 + n2)

}
.

We denote by J1 and J2 the first and the second sums on the right-hand side, respectively.
Then we see that J1 is convergent absolutely and uniformly in θ ∈ (−π, π]. Next we
rewrite the inner sum of J2 as

N∑
n=1

(−1)nenθ

sinh(nπ)

n

m2 + n2 =
N∑

n=1

(−1)nenθ

sinh(nπ)

(
n

m2 + n2 − 1

n

)
+

N∑
n=1

enθ

sinh(nπ)

(−1)n

n

= −
N∑

n=1

(−1)nenθ

sinh(nπ)

m2

n(m2 + n2)
+

N∑
n=1

enθ

sinh(nπ)

(−1)n

n
.

Hence we can rewrite J2 to

−
∞∑

m=1

(−1)m2m2 sin(mθ)

sinh(mπ)

N∑
n=1

(−1)nenθ

sinh(nπ)

1

n(m2 + n2)

+
( ∞∑

m=1

(−1)m2 sin(mθ)

sinh(mπ)

)(
N∑

n=1

enθ

sinh(nπ)

(−1)n

n

)
.

Let N tend to infinity. Then the first double sum and the sum in the former parentheses of
the second part are convergent absolutely and uniformly in θ ∈ (−π, π]. The sum in the
latter parentheses of the second part is not convergent absolutely for θ = π but convergent
conditionally for θ = π and convergent absolutely for θ ∈ C with |θ | < π . Therefore it is
continuous for θ ∈ (−π, π] by Abel’s theorem. Hence the claim follows.

Therefore the both expressions (4.14) and (4.15) of C(θ) are continuous when θ →
π − 0. Therefore, letting θ → π − 0 and using sin((m + n)π) = 0 and

sinh((m + ni)iπ) = sinh(miπ − nπ) = −(−1)m sinh(nπ) ,

we see that

i
∑

m∈Z∗

∑
n∈Z∗

(−1)n

sinh(mπ)(m + ni)2p+1 + i
∑

m∈Z∗

1

sinh(mπ)m2p+1

=
p∑

j=0

{
T2(2p − 2j ; i) + 2j − 2p

π
S(2p + 1 − 2j ; i)

}
(iπ)2j+1

(2j + 1)! .
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Note that the left-hand side is equal to iG2p+1(i). Therefore, dividing the both sides by iπ ,
we obtain (4.13). �

THEOREM 4.7. For p ∈ N0,

S2(4p; i) = 4p

π
S(4p + 1; i) + 2

(
1 − π

3

)
S(4p − 1; i)

− 4

π

p∑
j=1

ζ(4j + 2)S(4p − 4j − 1; i) .

(4.16)

REMARK 4.8. By (1.2) and (1.3), we see that S(4k − 1; i) ∈ Q · π4k−1 (k ∈ N0).
Hence (4.16) gives that

π S2(4p; i) − 4p S(4p + 1; i) ∈ Q[π] (p ∈ N0) .

However it is not known whether S(4p + 1; i) can be written as a closed form in terms of
π , � and so on. In fact, from (1.5) in the case α = β = π , we have no information about
S(4p + 1; i) unlike the situation of S(4p − 1; i).

By (4.12) and the property of G2j (i) (see Section 2), we see that π G2p+1(i) ∈
Q
[
π,� 4

]
(p ∈ N0). Therefore, putting k = 2p + 1 in (4.17) below, we have π2T2(4p +

2; i) ∈ Q
[
π,� 4

]
(p ∈ N0), while we cannot evaluate S2(4p + 2; i) individually.

Proof of Theorem 4.7. By Lemma 4.6 we find that the choice

Pk = T2(2k; i) − 2k

π
S(2k + 1; i) , Qk = 1

π
G2k+1(i) (k ∈ N0)

satisfies the condition of Lemma 4.5. Therefore by Lemma 4.5 we obtain

(4.17) T2(2k; i) − 2k

π
S(2k + 1; i) = − 2

π

k∑
ν=0

(
21−2k+2ν − 1

)
ζ(2k − 2ν)G2ν+1(i) .

Similarly to (4.10), we have T2(4p; i) = S2(4p; i). Hence, by (4.17) with k = 2p and
(4.12), we have

S2(4p; i) − 4p

π
S(4p + 1; i)

= − 2

π

2p∑
ν=0

(
21−4p+2ν − 1

)
ζ(4p − 2ν)G2ν+1(i)

= 4

π2

2p∑
ν=0

(
21−4p+2ν − 1

)
ζ(4p − 2ν)(−1)ν

×
ν∑

j=0

(
21−2ν+2j − 1

)
ζ(2ν − 2j)

{
(−1)jG2j+2(i) + 2ζ(2j + 2)

}

= 4

π2

2p∑
j=0

2p∑
ν=j

{(
21−4p+2ν − 1

)
ζ(4p − 2ν)(−1)ν

(
21−2ν+2j − 1

)
ζ(2ν − 2j)

}
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× {
(−1)jG2j+2(i) + 2ζ(2j + 2)

}
.

Dividing the right-hand side into two subsums according as j = 2l (0 ≤ l ≤ p) and
j = 2l + 1 (0 ≤ l ≤ p − 1), we find that the right-hand side is

4

π2

p∑
l=0

2p∑
ν=2l

(
21−4p+2ν − 1

)
ζ(4p − 2ν)(−1)ν

(
21−2ν+4l − 1

)
ζ(2ν − 4l)

(4.18)

× (
G4l+2(i) + 2ζ(4l + 2)

)
+ 4

π2

p−1∑
l=0

2p∑
ν=2l+1

(
21−4p+2ν − 1

)
ζ(4p − 2ν)(−1)ν

(
23−2ν+4l − 1

)
ζ(2ν − 4l − 2)

× (− G4l+4(i) + 2ζ(4l + 4)
)
.

The second member of (4.18) vanishes because, letting

Λ =
2p∑

ν=2l+1

(
21−4p+2ν − 1

)
ζ(4p − 2ν)(−1)ν

(
23−2ν+4l − 1

)
ζ(2ν − 4l − 2)

and putting µ = 2p − ν + 2l + 1, we find Λ = −Λ, hence Λ = 0. On the other hand, by
using (

21−2ν − 1
)
ζ(2ν) =

∞∑
m=1

(−1)m

m2ν
= − (2πi)2νB2ν(1/2)

2(2ν)! (ν ∈ N)

and ζ(0) = −1/2 (see [6, Chapter 1]), we see that the first member of (4.18) is

4

π2

p∑
l=0

(G4l+2(i) + 2ζ(4l + 2))

× (2πi)4p−4l
2p−2l∑
µ=0

(−1)µ
B4p−4l−2µ(1/2)

2(4p − 4l − 2µ)!
B2µ(1/2)

2(2µ)! .

By (1.2), this coincides with

− 2

π

p∑
l=0

(
G4l+2(i) + 2ζ(4l + 2)

)
S(4p − 4l − 1; i) .

By the property of G2j (i) (see Section 2), we obtain (4.16). Thus we complete the proof
of Theorem 4.7. �

REMARK 4.9. (i) In both the proofs of Theorem 4.1 and Theorem 4.7, a key role
is played by Lemma 4.2, which is based on the fact J (t) ≡ 0. The latter fact is shown by
using Cauchy’s (1.3), (1.4), which are known for τ = i. This is the reason why we only
consider the case τ = i in this section.

(ii) The idea of Lemma 4.2 is to begin with J (t) ≡ 0, which is a consequence of the
existence of trivial zeros (1.4) of S(s; i), and multiply J (t) by another series to obtain a
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new identity F(t) ≡ 0. This type of argument has been repeatedly used by the third-named
author (see, e.g., [15] [16] [17]).

(iii) On the other hand, the method in [11] is quite different. We will develop this
direction of research further in a forthcoming paper.

Acknowledgment. The authors wish to express their sincere gratitude to the referee
for his/her careful reading of the manuscript and helpful advice, especially concerning the
proof of Lemma 4.6.
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