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Abstract. In the article of the title, we have constructed some explicitly defined
curves on a complex Fermat surface, which together with the lines generate a major part of
its Néron-Severi group. In this note, we make a correction of a formula in the article and
prove it by a simplified argument.

1. Introduction

1.1. In the article [3], we have constructed some explicitly defined curves on a com-
plex Fermat surface, which generate a major part of its Néron-Severi group over the rational
numbers, together with the lines on the surface [6].

The aim of this note is to make a correction in the statement of a formula [3, (2.8) in
Theorem 3] and to prove it (in §3) by applying a simplified argument which holds in a more
general situation (§2). In §1.2 below we review the background and the notation, where the
main result of [3] is restated as Theorem 1.2.

It should be remarked that the following problems were posed in [3]: (i) to find curves
which generate over Q the “exceptional" part of the Néron-Severi group not spanned by
the lines and curves given by [3, 6], and (ii) to find generators of the Néron-Severi group
over Z. As to the problem (ii), see the recent paper [4] which solves the question when the
degree of the Fermat surface is relatively prime to 6 and less than 100. As to the problem
(i), we have partial results based on the idea to use the Mordell-Weil lattice of some elliptic
Delsarte surfaces (in preparation).

1.2. Let X2
m be the Fermat surface of degree m defined by the equation

xm + ym + zm +wm = 0

in the projective space P3 over the complex number field C. If we denote by µm the group
of m-th roots of unity in C, then the abelian group

G := (µm × µm × µm × µm)/diagonal

acts on X2
m in an obvious manner. The character group Ĝ of G can be naturally identified

with the additive group

{(a0, a1, a2, a3) ∈ (Z/mZ)4 | a0 + a1 + a2 + a3 = 0} .

65



66 N. AOKI and T. SHIODA

In order to describe the action of G on the cohomology group H 2(X2
m,C), for each char-

acter α ∈ Ĝ, let

V (α) = {ξ ∈ H 2(X2
m,C) | g∗ξ = α(g)ξ (∀g ∈ G)} .

It is then well known that

H 2(X2
m,C) = V (0)⊕

⊕
α∈A2

m

V (α)

and dimV (α) = 1 for any α ∈ {0} ∪ A2
m, where 0 denotes the trivial character (0, 0, 0, 0)

and where

A2
m = {α = (a0, a1, a2, a3) ∈ Ĝ | ai �= 0 (∀i ∈ {0, 1, 2, 3})}

(see [5]). Define a subset B2
m of A2

m by

B2
m = {(a0, a1, a2, a3) ∈ A2

m | 〈ta0〉 + 〈ta1〉 + 〈ta2〉 + 〈ta3〉 = 2m (∀t ∈ (Z/mZ)×} ,
where, for any a ∈ Z/mZ, 〈a〉 denotes the unique integer such that 0 ≤ 〈a〉 < m and
〈a〉 ≡ a (mod m). Then the space of the Hodge cycles on X2

m of codimension 1 is given
by

H 1,1(X2
m) ∩H 2(X2

m,Q) = V (0)⊕
⊕
α∈B2

m

V (α) .

In view of this decomposition, an element of the index set {0} ∪ B2
m will be called a Hodge

class.
Given a curve C on X2

m, we put

GC = {g ∈ G | g(C) = C} .
For any α ∈ B2

m we define

ωα(C) = 1

|GC |
∑
g∈G

α(g)[Cg ] ,

where Cg = g(C) and [Cg ] ∈ H 2(X2
m,C) denotes the cohomology class of Cg . It is clear

from the definition that ωα(C) ∈ V (α). If ωα(C) �= 0 then we say that C represents the
Hodge class α. In order that ωα(C) �= 0 it is clearly necessary that Ker(α) ⊃ GC , in which
case we will write as

ωα(C) =
∑

g∈G/GC
α(g)[Cg ]

to simplify the notation.
An element α ∈ A2

m which is equal, up to permutation, to the element (a, m −
a, b, m− b) ∈ B2

m for some a, b ∈ Z/mZ − {0} will be called a decomposable element.
In [6] the second author proved the following.

THEOREM 1.1. Let C be the line on X2
m defined by

x + εy = z+ ε′w = 0 ,
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where ε, ε′ are 2m-th roots of unity such that εm = ε′m = −1. Then C represents the
Hogde class α = (a, m− a, b, m− b). More precisely, we have

ωα(C).ωα(C) = −m3 .

If (m, 6) = 1, then B2
m consists of only decomposable elements. However, if (m, 6) >

1 and m �= 4, besides decomposable elements there are three types of elements in B2
m,

which are, up to permutaion, equal to one of the following elements ([6], [1]):

(a, a +m/2, m/2, m/2 − 2a) (2 | m, 2a �= 0) ,
(a, a +m/3, a + 2m/3, m− 3a) (3 | m, 3a �= 0) ,
(a, a +m/2, 2a +m/2, m− 4a) (2 | m, 4a �= 0) .

(1)

We call them standard elements. In our joint paper [3], we found curves on X2
m which

represent the standard elements. The main results of [3] can be restated as follows:

THEOREM 1.2. For each standard element α ∈ B2
m listed in (1), we define an

integer ν ∈ {2, 3, 4} and two homogeneous polynomials f1, f2 as follows:
(i) If α = (a, a +m/2,m,m/2 − 2a), we set ν = 2 and

f1 = xd + yd + √−1zd ,

f2 =w2 − d
√

2xy ,

where d = m/2.
(ii) If α = (a, a +m/3, a + 2m/3,m− 3a), we set ν = 3 and

f1 = xd + yd + zd ,

f2 =w3 − d
√−3xyz ,

where d = m/3.
(iii) If α = (a, a +m/2, 2a +m/2,m− 4a), we set ν = 4 and d = m/2.

(iii-a) If 4 | m, we set

f1 = xd + yd − √
2(xy)d/2 + √−1zd ,

f2 =w4 − d
√−8xyz2 .

(iii-b) If 4 � m, we set

f1 = (xd + yd + √−1zd)z−
√

2
m
√−8

(xy)(d−1)/2w2 ,

f2 =w4 − d
√−8xyz2 .

Then the curve C defined by f1 = f2 = 0 on X2
m represents the Hodge class α. More

precisely we have

ωα(C).ωα(C) = −νm3.

REMARK 1.3. The values of d
√

2, d
√−3, etc. in the defining equation of C are fixed

once and for all.
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However, in [3] we wrongly stated the theorem in the case of (iii-a); the formula for
ωα(C).ωα(C), whose proof was skipped there, was not correct. The purpose of this note is
to give the proof of the correct formula stated as above.

REMARK 1.4. The curves C defined in Theorem 1.2 are complete intersection
curves in P3 defined by f1 = f2 = 0 except for the last case (iii-b), where C is defined in
P3 by three equations f = f1 = f2 = 0. Although we gave a direct proof of (iii-b) in [3],
we will prove, in the last of §3, that case (iii-b) is an easy consequence of case (iii-a).

2. Preliminaries

Let S be a non-singular complex projective surface defined by f = 0 in P3, where f
is a homogeneous polynomial of degreem. Suppose that f has the following form

f = f1f
∗
1 + f2f

∗
2 , (2)

where f1, f
∗
1 , f2, f

∗
2 are non-constant homogeneous polynomials. If we define a curve C

in P3 by

f1 = f2 = 0 ,

then (2) shows that C is contained in S. Let G be an abelian subgroup of Aut(C) and put

GC = {g ∈ G | g(C) = C} .
Let (f1)0 be the zero divisor of f1 on S. Suppose we have a subgroup Γ of G with the
following properties:

GC � Γ, (3)

(f1)0 =
∑

γ∈Γ/GC
Cγ , (4)

where Cγ = γ (C). Let [C] ∈ H 2(S,C) be the cohomology class of C. For a fixed
non-trivial character χ ∈ Γ̂ , we set

η =
∑

γ∈Γ/GC
χ(γ )[Cγ ] =

∑
γ∈Γ/GC

χ(γ )γ ∗[C] .

The following proposition shows that η is non-trivial.

THEOREM 2.1. Notation being as above, we have

η.η = −m deg(f1) deg(f ∗
1 ) .

In the proof of Theorem 2.1 the following two lemmas will play an important rôle.

LEMMA 2.2. Let C′ be the curve on S defined by f ∗
1 = f2 = 0 and L a hyperplane

section on S. Then we have

C + C′ ∼ deg(f2)L , (5)∑
γ∈Γ/GC

Cγ ∼ deg(f1)L , (6)
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where ∼ denotes the linear equivalence.

Proof. These relations immediately follows from (2) and (4) respectively. �
LEMMA 2.3. Let C∗ be the curve on S defined by f ∗

1 = f ∗
2 = 0. Then C ∩C∗ = ∅.

Proof. If C ∩ C∗ were not empty, then for any P ∈ C ∩ C∗ we would have

∂f

∂x
(P ) =

2∑
i=1

{
∂fi

∂x
(P ) · f ∗

i (P )+ fi(P ) · ∂f
∗
i

∂x
(P )

}
= 0

and quite similarly

∂f

∂y
(P ) = ∂f

∂z
(P ) = ∂f

∂w
(P) = 0 .

Then P would be a singular point of S, contradicting to the assumption that S is non-
singular. Thus C ∩ C∗ = ∅. �

PROPOSITION 2.4. For any γ ∈ Γ , the intersection number (Cγ .C) on S is given
by

(Cγ .C) =
{− deg(f1) deg(C′)+ deg(f2) deg(C) (γ ∈ GC) ,

deg(f2) deg(C) (γ �∈ GC) . (7)

Proof. It follows from (5) that

(Cγ .C)+ (Cγ .C
′) = deg(f2) deg(Cγ ) (8)

for any γ ∈ Γ . We first show formula (7) for γ �∈ GC . In this case, we have C′
γ−1 ⊂ C∗ in

the notation of Lemma 2.3. Thus the lemma implies that C′
γ−1 ∩ C = ∅ and so

(Cγ .C
′) = (C.C′

γ−1) = 0 . (9)

Hence (8) shows that

(Cγ .C) = deg(f2) deg(Cγ ) .

The second equality of (7) follows from this since deg(Cγ ) = deg(C).
On the other hand, if γ ∈ GC , then Cγ = C and equation (8) reads

(C.C)+ (C.C′) = deg(f2) deg(C) . (10)

We use (6) and (9) to obtain

(C.C′) =
∑

γ∈Γ/GC
(Cγ .C

′) = deg(f1) deg(C′) . (11)

Combining (10) with (11), we have

(C.C) = − deg(f1) deg(C′)+ deg(f2) deg(C) .

This completes the proof. �
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Proof of Theorem 2.1. We first note that

η.η = |Γ |
∑

γ∈Γ/GC
χ(γ )(Cγ .C) . (12)

This immediately follows from the fact that

[Cγ ].[Cγ ′ ] = (Cγ .Cγ ′) = (C
γγ ′−1 .C) .

Applying Proposition 2.4 to (12), we have∑
γ∈Γ/GC

χ(γ )(Cγ .C)= − deg(f1) deg(C′)+
∑

γ∈Γ/GC
χ(γ ) deg(f2) deg(C)

= − deg(f1) deg(C′) .
Here the last equality holds since χ is non-trivial on Γ . Since deg(C′) = deg(f ∗

1 ) deg(f2)

and deg(f2) = m
|Γ | , it follows that

η.η = −m deg(f1) deg(f ∗
1 ) .

This proves the theorem. �

3. Proof

3.1. Let m be a positive integer such thatm > 4 and m ≡ 0 (mod 4). We will prove
Theorem 1.2 (iii-a) by applying the results in the previous section to the case where S is the
Fermat surface X2

m.
We first define three polynomials f1, f

∗
1 , f2 by

f1 = xd + yd − √
2(xy)d/2 + √−1zd ,

f ∗
1 = xd + yd + √

2(xy)d/2 − √−1zd ,

f2 =w4 − d
√−8xyz2 .

These polynomials satisfy the following identity

xm + ym + zm +wm = f1f
∗
1 +

∏
ε∈µm/4

(w4 − ε
d
√−8xyz2) . (13)

This implies in particular that the algebraic curve C in P3 defined by f1 = f2 = 0 is
contained in X2

m. As in the previous section we set

GC = {g ∈ G2
m | Cg = C} .

Now, for any a ∈ Z/mZ such that 4a �= 0 we put

βa = (a, d + a, d + 2a,m− 4a) ∈ B2
m .

For simplicity we write β for β1 = (1, d + 1, d + 2,m− 4).

LEMMA 3.1. If α ∈ B2
m and Ker(α) ⊃ GC , then α = βa for some a ∈ Z/mZ with

4a �= 0.
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Proof. Let ζ be a primitive m-th root of unity. Then two elements

g1 = [1 : ζ−4 : ζ 2 : 1] , g2 = [1 : ζ 4 : 1 : ζ ] ∈ G2
m

generate GC . Therefore we have Ker(α) ⊃ GC if and only if α(g1) = α(g2) = 1. If we set
α = (a0, a1, a2, a3) ∈ A2

m, then the latter condition gives rise to the congruence relations

a2 ≡ 2a1(mod
m

2
) , a3 ≡ −4a1 (mod m) .

This shows that α can be written as

α =
{
(a, a, 2a,m− 4a) ,
(a, a + d, 2a + d,m− 4a)

for some a ∈ Z/mZ\ with 4a �= 0. But the first element cannot belong to B2
m, so we have

α = βa as desired. �
We next consider a subgroup

H = {(1 : ζ1 : ζ2 : ζ3) ∈ G2
m | ζ d/21 = ζ d2 = 1}

of G2
m. For any h ∈ H , the curve Ch := h(C) is defined by f1 = h∗f2 = 0, where

h∗f2 = w4 − β(h)
d
√−8xyz2 .

It follows that GC = H ∩ Ker(β). Since β is non-trivial on H , we have

GC � H . (14)

Let (f1)0 be the zero divisor of f1 on X2
m. Then (13) shows that

(f1)0 =
∑

h∈H/GC
Ch . (15)

These properties (14) and (15) allow us to apply Theorem 2.1 to the case where S = X2
m

and Γ = H .
Clearly β is non-trivial on H . Thus, if we denote by χ = β|H ∈ Ĥ the restriction of

the character β to H , then χ is non-trivial on H . Put

η =
∑

h∈H/GC
χ(h)h∗[C] .

LEMMA 3.2. Notation being as above, we have η.η = −m3

4 .

Proof. Since deg(f1) = deg(f ∗
1 ) = m

2 , Theorem 2.1 shows that

η.η = −m · m
2

· m
2

= −m
3

4
.

This proves the lemma. �
LEMMA 3.3. Put ωβkm/4+1 = wβkm/4+1(C) for k = 0, 1, 2, 3. Then

η = 1

8

(
ωβ1 + ωβm/4+1 + ωβm/2+1 + ωβ3m/4+1

)
.
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Proof. Recall that, for each α ∈ Ĝ, pα : H 2(X2
m,C) → V (α) denotes the projector

to V (α). The one-dimensional space V (α) is generated by the cohomology classes of
algebraic cycles on X2

m if and only if α ∈ {0} ∪ B2
m. Hence, if α �∈ {0} ∪ B2

m, then
pα([C]) = 0. Moreover, if GC �⊂ Ker(α), then pα([C]) = 0. Therefore Lemma 3.1 shows
that

[C] =
∑
α∈Ĝ

pα([C]) = p0([C])+
∑

a∈Z/mZ

4a �=0

pβa ([C]) .

Let pχ = 1
|H |

∑
h∈H χ(h)h∗ be the projector to the χ-eigenspace. Then η is related to pχ

by the formula

η = |GC |
|H | pχ([C]) . (16)

Note that

pχpα =
{

id (α|H = χ) ,

0 (α|H �= χ)

and βa |H = χ if and only if a ≡ 1 (mod m/4). Hence

pχ([C])= pχ(p0([C]))+
∑

a∈Z/mZ

4a �=0

pχ(pβa ([C]))

= pβ1([C])+ pβm/4+1([C])+ pβ2m/4+1([C])+ pβ3m/4+1([C])
= |GC |

|G|
(
ωβ1 + ωβm/4+1 + ωβ2m/4+1 + ωβ3m/4+1

)
.

Substituting this into (16), we obtain

η = |H |
|G|

(
ωβ1 + ωβm/4+1 + ωβm/2+1 + ωβ3m/4+1

)
.

Since |G/H | = 8, this proves the lemma. �
3.2. Proof of Theorem 1.2 (iii-a)
We first note that ωα.ωα′ = 0 whenever α �= α′. If 8 | m, then km

4 +1 ∈ (Z/mZ)× for
any k ∈ {0, 1, 2, 3}. If we denote by Q(ζm) them-th cyclotomic field, thenH 2(X2

m,Q(ζm))

admits an action of the Galois group Gal(Q(ζm)/Q)) and ωt ·α ∈ H 2(X2
m,Q(ζm)) (t ∈

(Z/mZ)×) are Galois conjugate. Since the intersection product is Galois equivariant, we
have

ωt ·α.ωt ·α′ = ωα.ωα′

for any t ∈ (Z/mZ)×. Thus Lemma 3.3 shows that

η.η = 4 ×
(

1

8

)2

ωβ.ωβ = 1

16
ωβ.ωβ .
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Therefore from Lemma 3.2 we obtain

ωβ.ωβ = 16η.η = 16 ·
(

−m
3

4

)
= −4m3 .

On the other hand, if 4‖m, then m
4 + 1, 3m

4 + 1 �∈ (Z/mZ)×, and so the Galois
conjugate method above does not work. To avoid this difficulty, we consider a group

G0 = {(1 : ζ : 1 : 1) ∈ G2
m| ζ ∈ µ4}

of order 4 and define an operator π on H 2(X2
m,C) to be

π = 1

4

∑
g∈G0

β(g)g∗ .

It is then clear from the definition that

π(ωβ km
4 +1

) =
{
ωβ (k = 0) ,

0 (k = 1, 2, 3) .

Therefore from Lemma 3.3 we have π(η) = 1
8ωβ . On the other hand, a simple calculation

shows that

π(η).π(η) = 1

4

∑
g∈G0

β(g)g∗η.η .

As we shall see below, we have

g∗η.η = 0 (17)

for any g ∈ G0 \ {1}. Then the theorem immediately follows from this since

ωβ.ωβ = 64π(η).π(η) = 16η.η = −4m3 .

In order to prove (17), note that

g∗η.η = |H |
∑
h∈H

β(h)(Cgh.C) . (18)

If g ∈ G0 \ {1}, then Cgh is defined by{
xd + ε2yd − ζ

√
2(xy)d/2 + √−1zd = 0 ,

w4 − β(gh) d
√−8xyz2 = 0

for some ζ ∈ µ4 \ {1}. Since β(h) ∈ µm/4 and β(g) ∈ µ4 \ {1}, we have β(gh) �= 1. From
this it is easily seen that (Cgh.C) = 4m2 for any g ∈ G0 \ {1}. Then (17) immediately
follows from (18) since β is a non-trivial character on H . This completes the proof of
Theorem 1.2, (iii-a). �

3.3. As we have mentioned in Remark 1.4, we will prove that (iii-b) follows from
(iii-a). To this end we prepare a lemma. The proof is an easy exercise and we omit it.
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LEMMA 3.4. Let V, V ′ be C-vector spaces admitting actions of abelian groups
G,G′ respectively. Suppose that there exists a surjective homomorphism ψ : G → G′
and a C-linear map f : V → V ′ such that

f (gv) = ψ(g)f (v)

for any g ∈ G, v ∈ V . Let α, α′ be characters of G,G′ respectively such that α = α′ ◦ π ,
and let

pα = 1

|G|
∑
g∈G

α(g)g , pα′ = 1

|G′|
∑
g∈G′

α′(g)g

be the corresponding projector. Then we have

f ◦ pα = pα′ ◦ f .
Proof of Theorem 1.2, (iii-b). Let m > 4 be an even integer which is not necessarily

divisible by 4. Let β = (1, 1 + d, 2 + d,m − 4) ∈ A2
m as in the proof of Theorem 1.2,

(iii-a) above and set

β̃ = (2, 2 +m, 4 +m, 2m− 8) ∈ B2
2m .

We consider the curve C̃ on X2
2m defined by

C̃ :
{
xm + ym − √

2(xy)m/2 + √−1zm = 0 ,

w4 − m
√−8xyz2 = 0 .

Then by Theorem 1.2, (iii-a) proved just above we know that

ωβ̃(C̃).ωβ̃(C̃) = −4(2m)3 = −32m3 . (19)

If we denote by ϕ : X2
2m → X2

m the finite morphism of degree 8 defined by

ϕ(x : y : z : w) = (x2 : y2 : z2 : w2) ,

then we have C = ϕ(C̃) and [C(C̃) : C(C)] = 4. This implies that

ϕ∗([C̃]) = 4[C] , (20)

where [C] ∈ H 2(X2
m) and [C̃] ∈ H 2(X2

2m) denote the cohomology classes of C and C̃
respectively. For each g̃ ∈ G2

2m, letting g = g̃2, we have ϕ∗g̃∗ = g∗ and β̃(g̃) = β(g).
Then Lemma 3.4 together with (20) shows that

ϕ∗(pβ̃([C̃]) = pβ(ϕ∗[C̃]) = 4pβ([C]) .
Since |G2

2m| = 8|G2
m| and |GC̃ | = 4|GC|, this implies that

ϕ∗(ωβ̃ (C̃)) = |G2
2m|

|GC̃ | ϕ∗(pβ̃([C̃])) = 8 · |G2
m|

|GC |pβ([C]) = 8ωβ(C) .

Thus, ϕ∗(ωβ̃ (C̃)) = 8ωβ(C). It then follows from the projection formula that

ωβ̃(C̃).ωβ̃ (C̃) = 8ωβ(C).ωβ(C) .
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Therefore (19) yields

ωβ(C).ωβ(C) = 1

8
ωβ̃(C̃).ωβ̃(C̃) = 1

8
· (−32m3) = −4m3 .

This proves Theorem 1.2, (iii-b). �
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