Correction and Supplement to the Paper "Generators of the Néron-Severi Group of a Fermat Surface"

by
Noboru AOKI and Tetsuji Shioda

(Received March 25, 2010)

Abstract

In the article of the title, we have constructed some explicitly defined curves on a complex Fermat surface, which together with the lines generate a major part of its Néron-Severi group. In this note, we make a correction of a formula in the article and prove it by a simplified argument.

1. Introduction

1.1. In the article [3], we have constructed some explicitly defined curves on a complex Fermat surface, which generate a major part of its Néron-Severi group over the rational numbers, together with the lines on the surface [6].

The aim of this note is to make a correction in the statement of a formula [3, (2.8) in Theorem 3] and to prove it (in §3) by applying a simplified argument which holds in a more general situation (§2). In §1.2 below we review the background and the notation, where the main result of [3] is restated as Theorem 1.2.

It should be remarked that the following problems were posed in [3]: (i) to find curves which generate over \mathbb{Q} the "exceptional" part of the Néron-Severi group not spanned by the lines and curves given by [3, 6], and (ii) to find generators of the Néron-Severi group over \mathbb{Z}. As to the problem (ii), see the recent paper [4] which solves the question when the degree of the Fermat surface is relatively prime to 6 and less than 100. As to the problem (i), we have partial results based on the idea to use the Mordell-Weil lattice of some elliptic Delsarte surfaces (in preparation).
1.2. Let X_{m}^{2} be the Fermat surface of degree m defined by the equation

$$
x^{m}+y^{m}+z^{m}+w^{m}=0
$$

in the projective space \mathbb{P}^{3} over the complex number field \mathbb{C}. If we denote by μ_{m} the group of m-th roots of unity in \mathbb{C}, then the abelian group

$$
G:=\left(\mu_{m} \times \mu_{m} \times \mu_{m} \times \mu_{m}\right) / \text { diagonal }
$$

acts on X_{m}^{2} in an obvious manner. The character group \hat{G} of G can be naturally identified with the additive group

$$
\left\{\left(a_{0}, a_{1}, a_{2}, a_{3}\right) \in(\mathbb{Z} / m \mathbb{Z})^{4} \mid a_{0}+a_{1}+a_{2}+a_{3}=0\right\}
$$

In order to describe the action of G on the cohomology group $H^{2}\left(X_{m}^{2}, \mathbb{C}\right)$, for each character $\alpha \in \hat{G}$, let

$$
V(\alpha)=\left\{\xi \in H^{2}\left(X_{m}^{2}, \mathbb{C}\right) \mid g^{*} \xi=\alpha(g) \xi(\forall g \in G)\right\}
$$

It is then well known that

$$
H^{2}\left(X_{m}^{2}, \mathbb{C}\right)=V(0) \oplus \bigoplus_{\alpha \in \mathfrak{A}_{m}^{2}} V(\alpha)
$$

and $\operatorname{dim} V(\alpha)=1$ for any $\alpha \in\{0\} \cup \mathfrak{A}_{m}^{2}$, where 0 denotes the trivial character $(0,0,0,0)$ and where

$$
\mathfrak{A}_{m}^{2}=\left\{\alpha=\left(a_{0}, a_{1}, a_{2}, a_{3}\right) \in \hat{G} \mid a_{i} \neq 0(\forall i \in\{0,1,2,3\})\right\}
$$

(see [5]). Define a subset \mathfrak{B}_{m}^{2} of \mathfrak{A}_{m}^{2} by

$$
\mathfrak{B}_{m}^{2}=\left\{\left(a_{0}, a_{1}, a_{2}, a_{3}\right) \in \mathfrak{A}_{m}^{2} \mid\left\langle t a_{0}\right\rangle+\left\langle t a_{1}\right\rangle+\left\langle t a_{2}\right\rangle+\left\langle t a_{3}\right\rangle=2 m\left(\forall t \in(\mathbb{Z} / m \mathbb{Z})^{\times}\right\}\right.
$$

where, for any $a \in \mathbb{Z} / m \mathbb{Z},\langle a\rangle$ denotes the unique integer such that $0 \leq\langle a\rangle<m$ and $\langle a\rangle \equiv a(\bmod m)$. Then the space of the Hodge cycles on X_{m}^{2} of codimension 1 is given by

$$
H^{1,1}\left(X_{m}^{2}\right) \cap H^{2}\left(X_{m}^{2}, \mathbb{Q}\right)=V(0) \oplus \bigoplus_{\alpha \in \mathfrak{B}_{m}^{2}} V(\alpha)
$$

In view of this decomposition, an element of the index set $\{0\} \cup \mathfrak{B}_{m}^{2}$ will be called a Hodge class.

Given a curve C on X_{m}^{2}, we put

$$
G_{C}=\{g \in G \mid g(C)=C\}
$$

For any $\alpha \in \mathfrak{B}_{m}^{2}$ we define

$$
\omega_{\alpha}(C)=\frac{1}{\left|G_{C}\right|} \sum_{g \in G} \alpha(g)\left[C_{g}\right],
$$

where $C_{g}=g(C)$ and $\left[C_{g}\right] \in H^{2}\left(X_{m}^{2}, \mathbb{C}\right)$ denotes the cohomology class of C_{g}. It is clear from the definition that $\omega_{\alpha}(C) \in V(\alpha)$. If $\omega_{\alpha}(C) \neq 0$ then we say that C represents the Hodge class α. In order that $\omega_{\alpha}(C) \neq 0$ it is clearly necessary that $\operatorname{Ker}(\alpha) \supset G_{C}$, in which case we will write as

$$
\omega_{\alpha}(C)=\sum_{g \in G / G_{C}} \alpha(g)\left[C_{g}\right]
$$

to simplify the notation.
An element $\alpha \in \mathfrak{A}_{m}^{2}$ which is equal, up to permutation, to the element ($a, m-$ $a, b, m-b) \in \mathfrak{B}_{m}^{2}$ for some $a, b \in \mathbb{Z} / m \mathbb{Z}-\{0\}$ will be called a decomposable element. In [6] the second author proved the following.

Theorem 1.1. Let C be the line on X_{m}^{2} defined by

$$
x+\varepsilon y=z+\varepsilon^{\prime} w=0
$$

where $\varepsilon, \varepsilon^{\prime}$ are $2 m$-th roots of unity such that $\varepsilon^{m}=\varepsilon^{\prime m}=-1$. Then C represents the Hogde class $\alpha=(a, m-a, b, m-b)$. More precisely, we have

$$
\omega_{\alpha}(C) \cdot \overline{\omega_{\alpha}(C)}=-m^{3} .
$$

If $(m, 6)=1$, then \mathfrak{B}_{m}^{2} consists of only decomposable elements. However, if $(m, 6)>$ 1 and $m \neq 4$, besides decomposable elements there are three types of elements in \mathfrak{B}_{m}^{2}, which are, up to permutaion, equal to one of the following elements ([6], [1]):

$$
\begin{array}{ll}
(a, a+m / 2, m / 2, m / 2-2 a) & (2 \mid m, 2 a \neq 0) \\
(a, a+m / 3, a+2 m / 3, m-3 a) & (3 \mid m, 3 a \neq 0) \tag{1}\\
(a, a+m / 2,2 a+m / 2, m-4 a) & (2 \mid m, 4 a \neq 0)
\end{array}
$$

We call them standard elements. In our joint paper [3], we found curves on X_{m}^{2} which represent the standard elements. The main results of [3] can be restated as follows:

Theorem 1.2. For each standard element $\alpha \in \mathfrak{B}_{m}^{2}$ listed in (1), we define an integer $v \in\{2,3,4\}$ and two homogeneous polynomials f_{1}, f_{2} as follows:
(i) If $\alpha=(a, a+m / 2, m, m / 2-2 a)$, we set $v=2$ and

$$
\begin{aligned}
& f_{1}=x^{d}+y^{d}+\sqrt{-1} z^{d} \\
& f_{2}=w^{2}-\sqrt[d]{2} x y
\end{aligned}
$$

where $d=m / 2$.
(ii) If $\alpha=(a, a+m / 3, a+2 m / 3, m-3 a)$, we set $v=3$ and

$$
\begin{aligned}
& f_{1}=x^{d}+y^{d}+z^{d} \\
& f_{2}=w^{3}-\sqrt[d]{-3} x y z
\end{aligned}
$$

where $d=m / 3$.
(iii) If $\alpha=(a, a+m / 2,2 a+m / 2, m-4 a)$, we set $v=4$ and $d=m / 2$. (iii-a) If $4 \mid m$, we set

$$
\begin{aligned}
& f_{1}=x^{d}+y^{d}-\sqrt{2}(x y)^{d / 2}+\sqrt{-1} z^{d} \\
& f_{2}=w^{4}-\sqrt[d]{-8} x y z^{2}
\end{aligned}
$$

(iii-b) If $4 \nmid m$, we set

$$
\begin{aligned}
& f_{1}=\left(x^{d}+y^{d}+\sqrt{-1} z^{d}\right) z-\frac{\sqrt{2}}{\sqrt[m]{-8}}(x y)^{(d-1) / 2} w^{2} \\
& f_{2}=w^{4}-\sqrt[d]{-8} x y z^{2}
\end{aligned}
$$

Then the curve C defined by $f_{1}=f_{2}=0$ on X_{m}^{2} represents the Hodge class α. More precisely we have

$$
\omega_{\alpha}(C) \cdot \overline{\omega_{\alpha}(C)}=-v m^{3} .
$$

REMARK 1.3. The values of $\sqrt[d]{2}, \sqrt[d]{-3}$, etc. in the defining equation of C are fixed once and for all.

However, in [3] we wrongly stated the theorem in the case of (iii-a); the formula for $\omega_{\alpha}(C) . \overline{\omega_{\alpha}(C)}$, whose proof was skipped there, was not correct. The purpose of this note is to give the proof of the correct formula stated as above.

REMARK 1.4. The curves C defined in Theorem 1.2 are complete intersection curves in \mathbb{P}^{3} defined by $f_{1}=f_{2}=0$ except for the last case (iii-b), where C is defined in \mathbb{P}^{3} by three equations $f=f_{1}=f_{2}=0$. Although we gave a direct proof of (iii-b) in [3], we will prove, in the last of $\S 3$, that case (iii-b) is an easy consequence of case (iii-a).

2. Preliminaries

Let S be a non-singular complex projective surface defined by $f=0$ in \mathbb{P}^{3}, where f is a homogeneous polynomial of degree m. Suppose that f has the following form

$$
\begin{equation*}
f=f_{1} f_{1}^{*}+f_{2} f_{2}^{*} \tag{2}
\end{equation*}
$$

where $f_{1}, f_{1}^{*}, f_{2}, f_{2}^{*}$ are non-constant homogeneous polynomials. If we define a curve C in \mathbb{P}^{3} by

$$
f_{1}=f_{2}=0
$$

then (2) shows that C is contained in S. Let G be an abelian subgroup of $\operatorname{Aut}(C)$ and put

$$
G_{C}=\{g \in G \mid g(C)=C\}
$$

Let $\left(f_{1}\right)_{0}$ be the zero divisor of f_{1} on S. Suppose we have a subgroup Γ of G with the following properties:

$$
\begin{align*}
G_{C} & \subsetneq \Gamma, \tag{3}\\
\left(f_{1}\right)_{0} & =\sum_{\gamma \in \Gamma / G_{C}} C_{\gamma}, \tag{4}
\end{align*}
$$

where $C_{\gamma}=\gamma(C)$. Let $[C] \in H^{2}(S, \mathbb{C})$ be the cohomology class of C. For a fixed non-trivial character $\chi \in \hat{\Gamma}$, we set

$$
\eta=\sum_{\gamma \in \Gamma / G_{C}} \chi(\gamma)\left[C_{\gamma}\right]=\sum_{\gamma \in \Gamma / G_{C}} \overline{\chi(\gamma)} \gamma^{*}[C] .
$$

The following proposition shows that η is non-trivial.
THEOREM 2.1. Notation being as above, we have

$$
\eta \cdot \bar{\eta}=-m \operatorname{deg}\left(f_{1}\right) \operatorname{deg}\left(f_{1}^{*}\right) .
$$

In the proof of Theorem 2.1 the following two lemmas will play an important rôle.
Lemma 2.2. Let C^{\prime} be the curve on S defined by $f_{1}^{*}=f_{2}=0$ and L a hyperplane section on S. Then we have

$$
\begin{align*}
C+C^{\prime} & \sim \operatorname{deg}\left(f_{2}\right) L \tag{5}\\
\sum_{\gamma \in \Gamma / G_{C}} C_{\gamma} & \sim \operatorname{deg}\left(f_{1}\right) L \tag{6}
\end{align*}
$$

where \sim denotes the linear equivalence.
Proof. These relations immediately follows from (2) and (4) respectively.
Lemma 2.3. Let C^{*} be the curve on S defined by $f_{1}^{*}=f_{2}^{*}=0$. Then $C \cap C^{*}=\emptyset$.
Proof. If $C \cap C^{*}$ were not empty, then for any $P \in C \cap C^{*}$ we would have

$$
\frac{\partial f}{\partial x}(P)=\sum_{i=1}^{2}\left\{\frac{\partial f_{i}}{\partial x}(P) \cdot f_{i}^{*}(P)+f_{i}(P) \cdot \frac{\partial f_{i}^{*}}{\partial x}(P)\right\}=0
$$

and quite similarly

$$
\frac{\partial f}{\partial y}(P)=\frac{\partial f}{\partial z}(P)=\frac{\partial f}{\partial w}(P)=0 .
$$

Then P would be a singular point of S, contradicting to the assumption that S is nonsingular. Thus $C \cap C^{*}=\emptyset$.

Proposition 2.4. For any $\gamma \in \Gamma$, the intersection number $\left(C_{\gamma} . C\right)$ on S is given by

$$
\left(C_{\gamma} \cdot C\right)=\left\{\begin{array}{cc}
-\operatorname{deg}\left(f_{1}\right) \operatorname{deg}\left(C^{\prime}\right)+\operatorname{deg}\left(f_{2}\right) \operatorname{deg}(C) & \left(\gamma \in G_{C}\right), \tag{7}\\
\operatorname{deg}\left(f_{2}\right) \operatorname{deg}(C) & \left(\gamma \notin G_{C}\right) .
\end{array}\right.
$$

Proof. It follows from (5) that

$$
\begin{equation*}
\left(C_{\gamma} \cdot C\right)+\left(C_{\gamma} \cdot C^{\prime}\right)=\operatorname{deg}\left(f_{2}\right) \operatorname{deg}\left(C_{\gamma}\right) \tag{8}
\end{equation*}
$$

for any $\gamma \in \Gamma$. We first show formula (7) for $\gamma \notin G_{C}$. In this case, we have $C_{\gamma^{-1}}^{\prime} \subset C^{*}$ in the notation of Lemma 2.3. Thus the lemma implies that $C_{\gamma^{-1}}^{\prime} \cap C=\emptyset$ and so

$$
\begin{equation*}
\left(C_{\gamma} \cdot C^{\prime}\right)=\left(C \cdot C_{\gamma^{-1}}^{\prime}\right)=0 . \tag{9}
\end{equation*}
$$

Hence (8) shows that

$$
\left(C_{\gamma} \cdot C\right)=\operatorname{deg}\left(f_{2}\right) \operatorname{deg}\left(C_{\gamma}\right) .
$$

The second equality of (7) follows from this since $\operatorname{deg}\left(C_{\gamma}\right)=\operatorname{deg}(C)$.
On the other hand, if $\gamma \in G_{C}$, then $C_{\gamma}=C$ and equation (8) reads

$$
\begin{equation*}
(C . C)+\left(C . C^{\prime}\right)=\operatorname{deg}\left(f_{2}\right) \operatorname{deg}(C) . \tag{10}
\end{equation*}
$$

We use (6) and (9) to obtain

$$
\begin{equation*}
\left(C \cdot C^{\prime}\right)=\sum_{\gamma \in \Gamma / G_{C}}\left(C_{\gamma} \cdot C^{\prime}\right)=\operatorname{deg}\left(f_{1}\right) \operatorname{deg}\left(C^{\prime}\right) . \tag{11}
\end{equation*}
$$

Combining (10) with (11), we have

$$
(C \cdot C)=-\operatorname{deg}\left(f_{1}\right) \operatorname{deg}\left(C^{\prime}\right)+\operatorname{deg}\left(f_{2}\right) \operatorname{deg}(C) .
$$

This completes the proof.

Proof of Theorem 2.1. We first note that

$$
\begin{equation*}
\eta \cdot \bar{\eta}=|\Gamma| \sum_{\gamma \in \Gamma / G_{C}} \chi(\gamma)\left(C_{\gamma} \cdot C\right) \tag{12}
\end{equation*}
$$

This immediately follows from the fact that

$$
\left[C_{\gamma}\right] \cdot\left[C_{\gamma^{\prime}}\right]=\left(C_{\gamma} \cdot C_{\gamma^{\prime}}\right)=\left(C_{\gamma \gamma^{\prime}} \cdot C\right)
$$

Applying Proposition 2.4 to (12), we have

$$
\begin{aligned}
\sum_{\gamma \in \Gamma / G_{C}} \chi(\gamma)\left(C_{\gamma} \cdot C\right) & =-\operatorname{deg}\left(f_{1}\right) \operatorname{deg}\left(C^{\prime}\right)+\sum_{\gamma \in \Gamma / G_{C}} \chi(\gamma) \operatorname{deg}\left(f_{2}\right) \operatorname{deg}(C) \\
& =-\operatorname{deg}\left(f_{1}\right) \operatorname{deg}\left(C^{\prime}\right)
\end{aligned}
$$

Here the last equality holds since χ is non-trivial on Γ. Since $\operatorname{deg}\left(C^{\prime}\right)=\operatorname{deg}\left(f_{1}^{*}\right) \operatorname{deg}\left(f_{2}\right)$ and $\operatorname{deg}\left(f_{2}\right)=\frac{m}{|\Gamma|}$, it follows that

$$
\eta \cdot \bar{\eta}=-m \operatorname{deg}\left(f_{1}\right) \operatorname{deg}\left(f_{1}^{*}\right)
$$

This proves the theorem.

3. Proof

3.1. Let m be a positive integer such that $m>4$ and $m \equiv 0(\bmod 4)$. We will prove Theorem 1.2 (iii-a) by applying the results in the previous section to the case where S is the Fermat surface X_{m}^{2}.

We first define three polynomials f_{1}, f_{1}^{*}, f_{2} by

$$
\begin{aligned}
f_{1} & =x^{d}+y^{d}-\sqrt{2}(x y)^{d / 2}+\sqrt{-1} z^{d} \\
f_{1}^{*} & =x^{d}+y^{d}+\sqrt{2}(x y)^{d / 2}-\sqrt{-1} z^{d} \\
f_{2} & =w^{4}-\sqrt[d]{-8} x y z^{2}
\end{aligned}
$$

These polynomials satisfy the following identity

$$
\begin{equation*}
x^{m}+y^{m}+z^{m}+w^{m}=f_{1} f_{1}^{*}+\prod_{\varepsilon \in \mu_{m / 4}}\left(w^{4}-\varepsilon \sqrt[d]{-8} x y z^{2}\right) . \tag{13}
\end{equation*}
$$

This implies in particular that the algebraic curve C in \mathbb{P}^{3} defined by $f_{1}=f_{2}=0$ is contained in X_{m}^{2}. As in the previous section we set

$$
G_{C}=\left\{g \in G_{m}^{2} \mid C_{g}=C\right\} .
$$

Now, for any $a \in \mathbb{Z} / m \mathbb{Z}$ such that $4 a \neq 0$ we put

$$
\beta_{a}=(a, d+a, d+2 a, m-4 a) \in \mathfrak{B}_{m}^{2} .
$$

For simplicity we write β for $\beta_{1}=(1, d+1, d+2, m-4)$.
LEMMA 3.1. If $\alpha \in \mathfrak{B}_{m}^{2}$ and $\operatorname{Ker}(\alpha) \supset G_{C}$, then $\alpha=\beta_{a}$ for some $a \in \mathbb{Z} / m \mathbb{Z}$ with $4 a \neq 0$.

Proof. Let ζ be a primitive m-th root of unity. Then two elements

$$
g_{1}=\left[1: \zeta^{-4}: \zeta^{2}: 1\right], \quad g_{2}=\left[1: \zeta^{4}: 1: \zeta\right] \in G_{m}^{2}
$$

generate G_{C}. Therefore we have $\operatorname{Ker}(\alpha) \supset G_{C}$ if and only if $\alpha\left(g_{1}\right)=\alpha\left(g_{2}\right)=1$. If we set $\alpha=\left(a_{0}, a_{1}, a_{2}, a_{3}\right) \in \mathfrak{A}_{m}^{2}$, then the latter condition gives rise to the congruence relations

$$
a_{2} \equiv 2 a_{1}\left(\bmod \frac{m}{2}\right), \quad a_{3} \equiv-4 a_{1} \quad(\bmod m)
$$

This shows that α can be written as

$$
\alpha=\left\{\begin{array}{l}
(a, a, 2 a, m-4 a), \\
(a, a+d, 2 a+d, m-4 a)
\end{array}\right.
$$

for some $a \in \mathbb{Z} / m \mathbb{Z} \backslash$ with $4 a \neq 0$. But the first element cannot belong to \mathfrak{B}_{m}^{2}, so we have $\alpha=\beta_{a}$ as desired.

We next consider a subgroup

$$
H=\left\{\left(1: \zeta_{1}: \zeta_{2}: \zeta_{3}\right) \in G_{m}^{2} \mid \zeta_{1}^{d / 2}=\zeta_{2}^{d}=1\right\}
$$

of G_{m}^{2}. For any $h \in H$, the curve $C_{h}:=h(C)$ is defined by $f_{1}=h^{*} f_{2}=0$, where

$$
h^{*} f_{2}=w^{4}-\overline{\beta(h)} \sqrt[d]{-8} x y z^{2}
$$

It follows that $G_{C}=H \cap \operatorname{Ker}(\beta)$. Since β is non-trivial on H, we have

$$
\begin{equation*}
G_{C} \subsetneq H . \tag{14}
\end{equation*}
$$

Let $\left(f_{1}\right)_{0}$ be the zero divisor of f_{1} on X_{m}^{2}. Then (13) shows that

$$
\begin{equation*}
\left(f_{1}\right)_{0}=\sum_{h \in H / G_{C}} C_{h} \tag{15}
\end{equation*}
$$

These properties (14) and (15) allow us to apply Theorem 2.1 to the case where $S=X_{m}^{2}$ and $\Gamma=H$.

Clearly β is non-trivial on H. Thus, if we denote by $\chi=\beta_{\left.\right|_{H}} \in \hat{H}$ the restriction of the character β to H, then χ is non-trivial on H. Put

$$
\eta=\sum_{h \in H / G_{C}} \overline{\chi(h)} h^{*}[C]
$$

Lemma 3.2. Notation being as above, we have $\eta \cdot \bar{\eta}=-\frac{m^{3}}{4}$.
Proof. Since $\operatorname{deg}\left(f_{1}\right)=\operatorname{deg}\left(f_{1}^{*}\right)=\frac{m}{2}$, Theorem 2.1 shows that

$$
\eta \cdot \bar{\eta}=-m \cdot \frac{m}{2} \cdot \frac{m}{2}=-\frac{m^{3}}{4}
$$

This proves the lemma.
Lemma 3.3. Put $\omega_{\beta_{k m / 4+1}}=w_{\beta_{k m / 4+1}}(C)$ for $k=0,1,2,3$. Then

$$
\eta=\frac{1}{8}\left(\omega_{\beta_{1}}+\omega_{\beta_{m / 4+1}}+\omega_{\beta_{m / 2+1}}+\omega_{\beta_{3 m / 4+1}}\right) .
$$

Proof. Recall that, for each $\alpha \in \hat{G}, p_{\alpha}: H^{2}\left(X_{m}^{2}, \mathbb{C}\right) \rightarrow V(\alpha)$ denotes the projector to $V(\alpha)$. The one-dimensional space $V(\alpha)$ is generated by the cohomology classes of algebraic cycles on X_{m}^{2} if and only if $\alpha \in\{0\} \cup \mathfrak{B}_{m}^{2}$. Hence, if $\alpha \notin\{0\} \cup \mathfrak{B}_{m}^{2}$, then $p_{\alpha}([C])=0$. Moreover, if $G_{C} \not \subset \operatorname{Ker}(\alpha)$, then $p_{\alpha}([C])=0$. Therefore Lemma 3.1 shows that

$$
[C]=\sum_{\alpha \in \hat{G}} p_{\alpha}([C])=p_{0}([C])+\sum_{\substack{a \in \mathbb{Z} / m \mathbb{Z} \\ 4 a \neq 0}} p_{\beta_{a}}([C]) .
$$

Let $p_{\chi}=\frac{1}{|H|} \sum_{h \in H} \overline{\chi(h)} h^{*}$ be the projector to the χ-eigenspace. Then η is related to p_{χ} by the formula

$$
\begin{equation*}
\eta=\frac{\left|G_{C}\right|}{|H|} p_{\chi}([C]) . \tag{16}
\end{equation*}
$$

Note that

$$
p_{\chi} p_{\alpha}= \begin{cases}\text { id } & \left(\alpha_{\left.\right|_{H}}=\chi\right), \\ 0 & \left(\alpha_{\left.\right|_{H}} \neq \chi\right)\end{cases}
$$

and $\beta_{a_{H}}=\chi$ if and only if $a \equiv 1(\bmod m / 4)$. Hence

$$
\begin{aligned}
p_{\chi}([C]) & =p_{\chi}\left(p_{0}([C])\right)+\sum_{\substack{a \in \mathbb{Z} / m \mathbb{Z} \\
4 a \neq 0}} p_{\chi}\left(p_{\beta_{a}}([C])\right) \\
& =p_{\beta_{1}}([C])+p_{\beta_{m / 4+1}}([C])+p_{\beta_{2 m / 4+1}}([C])+p_{\beta_{3 m / 4+1}}([C]) \\
& =\frac{\left|G_{C}\right|}{|G|}\left(\omega_{\beta_{1}}+\omega_{\beta_{m / 4+1}}+\omega_{\beta_{2 m / 4+1}}+\omega_{\beta_{3 m / 4+1}}\right)
\end{aligned}
$$

Substituting this into (16), we obtain

$$
\eta=\frac{|H|}{|G|}\left(\omega_{\beta_{1}}+\omega_{\beta_{m / 4+1}}+\omega_{\beta_{m / 2+1}}+\omega_{\beta_{3 m / 4+1}}\right)
$$

Since $|G / H|=8$, this proves the lemma.
3.2. Proof of Theorem 1.2 (iii-a)

We first note that $\omega_{\alpha} \cdot \bar{\omega}_{\alpha^{\prime}}=0$ whenever $\alpha \neq \alpha^{\prime}$. If $8 \mid m$, then $\frac{k m}{4}+1 \in(\mathbb{Z} / m \mathbb{Z})^{\times}$for any $k \in\{0,1,2,3\}$. If we denote by $\mathbb{Q}\left(\zeta_{m}\right)$ the m-th cyclotomic field, then $H^{2}\left(X_{m}^{2}, \mathbb{Q}\left(\zeta_{m}\right)\right)$ admits an action of the Galois group $\left.\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{m}\right) / \mathbb{Q}\right)\right)$ and $\omega_{t \cdot \alpha} \in H^{2}\left(X_{m}^{2}, \mathbb{Q}\left(\zeta_{m}\right)\right)(t \in$ $\left.(\mathbb{Z} / m \mathbb{Z})^{\times}\right)$are Galois conjugate. Since the intersection product is Galois equivariant, we have

$$
\omega_{t \cdot \alpha} \cdot \bar{\omega}_{t \cdot \alpha^{\prime}}=\omega_{\alpha} \cdot \bar{\omega}_{\alpha^{\prime}}
$$

for any $t \in(\mathbb{Z} / m \mathbb{Z})^{\times}$. Thus Lemma 3.3 shows that

$$
\eta \cdot \bar{\eta}=4 \times\left(\frac{1}{8}\right)^{2} \omega_{\beta} \cdot \overline{\omega_{\beta}}=\frac{1}{16} \omega_{\beta} \cdot \overline{\omega_{\beta}} .
$$

Therefore from Lemma 3.2 we obtain

$$
\omega_{\beta} \cdot \overline{\omega_{\beta}}=16 \eta \cdot \bar{\eta}=16 \cdot\left(-\frac{m^{3}}{4}\right)=-4 m^{3} .
$$

On the other hand, if $4 \| m$, then $\frac{m}{4}+1, \frac{3 m}{4}+1 \notin(\mathbb{Z} / m \mathbb{Z})^{\times}$, and so the Galois conjugate method above does not work. To avoid this difficulty, we consider a group

$$
G_{0}=\left\{(1: \zeta: 1: 1) \in G_{m}^{2} \mid \zeta \in \mu_{4}\right\}
$$

of order 4 and define an operator π on $H^{2}\left(X_{m}^{2}, \mathbb{C}\right)$ to be

$$
\pi=\frac{1}{4} \sum_{g \in G_{0}} \overline{\beta(g)} g^{*}
$$

It is then clear from the definition that

$$
\pi\left(\omega_{\beta_{\frac{k m}{4}+1}}\right)= \begin{cases}\omega_{\beta} & (k=0) \\ 0 & (k=1,2,3)\end{cases}
$$

Therefore from Lemma 3.3 we have $\pi(\eta)=\frac{1}{8} \omega_{\beta}$. On the other hand, a simple calculation shows that

$$
\pi(\eta) \cdot \overline{\pi(\eta)}=\frac{1}{4} \sum_{g \in G_{0}} \overline{\beta(g)} g^{*} \eta \cdot \bar{\eta} .
$$

As we shall see below, we have

$$
\begin{equation*}
g^{*} \eta \cdot \bar{\eta}=0 \tag{17}
\end{equation*}
$$

for any $g \in G_{0} \backslash\{1\}$. Then the theorem immediately follows from this since

$$
\omega_{\beta} \cdot \overline{\omega_{\beta}}=64 \pi(\eta) \cdot \overline{\pi(\eta)}=16 \eta \cdot \bar{\eta}=-4 m^{3} .
$$

In order to prove (17), note that

$$
\begin{equation*}
g^{*} \eta \cdot \bar{\eta}=|H| \sum_{h \in H} \beta(h)\left(C_{g h} \cdot C\right) . \tag{18}
\end{equation*}
$$

If $g \in G_{0} \backslash\{1\}$, then $C_{g h}$ is defined by

$$
\left\{\begin{array}{l}
x^{d}+\varepsilon^{2} y^{d}-\zeta \sqrt{2}(x y)^{d / 2}+\sqrt{-1} z^{d}=0 \\
w^{4}-\overline{\beta(g h)} \sqrt[d]{-8} x y z^{2}=0
\end{array}\right.
$$

for some $\zeta \in \mu_{4} \backslash\{1\}$. Since $\beta(h) \in \mu_{m / 4}$ and $\beta(g) \in \mu_{4} \backslash\{1\}$, we have $\beta(g h) \neq 1$. From this it is easily seen that $\left(C_{g h} . C\right)=4 m^{2}$ for any $g \in G_{0} \backslash\{1\}$. Then (17) immediately follows from (18) since β is a non-trivial character on H. This completes the proof of Theorem 1.2, (iii-a).
3.3. As we have mentioned in Remark 1.4, we will prove that (iii-b) follows from (iii-a). To this end we prepare a lemma. The proof is an easy exercise and we omit it.

LEMMA 3.4. Let V, V^{\prime} be \mathbb{C}-vector spaces admitting actions of abelian groups G, G^{\prime} respectively. Suppose that there exists a surjective homomorphism $\psi: G \rightarrow G^{\prime}$ and $a \mathbb{C}$-linear map $f: V \rightarrow V^{\prime}$ such that

$$
f(g v)=\psi(g) f(v)
$$

for any $g \in G, v \in V$. Let α, α^{\prime} be characters of G, G^{\prime} respectively such that $\alpha=\alpha^{\prime} \circ \pi$, and let

$$
p_{\alpha}=\frac{1}{|G|} \sum_{g \in G} \overline{\alpha(g)} g, \quad p_{\alpha^{\prime}}=\frac{1}{\left|G^{\prime}\right|} \sum_{g \in G^{\prime}} \overline{\alpha^{\prime}(g)} g
$$

be the corresponding projector. Then we have

$$
f \circ p_{\alpha}=p_{\alpha^{\prime}} \circ f
$$

Proof of Theorem 1.2, (iii-b). Let $m>4$ be an even integer which is not necessarily divisible by 4. Let $\beta=(1,1+d, 2+d, m-4) \in \mathfrak{A}_{m}^{2}$ as in the proof of Theorem 1.2, (iii-a) above and set

$$
\tilde{\beta}=(2,2+m, 4+m, 2 m-8) \in \mathfrak{B}_{2 m}^{2} .
$$

We consider the curve \tilde{C} on $X_{2 m}^{2}$ defined by

$$
\tilde{C}:\left\{\begin{array}{l}
x^{m}+y^{m}-\sqrt{2}(x y)^{m / 2}+\sqrt{-1} z^{m}=0 \\
w^{4}-\sqrt[m]{-8} x y z^{2}=0
\end{array}\right.
$$

Then by Theorem 1.2, (iii-a) proved just above we know that

$$
\begin{equation*}
\omega_{\tilde{\beta}}(\tilde{C}) \cdot \overline{\omega_{\tilde{\beta}}(\tilde{C})}=-4(2 m)^{3}=-32 m^{3} \tag{19}
\end{equation*}
$$

If we denote by $\varphi: X_{2 m}^{2} \rightarrow X_{m}^{2}$ the finite morphism of degree 8 defined by

$$
\varphi(x: y: z: w)=\left(x^{2}: y^{2}: z^{2}: w^{2}\right)
$$

then we have $C=\varphi(\tilde{C})$ and $[\mathbb{C}(\tilde{C}): \mathbb{C}(C)]=4$. This implies that

$$
\begin{equation*}
\varphi_{*}([\tilde{C}])=4[C] \tag{20}
\end{equation*}
$$

where $[C] \in H^{2}\left(X_{m}^{2}\right)$ and $[\tilde{C}] \in H^{2}\left(X_{2 m}^{2}\right)$ denote the cohomology classes of C and \tilde{C} respectively. For each $\tilde{g} \in G_{2 m}^{2}$, letting $g=\tilde{g}^{2}$, we have $\varphi_{*} \tilde{g}^{*}=g^{*}$ and $\tilde{\beta}(\tilde{g})=\beta(g)$. Then Lemma 3.4 together with (20) shows that

$$
\varphi_{*}\left(p_{\tilde{\beta}}([\tilde{C}])=p_{\beta}\left(\varphi_{*}[\tilde{C}]\right)=4 p_{\beta}([C])\right.
$$

Since $\left|G_{2 m}^{2}\right|=8\left|G_{m}^{2}\right|$ and $\left|G_{\tilde{C}}\right|=4\left|G_{C}\right|$, this implies that

$$
\varphi_{*}\left(\omega_{\tilde{\beta}}(\tilde{C})\right)=\frac{\left|G_{2 m}^{2}\right|}{\left|G_{\tilde{C}}\right|} \varphi_{*}\left(p_{\tilde{\beta}}([\tilde{C}])\right)=8 \cdot \frac{\left|G_{m}^{2}\right|}{\left|G_{C}\right|} p_{\beta}([C])=8 \omega_{\beta}(C)
$$

Thus, $\varphi_{*}\left(\omega_{\tilde{\beta}}(\tilde{C})\right)=8 \omega_{\beta}(C)$. It then follows from the projection formula that

$$
\omega_{\tilde{\beta}}(\tilde{C}) \cdot \overline{\omega_{\tilde{\beta}}(\tilde{C})}=8 \omega_{\beta}(C) \cdot \overline{\omega_{\beta}(C)} .
$$

Therefore (19) yields

$$
\omega_{\beta}(C) \cdot \overline{\omega_{\beta}(C)}=\frac{1}{8} \omega_{\tilde{\beta}}(\tilde{C}) \cdot \overline{\omega_{\tilde{\beta}}(\tilde{C})}=\frac{1}{8} \cdot\left(-32 m^{3}\right)=-4 m^{3} .
$$

This proves Theorem 1.2, (iii-b).

References

[1] Aoki, N., On some arithmetic problems related to the Hodge cycles on the Fermat varieties, Math. Ann., 266 (1983), 23-54. (Erratum: Math. Ann., 267 (1984), pp. 572.)
[2] Aoki, N., Some new algebraic cycles on Fermat varieties, J. Math. Soc. Japan, 39 (1987), 385-396.
[3] Aoki, N. and Shioda, T., Generators of the Néron-Severi group of a Fermat surface, Progress in Math., 35 (1983), 1-12.
[4] Schuett, M., Shioda, T. and van Luijk, R.: Lines on Fermat surfaces (to appear).
[5] Shioda, T., The Hodge conjecture for Fermat varieties, Math. Ann., 245 (1979), 175-184.
[6] Shioda, T., On the Picard number of a Fermat surface, J. Fac. Sci. Univ. Tokyo, 28 (1982), 725-734.
[7] Shioda, T. and Katsura, T., On Fermat varieties, Tôhoku Math. J., 31 (1979), 97-115.

Department of Mathematics Rikkyo University Nishi-Ikebukuro, Toshima-ku Tokyo, 171-8501, Japan
e-mail: aoki@rikkyo.ac.jp
shioda@rikkyo.ac.jp

