Correction and Supplement to the Paper "Generators of the Néron-Severi Group of a Fermat Surface"

by

Noboru AOKI and Tetsuji SHIODA

(Received March 25, 2010)

Abstract. In the article of the title, we have constructed some explicitly defined curves on a complex Fermat surface, which together with the lines generate a major part of its Néron-Severi group. In this note, we make a correction of a formula in the article and prove it by a simplified argument.

1. Introduction

1.1. In the article [3], we have constructed some explicitly defined curves on a complex Fermat surface, which generate a major part of its Néron-Severi group over the rational numbers, together with the lines on the surface [6].

The aim of this note is to make a correction in the statement of a formula [3, (2.8) in Theorem 3] and to prove it (in §3) by applying a simplified argument which holds in a more general situation (§2). In §1.2 below we review the background and the notation, where the main result of [3] is restated as Theorem 1.2.

It should be remarked that the following problems were posed in [3]: (i) to find curves which generate over \mathbb{Q} the "exceptional" part of the Néron-Severi group not spanned by the lines and curves given by [3, 6], and (ii) to find generators of the Néron-Severi group over \mathbb{Z} . As to the problem (ii), see the recent paper [4] which solves the question when the degree of the Fermat surface is relatively prime to 6 and less than 100. As to the problem (i), we have partial results based on the idea to use the Mordell-Weil lattice of some elliptic Delsarte surfaces (in preparation).

1.2. Let X_m^2 be the Fermat surface of degree *m* defined by the equation

$$z^m + y^m + z^m + w^m = 0$$

in the projective space \mathbb{P}^3 over the complex number field \mathbb{C} . If we denote by μ_m the group of *m*-th roots of unity in \mathbb{C} , then the abelian group

$$G := (\mu_m \times \mu_m \times \mu_m \times \mu_m)/\text{diagonal}$$

acts on X_m^2 in an obvious manner. The character group \hat{G} of G can be naturally identified with the additive group

$$\{(a_0, a_1, a_2, a_3) \in (\mathbb{Z}/m\mathbb{Z})^4 \mid a_0 + a_1 + a_2 + a_3 = 0\}.$$

In order to describe the action of *G* on the cohomology group $H^2(X_m^2, \mathbb{C})$, for each character $\alpha \in \hat{G}$, let

$$V(\alpha) = \{ \xi \in H^2(X_m^2, \mathbb{C}) \mid g^* \xi = \alpha(g) \xi \; (\forall g \in G) \}.$$

It is then well known that

$$H^2(X_m^2, \mathbb{C}) = V(0) \oplus \bigoplus_{\alpha \in \mathfrak{A}_m^2} V(\alpha)$$

and dim $V(\alpha) = 1$ for any $\alpha \in \{0\} \cup \mathfrak{A}_m^2$, where 0 denotes the trivial character (0, 0, 0, 0) and where

$$\mathfrak{A}_m^2 = \{ \alpha = (a_0, a_1, a_2, a_3) \in \hat{G} \mid a_i \neq 0 \; (\forall i \in \{0, 1, 2, 3\}) \}$$

(see [5]). Define a subset \mathfrak{B}_m^2 of \mathfrak{A}_m^2 by

$$\mathfrak{B}_m^2 = \{(a_0, a_1, a_2, a_3) \in \mathfrak{A}_m^2 \mid \langle ta_0 \rangle + \langle ta_1 \rangle + \langle ta_2 \rangle + \langle ta_3 \rangle = 2m \ (\forall t \in (\mathbb{Z}/m\mathbb{Z})^{\times}\},\$$

where, for any $a \in \mathbb{Z}/m\mathbb{Z}$, $\langle a \rangle$ denotes the unique integer such that $0 \leq \langle a \rangle < m$ and $\langle a \rangle \equiv a \pmod{m}$. Then the space of the Hodge cycles on X_m^2 of codimension 1 is given by

$$H^{1,1}(X_m^2) \cap H^2(X_m^2, \mathbb{Q}) = V(0) \oplus \bigoplus_{\alpha \in \mathfrak{B}_m^2} V(\alpha).$$

In view of this decomposition, an element of the index set $\{0\} \cup \mathfrak{B}_m^2$ will be called a *Hodge class*.

Given a curve *C* on X_m^2 , we put

$$G_C = \{g \in G \mid g(C) = C\}.$$

For any $\alpha \in \mathfrak{B}_m^2$ we define

$$\omega_{\alpha}(C) = \frac{1}{|G_C|} \sum_{g \in G} \alpha(g)[C_g],$$

where $C_g = g(C)$ and $[C_g] \in H^2(X_m^2, \mathbb{C})$ denotes the cohomology class of C_g . It is clear from the definition that $\omega_{\alpha}(C) \in V(\alpha)$. If $\omega_{\alpha}(C) \neq 0$ then we say that *C* represents the Hodge class α . In order that $\omega_{\alpha}(C) \neq 0$ it is clearly necessary that $\text{Ker}(\alpha) \supset G_C$, in which case we will write as

$$\omega_{\alpha}(C) = \sum_{g \in G/G_C} \alpha(g)[C_g]$$

to simplify the notation.

An element $\alpha \in \mathfrak{A}_m^2$ which is equal, up to permutation, to the element $(a, m - a, b, m - b) \in \mathfrak{B}_m^2$ for some $a, b \in \mathbb{Z}/m\mathbb{Z} - \{0\}$ will be called a *decomposable element*. In [6] the second author proved the following.

THEOREM 1.1. Let C be the line on X_m^2 defined by

$$x + \varepsilon y = z + \varepsilon' w = 0,$$

where $\varepsilon, \varepsilon'$ are 2*m*-th roots of unity such that $\varepsilon^m = {\varepsilon'}^m = -1$. Then C represents the Hogde class $\alpha = (a, m - a, b, m - b)$. More precisely, we have

$$\omega_{\alpha}(C).\overline{\omega_{\alpha}(C)} = -m^3.$$

If (m, 6) = 1, then \mathfrak{B}_m^2 consists of only decomposable elements. However, if (m, 6) > 1 and $m \neq 4$, besides decomposable elements there are three types of elements in \mathfrak{B}_m^2 . which are, up to permutaion, equal to one of the following elements ([6], [1]):

$$\begin{array}{ll} (a, \ a + m/2, \ m/2, \ m/2 - 2a) & (2 \mid m, \ 2a \neq 0), \\ (a, \ a + m/3, \ a + 2m/3, \ m - 3a) & (3 \mid m, \ 3a \neq 0), \\ (a, \ a + m/2, \ 2a + m/2, \ m - 4a) & (2 \mid m, \ 4a \neq 0). \end{array}$$
(1)

We call them *standard elements*. In our joint paper [3], we found curves on X_m^2 which represent the standard elements. The main results of [3] can be restated as follows:

THEOREM 1.2. For each standard element $\alpha \in \mathfrak{B}_m^2$ listed in (1), we define an integer $v \in \{2, 3, 4\}$ and two homogeneous polynomials f_1, f_2 as follows:

(i) If
$$\alpha = (a, a + m/2, m, m/2 - 2a)$$
, we set $\nu = 2$ and

$$f_1 = x^d + y^d + \sqrt{-1}z^d ,$$

$$f_2 = w^2 - \sqrt[d]{2}xy ,$$

where d = m/2. (ii) If $\alpha = (a, a + m/3, a + 2m/3, m - 3a)$, we set v = 3 and $f_{\cdot} = x^d + y^d + z^d$,

$$f_1 = x^a + y^a + z^a ,$$

$$f_2 = w^3 - \sqrt[d]{-3}xyz$$

where d = m/3.

(iii) If
$$\alpha = (a, a + m/2, 2a + m/2, m - 4a)$$
, we set $\nu = 4$ and $d = m/2$.
(iii-a) If $4 \mid m$, we set

$$f_1 = x^d + y^d - \sqrt{2}(xy)^{d/2} + \sqrt{-1}z^d ,$$

$$f_2 = w^4 - \sqrt[d]{-8}xyz^2 .$$

(iii-b) If $4 \nmid m$, we set

$$f_1 = (x^d + y^d + \sqrt{-1}z^d)z - \frac{\sqrt{2}}{\sqrt[m]{-8}}(xy)^{(d-1)/2}w^2,$$

$$f_2 = w^4 - \sqrt[d]{-8}xyz^2.$$

Then the curve C defined by $f_1 = f_2 = 0$ on X_m^2 represents the Hodge class α . More precisely we have

$$\omega_{\alpha}(C).\overline{\omega_{\alpha}(C)} = -\nu m^3.$$

REMARK 1.3. The values of $\sqrt[4]{2}$, $\sqrt[4]{-3}$, etc. in the defining equation of C are fixed once and for all.

N. AOKI and T. SHIODA

However, in [3] we wrongly stated the theorem in the case of (iii-a); the formula for $\omega_{\alpha}(C).\overline{\omega_{\alpha}(C)}$, whose proof was skipped there, was not correct. The purpose of this note is to give the proof of the correct formula stated as above.

REMARK 1.4. The curves *C* defined in Theorem 1.2 are complete intersection curves in \mathbb{P}^3 defined by $f_1 = f_2 = 0$ except for the last case (iii-b), where *C* is defined in \mathbb{P}^3 by three equations $f = f_1 = f_2 = 0$. Although we gave a direct proof of (iii-b) in [3], we will prove, in the last of §3, that case (iii-b) is an easy consequence of case (iii-a).

2. Preliminaries

Let S be a non-singular complex projective surface defined by f = 0 in \mathbb{P}^3 , where f is a homogeneous polynomial of degree m. Suppose that f has the following form

$$f = f_1 f_1^* + f_2 f_2^*, (2)$$

where f_1, f_1^*, f_2, f_2^* are non-constant homogeneous polynomials. If we define a curve C in \mathbb{P}^3 by

$$f_1 = f_2 = 0$$

then (2) shows that C is contained in S. Let G be an abelian subgroup of Aut(C) and put

$$G_C = \{g \in G \mid g(C) = C\}$$

Let $(f_1)_0$ be the zero divisor of f_1 on S. Suppose we have a subgroup Γ of G with the following properties:

$$G_C \subsetneq \Gamma$$
, (3)

$$(f_1)_0 = \sum_{\gamma \in \Gamma/G_C} C_{\gamma} , \qquad (4)$$

where $C_{\gamma} = \gamma(C)$. Let $[C] \in H^2(S, \mathbb{C})$ be the cohomology class of *C*. For a fixed *non-trivial* character $\chi \in \hat{\Gamma}$, we set

$$\eta = \sum_{\gamma \in \Gamma/G_C} \chi(\gamma)[C_{\gamma}] = \sum_{\gamma \in \Gamma/G_C} \overline{\chi(\gamma)} \gamma^*[C] \,.$$

The following proposition shows that η is non-trivial.

THEOREM 2.1. Notation being as above, we have

$$\eta.\overline{\eta} = -m \deg(f_1) \deg(f_1^*).$$

In the proof of Theorem 2.1 the following two lemmas will play an important rôle.

LEMMA 2.2. Let C' be the curve on S defined by $f_1^* = f_2 = 0$ and L a hyperplane section on S. Then we have

$$C + C' \sim \deg(f_2)L, \qquad (5)$$

$$\sum_{\gamma \in \Gamma/G_C} C_{\gamma} \sim \deg(f_1)L, \qquad (6)$$

where \sim denotes the linear equivalence.

Proof. These relations immediately follows from (2) and (4) respectively. \Box LEMMA 2.3. Let C^* be the curve on *S* defined by $f_1^* = f_2^* = 0$. Then $C \cap C^* = \emptyset$. *Proof.* If $C \cap C^*$ were not empty, then for any $P \in C \cap C^*$ we would have

$$\frac{\partial f}{\partial x}(P) = \sum_{i=1}^{2} \left\{ \frac{\partial f_i}{\partial x}(P) \cdot f_i^*(P) + f_i(P) \cdot \frac{\partial f_i^*}{\partial x}(P) \right\} = 0$$

and quite similarly

$$\frac{\partial f}{\partial y}(P) = \frac{\partial f}{\partial z}(P) = \frac{\partial f}{\partial w}(P) = 0$$

Then *P* would be a singular point of *S*, contradicting to the assumption that *S* is non-singular. Thus $C \cap C^* = \emptyset$.

PROPOSITION 2.4. For any $\gamma \in \Gamma$, the intersection number (C_{γ}, C) on S is given by

$$(C_{\gamma}.C) = \begin{cases} -\deg(f_1)\deg(C') + \deg(f_2)\deg(C) & (\gamma \in G_C), \\ \deg(f_2)\deg(C) & (\gamma \notin G_C). \end{cases}$$
(7)

Proof. It follows from (5) that

$$(C_{\gamma}.C) + (C_{\gamma}.C') = \deg(f_2)\deg(C_{\gamma})$$
(8)

for any $\gamma \in \Gamma$. We first show formula (7) for $\gamma \notin G_C$. In this case, we have $C'_{\gamma^{-1}} \subset C^*$ in the notation of Lemma 2.3. Thus the lemma implies that $C'_{\gamma^{-1}} \cap C = \emptyset$ and so

$$(C_{\gamma}.C') = (C.C'_{\gamma^{-1}}) = 0.$$
(9)

Hence (8) shows that

$$(C_{\gamma}.C) = \deg(f_2) \deg(C_{\gamma}).$$

The second equality of (7) follows from this since $\deg(C_{\gamma}) = \deg(C)$.

On the other hand, if $\gamma \in G_C$, then $C_{\gamma} = C$ and equation (8) reads

$$(C.C) + (C.C') = \deg(f_2) \deg(C).$$
(10)

We use (6) and (9) to obtain

$$(C.C') = \sum_{\gamma \in \Gamma/G_C} (C_{\gamma}.C') = \deg(f_1) \deg(C').$$

$$(11)$$

Combining (10) with (11), we have

$$(C.C) = -\deg(f_1)\deg(C') + \deg(f_2)\deg(C).$$

This completes the proof.

Proof of Theorem 2.1. We first note that

[C]

$$\eta.\overline{\eta} = |\Gamma| \sum_{\gamma \in \Gamma/G_C} \chi(\gamma)(C_{\gamma}.C) \,. \tag{12}$$

This immediately follows from the fact that

$$[C_{\gamma'}] = (C_{\gamma}.C_{\gamma'}) = (C_{\gamma\gamma'^{-1}}.C).$$

Applying Proposition 2.4 to (12), we have

$$\sum_{\gamma \in \Gamma/G_C} \chi(\gamma)(C_{\gamma}.C) = -\deg(f_1)\deg(C') + \sum_{\gamma \in \Gamma/G_C} \chi(\gamma)\deg(f_2)\deg(C)$$
$$= -\deg(f_1)\deg(C').$$

Here the last equality holds since χ is non-trivial on Γ . Since $\deg(C') = \deg(f_1^*) \deg(f_2)$ and $\deg(f_2) = \frac{m}{|\Gamma|}$, it follows that

$$\eta.\overline{\eta} = -m \deg(f_1) \deg(f_1^*).$$

This proves the theorem.

3. Proof

3.1. Let *m* be a positive integer such that m > 4 and $m \equiv 0 \pmod{4}$. We will prove Theorem 1.2 (iii-a) by applying the results in the previous section to the case where *S* is the Fermat surface X_m^2 .

We first define three polynomials f_1 , f_1^* , f_2 by

$$f_1 = x^d + y^d - \sqrt{2}(xy)^{d/2} + \sqrt{-1}z^d,$$

$$f_1^* = x^d + y^d + \sqrt{2}(xy)^{d/2} - \sqrt{-1}z^d,$$

$$f_2 = w^4 - \sqrt[d]{-8}xyz^2.$$

These polynomials satisfy the following identity

$$x^{m} + y^{m} + z^{m} + w^{m} = f_{1}f_{1}^{*} + \prod_{\varepsilon \in \mu_{m/4}} (w^{4} - \varepsilon \sqrt[d]{-8}xyz^{2}).$$
(13)

This implies in particular that the algebraic curve C in \mathbb{P}^3 defined by $f_1 = f_2 = 0$ is contained in X_m^2 . As in the previous section we set

$$G_C = \{g \in G_m^2 \mid C_g = C\}.$$

Now, for any $a \in \mathbb{Z}/m\mathbb{Z}$ such that $4a \neq 0$ we put

$$\beta_a = (a, d+a, d+2a, m-4a) \in \mathfrak{B}_m^2.$$

For simplicity we write β for $\beta_1 = (1, d + 1, d + 2, m - 4)$.

LEMMA 3.1. If $\alpha \in \mathfrak{B}_m^2$ and $\operatorname{Ker}(\alpha) \supset G_C$, then $\alpha = \beta_a$ for some $a \in \mathbb{Z}/m\mathbb{Z}$ with $4a \neq 0$.

Correction and Supplement to the Paper

Proof. Let ζ be a primitive *m*-th root of unity. Then two elements

$$g_1 = [1:\zeta^{-4}:\zeta^2:1], \quad g_2 = [1:\zeta^4:1:\zeta] \in G_m^2$$

generate G_C . Therefore we have $\text{Ker}(\alpha) \supset G_C$ if and only if $\alpha(g_1) = \alpha(g_2) = 1$. If we set $\alpha = (a_0, a_1, a_2, a_3) \in \mathfrak{A}_m^2$, then the latter condition gives rise to the congruence relations

$$a_2 \equiv 2a_1 \pmod{\frac{m}{2}}, \quad a_3 \equiv -4a_1 \pmod{m}$$

This shows that α can be written as

$$\alpha = \begin{cases} (a, a, 2a, m - 4a), \\ (a, a + d, 2a + d, m - 4a) \end{cases}$$

for some $a \in \mathbb{Z}/m\mathbb{Z}\setminus$ with $4a \neq 0$. But the first element cannot belong to \mathfrak{B}_m^2 , so we have $\alpha = \beta_a$ as desired.

We next consider a subgroup

$$H = \{ (1 : \zeta_1 : \zeta_2 : \zeta_3) \in G_m^2 \mid \zeta_1^{d/2} = \zeta_2^d = 1 \}$$

of G_m^2 . For any $h \in H$, the curve $C_h := h(C)$ is defined by $f_1 = h^* f_2 = 0$, where

$$h^* f_2 = w^4 - \overline{\beta(h)} \sqrt[d]{-8} xyz^2$$

It follows that $G_C = H \cap \text{Ker}(\beta)$. Since β is non-trivial on H, we have

$$G_C \subsetneq H \,. \tag{14}$$

Let $(f_1)_0$ be the zero divisor of f_1 on X_m^2 . Then (13) shows that

$$(f_1)_0 = \sum_{h \in H/G_C} C_h \,. \tag{15}$$

These properties (14) and (15) allow us to apply Theorem 2.1 to the case where $S = X_m^2$ and $\Gamma = H$.

Clearly β is non-trivial on H. Thus, if we denote by $\chi = \beta_{|_H} \in \hat{H}$ the restriction of the character β to H, then χ is non-trivial on H. Put

$$\eta = \sum_{h \in H/G_C} \overline{\chi(h)} h^*[C] \, .$$

LEMMA 3.2. Notation being as above, we have $\eta.\overline{\eta} = -\frac{m^3}{4}$.

Proof. Since $\deg(f_1) = \deg(f_1^*) = \frac{m}{2}$, Theorem 2.1 shows that

$$\eta.\overline{\eta} = -m \cdot \frac{m}{2} \cdot \frac{m}{2} = -\frac{m^3}{4}.$$

This proves the lemma.

LEMMA 3.3. Put $\omega_{\beta_{km/4+1}} = w_{\beta_{km/4+1}}(C)$ for k = 0, 1, 2, 3. Then

$$\eta = \frac{1}{8} \left(\omega_{\beta_1} + \omega_{\beta_{m/4+1}} + \omega_{\beta_{m/2+1}} + \omega_{\beta_{3m/4+1}} \right) +$$

71

N. AOKI and T. SHIODA

Proof. Recall that, for each $\alpha \in \hat{G}$, $p_{\alpha} : H^2(X_m^2, \mathbb{C}) \to V(\alpha)$ denotes the projector to $V(\alpha)$. The one-dimensional space $V(\alpha)$ is generated by the cohomology classes of algebraic cycles on X_m^2 if and only if $\alpha \in \{0\} \cup \mathfrak{B}_m^2$. Hence, if $\alpha \notin \{0\} \cup \mathfrak{B}_m^2$, then $p_{\alpha}([C]) = 0$. Moreover, if $G_C \not\subset \text{Ker}(\alpha)$, then $p_{\alpha}([C]) = 0$. Therefore Lemma 3.1 shows that

$$[C] = \sum_{\alpha \in \hat{G}} p_{\alpha}([C]) = p_0([C]) + \sum_{\substack{a \in \mathbb{Z}/m\mathbb{Z} \\ 4a \neq 0}} p_{\beta_a}([C]) \,.$$

Let $p_{\chi} = \frac{1}{|H|} \sum_{h \in H} \overline{\chi(h)}h^*$ be the projector to the χ -eigenspace. Then η is related to p_{χ} by the formula

$$\eta = \frac{|G_C|}{|H|} p_{\chi}([C]) \,. \tag{16}$$

Note that

$$p_{\chi} p_{\alpha} = \begin{cases} \text{id} & (\alpha_{|_H} = \chi), \\ 0 & (\alpha_{|_H} \neq \chi) \end{cases}$$

and $\beta_{a|_H} = \chi$ if and only if $a \equiv 1 \pmod{m/4}$. Hence

$$p_{\chi}([C]) = p_{\chi}(p_0([C])) + \sum_{\substack{a \in \mathbb{Z}/m\mathbb{Z} \\ 4a \neq 0}} p_{\chi}(p_{\beta_a}([C]))$$

= $p_{\beta_1}([C]) + p_{\beta_{m/4+1}}([C]) + p_{\beta_{2m/4+1}}([C]) + p_{\beta_{3m/4+1}}([C])$
= $\frac{|G_C|}{|G|} \left(\omega_{\beta_1} + \omega_{\beta_{m/4+1}} + \omega_{\beta_{2m/4+1}} + \omega_{\beta_{3m/4+1}} \right).$

Substituting this into (16), we obtain

$$\eta = \frac{|H|}{|G|} \left(\omega_{\beta_1} + \omega_{\beta_{m/4+1}} + \omega_{\beta_{m/2+1}} + \omega_{\beta_{3m/4+1}} \right).$$

Since |G/H| = 8, this proves the lemma.

3.2. Proof of Theorem 1.2 (iii-a)

We first note that $\omega_{\alpha}.\overline{\omega}_{\alpha'} = 0$ whenever $\alpha \neq \alpha'$. If $8 \mid m$, then $\frac{km}{4} + 1 \in (\mathbb{Z}/m\mathbb{Z})^{\times}$ for any $k \in \{0, 1, 2, 3\}$. If we denote by $\mathbb{Q}(\zeta_m)$ the *m*-th cyclotomic field, then $H^2(X_m^2, \mathbb{Q}(\zeta_m))$ admits an action of the Galois group $\operatorname{Gal}(\mathbb{Q}(\zeta_m)/\mathbb{Q}))$ and $\omega_{t\cdot\alpha} \in H^2(X_m^2, \mathbb{Q}(\zeta_m))$ $(t \in (\mathbb{Z}/m\mathbb{Z})^{\times})$ are Galois conjugate. Since the intersection product is Galois equivariant, we have

$$\omega_{t \cdot \alpha} . \overline{\omega}_{t \cdot \alpha'} = \omega_{\alpha} . \overline{\omega}_{\alpha'}$$

for any $t \in (\mathbb{Z}/m\mathbb{Z})^{\times}$. Thus Lemma 3.3 shows that

$$\eta.\overline{\eta} = 4 \times \left(\frac{1}{8}\right)^2 \omega_\beta.\overline{\omega_\beta} = \frac{1}{16} \omega_\beta.\overline{\omega_\beta}.$$

72

Therefore from Lemma 3.2 we obtain

$$\omega_{\beta}.\overline{\omega_{\beta}} = 16\eta.\overline{\eta} = 16\cdot\left(-\frac{m^3}{4}\right) = -4m^3.$$

On the other hand, if 4||m, then $\frac{m}{4} + 1$, $\frac{3m}{4} + 1 \notin (\mathbb{Z}/m\mathbb{Z})^{\times}$, and so the Galois conjugate method above does not work. To avoid this difficulty, we consider a group

$$G_0 = \{ (1:\zeta:1:1) \in G_m^2 | \zeta \in \mu_4 \}$$

of order 4 and define an operator π on $H^2(X_m^2, \mathbb{C})$ to be

$$\pi = \frac{1}{4} \sum_{g \in G_0} \overline{\beta(g)} g^*$$

It is then clear from the definition that

$$\pi(\omega_{\beta_{\frac{km}{4}+1}}) = \begin{cases} \omega_{\beta} & (k=0), \\ 0 & (k=1,2,3) \end{cases}$$

Therefore from Lemma 3.3 we have $\pi(\eta) = \frac{1}{8}\omega_{\beta}$. On the other hand, a simple calculation shows that

$$\pi(\eta).\overline{\pi(\eta)} = \frac{1}{4} \sum_{g \in G_0} \overline{\beta(g)} g^* \eta.\overline{\eta}.$$

As we shall see below, we have

$$g^*\eta.\overline{\eta} = 0 \tag{17}$$

for any $g \in G_0 \setminus \{1\}$. Then the theorem immediately follows from this since

$$\omega_{\beta}.\overline{\omega_{\beta}} = 64\pi(\eta).\overline{\pi(\eta)} = 16\eta.\overline{\eta} = -4m^3.$$

In order to prove (17), note that

$$g^*\eta.\overline{\eta} = |H| \sum_{h \in H} \beta(h)(C_{gh}.C) .$$
(18)

If $g \in G_0 \setminus \{1\}$, then C_{gh} is defined by

$$\begin{cases} x^d + \varepsilon^2 y^d - \zeta \sqrt{2} (xy)^{d/2} + \sqrt{-1} z^d = 0, \\ w^4 - \overline{\beta(gh)} \sqrt[d]{-8} xy z^2 = 0 \end{cases}$$

for some $\zeta \in \mu_4 \setminus \{1\}$. Since $\beta(h) \in \mu_{m/4}$ and $\beta(g) \in \mu_4 \setminus \{1\}$, we have $\beta(gh) \neq 1$. From this it is easily seen that $(C_{gh}.C) = 4m^2$ for any $g \in G_0 \setminus \{1\}$. Then (17) immediately follows from (18) since β is a non-trivial character on H. This completes the proof of Theorem 1.2, (iii-a).

3.3. As we have mentioned in Remark 1.4, we will prove that (iii-b) follows from (iii-a). To this end we prepare a lemma. The proof is an easy exercise and we omit it.

LEMMA 3.4. Let V, V' be \mathbb{C} -vector spaces admitting actions of abelian groups G, G' respectively. Suppose that there exists a surjective homomorphism $\psi : G \to G'$ and a \mathbb{C} -linear map $f : V \to V'$ such that

$$f(gv) = \psi(g)f(v)$$

for any $g \in G$, $v \in V$. Let α , α' be characters of G, G' respectively such that $\alpha = \alpha' \circ \pi$, and let

$$p_{\alpha} = \frac{1}{|G|} \sum_{g \in G} \overline{\alpha(g)}g, \quad p_{\alpha'} = \frac{1}{|G'|} \sum_{g \in G'} \overline{\alpha'(g)}g$$

be the corresponding projector. Then we have

$$f \circ p_{\alpha} = p_{\alpha'} \circ f \,.$$

Proof of Theorem 1.2, (iii-b). Let m > 4 be an even integer which is not necessarily divisible by 4. Let $\beta = (1, 1 + d, 2 + d, m - 4) \in \mathfrak{A}_m^2$ as in the proof of Theorem 1.2, (iii-a) above and set

$$\tilde{\beta} = (2, 2+m, 4+m, 2m-8) \in \mathfrak{B}^2_{2m}$$
.

We consider the curve \tilde{C} on X_{2m}^2 defined by

$$\tilde{C}: \begin{cases} x^m + y^m - \sqrt{2}(xy)^{m/2} + \sqrt{-1}z^m = 0, \\ w^4 - \sqrt[m]{-8}xyz^2 = 0. \end{cases}$$

Then by Theorem 1.2, (iii-a) proved just above we know that

$$\omega_{\tilde{\beta}}(\tilde{C}).\overline{\omega_{\tilde{\beta}}(\tilde{C})} = -4(2m)^3 = -32m^3.$$
⁽¹⁹⁾

If we denote by $\varphi: X_{2m}^2 \to X_m^2$ the finite morphism of degree 8 defined by

$$\varphi(x:y:z:w) = (x^2:y^2:z^2:w^2),$$

then we have $C = \varphi(\tilde{C})$ and $[\mathbb{C}(\tilde{C}) : \mathbb{C}(C)] = 4$. This implies that

$$\varphi_*([C]) = 4[C],$$
 (20)

where $[C] \in H^2(X_m^2)$ and $[\tilde{C}] \in H^2(X_{2m}^2)$ denote the cohomology classes of C and \tilde{C} respectively. For each $\tilde{g} \in G_{2m}^2$, letting $g = \tilde{g}^2$, we have $\varphi_* \tilde{g}^* = g^*$ and $\tilde{\beta}(\tilde{g}) = \beta(g)$. Then Lemma 3.4 together with (20) shows that

$$\varphi_*(p_{\tilde{\beta}}([\tilde{C}]) = p_{\beta}(\varphi_*[\tilde{C}]) = 4p_{\beta}([C])$$

Since $|G_{2m}^2| = 8|G_m^2|$ and $|G_{\tilde{C}}| = 4|G_C|$, this implies that

$$\varphi_*(\omega_{\tilde{\beta}}(\tilde{C})) = \frac{|G_{2m}^2|}{|G_{\tilde{C}}|} \varphi_*(p_{\tilde{\beta}}([\tilde{C}])) = 8 \cdot \frac{|G_m^2|}{|G_C|} p_{\beta}([C]) = 8\omega_{\beta}(C) \,.$$

Thus, $\varphi_*(\omega_{\tilde{\beta}}(\tilde{C})) = 8\omega_{\beta}(C)$. It then follows from the projection formula that

$$\omega_{\tilde{\beta}}(\tilde{C}).\omega_{\tilde{\beta}}(\tilde{C}) = 8\omega_{\beta}(C).\overline{\omega_{\beta}(C)}.$$

Therefore (19) yields

$$\omega_{\beta}(C).\overline{\omega_{\beta}(C)} = \frac{1}{8}\omega_{\tilde{\beta}}(\tilde{C}).\overline{\omega_{\tilde{\beta}}(\tilde{C})} = \frac{1}{8}\cdot(-32m^3) = -4m^3.$$

This proves Theorem 1.2, (iii-b).

References

- Aoki, N., On some arithmetic problems related to the Hodge cycles on the Fermat varieties, Math. Ann., 266 (1983), 23–54. (Erratum: Math. Ann., 267 (1984), pp. 572.)
- [2] Aoki, N., Some new algebraic cycles on Fermat varieties, J. Math. Soc. Japan, **39** (1987), 385–396.
- [3] Aoki, N. and Shioda, T., Generators of the Néron-Severi group of a Fermat surface, Progress in Math., 35 (1983), 1–12.
- [4] Schuett, M., Shioda, T. and van Luijk, R.: Lines on Fermat surfaces (to appear).
- [5] Shioda, T., The Hodge conjecture for Fermat varieties, Math. Ann., 245 (1979), 175–184.
- [6] Shioda, T., On the Picard number of a Fermat surface, J. Fac. Sci. Univ. Tokyo, 28 (1982), 725–734.
- [7] Shioda, T. and Katsura, T., On Fermat varieties, Tôhoku Math. J., **31** (1979), 97–115.

Department of Mathematics Rikkyo University Nishi-Ikebukuro, Toshima-ku Tokyo, 171–8501, Japan *e-mail*: aoki@rikkyo.ac.jp shioda@rikkyo.ac.jp