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Abstract. Let k be a field of characteristic �= 2. We give an answer to the field
intersection problem of quartic generic polynomials over k via formal Tschirnhausen trans-
formation and multi-resolvent polynomials.

1. Introduction

Let k be a field of char k �= 2 and k(s) the rational function field over k with n

indeterminates s = (s1, . . . , sn). Let G be a finite group. A polynomial fs(X) ∈ k(s)[X]
is called k-generic for G if the Galois group of fs(X) over k(s) is isomorphic to G and
every G-Galois extension L/M over an arbitrary infinite field M ⊃ k can be obtained as
L = SplMfa(X), the splitting field of fa(X) over M , for some a = (a1, . . . , an) ∈ Mn (cf.
[DeM83], [Kem01], [JLY02]). Note that we always take an infinite field M as a base field
M , M ⊃ k, of a G-extension L/M . Examples of k-generic polynomials for G are known
for various pairs of (k,G) (for example, see [Kem94], [KM00], [JLY02], [Rik04]).

Let f G
s (X) ∈ k(s)[X] be a k-generic polynomial for G. Kemper [Kem01] showed

that for a subgroup H of G every H -Galois extension over an infinite field M ⊃ k is also
given by a specialization of f G

s (X) as in the similar manner. The aim of this paper is to
study the field intersection problem Int(f G

s /M) of f G
s (X) over M:

Int(f G
s /M) : for a field M ⊃ k and a, a′ ∈ Mn, determine the

intersection of SplMf G
a (X) and SplMf G

a′ (X).

It would be desired to give an answer to the problem within the base field M by
using the data a, a′ ∈ Mn. As a special case, this problem includes the field isomor-
phism problem Isom(f G

s /M) of f G
s (X) over M , i.e., for a, a′ ∈ Mn whether SplMf G

a (X)

and SplMf G
a′ (X) are isomorphic over M or not. Since a k-generic polynomial covers

all H -Galois extensions (H ≤ G) over M ⊃ k by specializing parameters, the problem
Isom(f G

s /M) arises naturally. Moreover we consider the following problem:

2000 Mathematics Subject Classification. Primary Primary 11R16, 11R20, 12E25, 12F10, 12F12.
Key words and phrases. Generic polynomial, Tschirnhausen transformation, field isomorphism problem,

field intersection problem, multi-resolvent polynomial.
This work was partially supported by Grant-in-Aid for Scientific Research (C) 19540057 of Japan Society for

the Promotion of Science and Rikkyo University Special Fund for Research.

51



52 A. HOSHI and K. MIYAKE

Isom∞(f G
s /M) : for a given a ∈ Mn, are there infinitely many

a′ ∈ Mn such that SplMf G
a (X) = SplMf G

a′ (X) ?

Let Sn (resp. An, Dn, Cn) be the symmetric (resp. the alternating, the dihedral, the
cyclic) group of degree n and V4 the Klein four group (V4 ∼= C2×C2). In [HM07] and [HM],
we gave answers to Int(f G

s /M) and to Isom∞(f G
s /M) for cubic k-generic polynomials

f
C3
s (X) = X3 − sX2 − (s + 3)X − 1 and f

S3
s (X) = X3 + sX + s. In the present paper we

investigate the problems Int(f G
s /M) and Isom∞(f G

s /M) for quartic generic polynomials
f G

s (X) via formal Tschirnhausen transformation and multi-resolvent polynomials.
For G = S4, D4, C4, V4, we take the following k-generic polynomials

f
S4
s,t (X) := X4 + sX2 + tX + t ∈ k(s, t)[X] ,

f
D4
s,t (X) := X4 + sX2 + t ∈ k(s, t)[X] ,

f C4
s,u(X) := X4 + sX2 + s2

u2 + 4
∈ k(s, u)[X] ,

f V4
s,v (X) := X4 + sX2 + v2 ∈ k(s, v)[X] ,

respectively, with two parameters (the least possible number of parameters; cf. [BR97],
[JLY02, Chapter 8]).

In Section 2, we review some known results about resolvent polynomials and formal
Tschirnhausen transformation.

In Section 3, we give an answer to Int(f S4
s /M) via multi-resolvent polynomial (The-

orem 3.1). In Subsection 3.1, we give a more explicit answer to Isom(f
S4
s /M) by using

formal Tschirnhausen transformation in Theorem 3.3. A proof of Theorem 3.3 will be
given in Subsection 3.2. A consequence of Theorem 3.3 is the following theorem:

THEOREM (Corollary 3.5, an answer to Isom∞(f
S4
s /M)). Let M ⊃ k be an infi-

nite field. For a = (a, b) ∈ M2, we assume that f
S4
a (X) is separable over M . Then there

exist infinitely many a′ = (a′, b′) ∈ M2 such that SplMf
S4
a (X) = SplMf

S4
a′ (X).

In Section 4, we treat the problems Int(fD4
s /M), Isom(f

D4
s /M) and Isom∞(f

D4
s /M).

In the case of D4, Isom∞(f
D4
s /M) has a trivial solution because SplMf

D4
a,b (X) =

SplMf
D4
ac2,bc4(X) for arbitrary c ∈ M\{0}. Thus we consider the problem Isom∞(f

D4
s /M)

for a = (a, b) and a′ = (a′, b′) under the condition a2b′ − a′2b �= 0 or b′/b �= c4 for any
c ∈ M .

THEOREM (Theorem 4.16). Let M ⊃ k be a Hilbertian field. For a = (a, b) ∈
M2, we assume that f

D4
a (X) is separable over M . Then there exist infinitely many a′ =

(a′, b′) ∈ M2 which satisfy that b′/b is not a fourth power in M and SplMf
D4
a (X) =

SplMf
D4
a′ (X).

In Section 5, we deal with the cases of C4 and of V4 which are treated by suitably
specializing the case of D4. We also treat reducible cases in Section 6.
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Most of results in the present paper are given with explicit formulas which are intended
to be applied elsewhere, and we also give some numerical examples by using our explicit
formulas. The calculations of this paper were carried out with Mathematica [Wol03].

2. Preliminaries

In this section we review some basic facts, and a result of [HM].

2.1. Resolvent polynomial
One of the fundamental tools in the computational aspects of Galois theory is the

resolvent polynomials (cf. the text books [Coh93], [Ade01]). Several kinds of methods to
compute a resolvent polynomial have been developed by many mathematicians (see, for
example, [Sta73], [Gir83], [SM85], [Yok97], [MM97], [AV00], [GK00] and the references
therein).

Let M ⊃ k be an infinite field and M a fixed algebraic closure of M . Let f (X) :=∏m
i=1(X − αi) ∈ M[X] be a separable polynomial of degree m with fixed ordering roots

α1, . . . , αm ∈ M . The information of the splitting field SplMf (X) of f (X) over M and
their Galois group is obtained by using resolvent polynomials.

Let k[x] := k[x1, . . . , xm] be the polynomial ring over k with indeterminates x1, . . . ,

xm. Put R := k[x, 1/∆x], where ∆x := ∏
1≤i<j≤m(xj−xi). We take a surjective evaluation

homomorphism

ωf : R −→ k(α1, . . . , αm) , Θ(x1, . . . , xm) 	−→ Θ(α1, . . . , αm)

for Θ ∈ R. We note that ωf (∆x) �= 0 from the assumption that f (X) is separable over M .
The kernel of the map ωf is the ideal

If = ker(ωf ) = {Θ(x1, . . . , xm) ∈ R | Θ(α1, . . . , αm) = 0} .

For π ∈ Sm, we extend the action of π on m letters {1, . . . ,m} to R by

π(Θ(x1, . . . , xm)) := Θ(xπ(1), . . . , xπ(m)) .

We define the Galois group of a polynomial f (X) ∈ M[X] over M by

Gal(f/M) := {π ∈ Sm | π(If ) ⊆ If } .

We write Gal(f ) := Gal(f/M) for simplicity. The Galois group of the splitting field
SplMf (X) of a polynomial f (X) over M is isomorphic to Gal(f ). If we take another
ordering of roots απ(1), . . . , απ(m) of f (X) with some π ∈ Sm, the corresponding realiza-
tion of Gal(f ) is the conjugate of the original one given by π in Sm. Hence, for arbitrary
ordering of the roots of f (X), Gal(f ) is determined up to conjugation in Sm.

DEFINITION. For H ≤ G ≤ Sm, an element Θ ∈ R is called a G-primitive H -
invariant if H = StabG(Θ) := {π ∈ G | π(Θ) = Θ}. For a G-primitive H -invariant Θ ,
the polynomial

RPΘ,G(X) :=
∏

π∈G/H

(X − π(Θ)) ∈ RG[X]
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is called the formal G-relative H -invariant resolvent by Θ , and a polynomial

RPΘ,G,f (X) :=
∏

π∈G/H

(
X − ωf (π(Θ))

)

is called the G-relative H -invariant resolvent of f by Θ .

The following is fundamental in the theory of resolvent polynomials (cf. [Ade01,
p.95]).

THEOREM 2.1. For H ≤ G ≤ Sm, let Θ be a G-primitive H -invariant. Assume
that Gal(f ) ≤ G. Suppose that RPΘ,G,f (X) is decomposed into a product of powers of
distinct irreducible polynomials as RPΘ,G,f (X) = ∏l

i=1 h
ei

i (X) in M[X]. Then we have
a bijection

Gal(f )\G/H −→ {he1
1 (X), . . . , h

el

l (X)} ,

Gal(f ) π H 	−→ hπ (X) =
∏

τH⊆Gal(f ) π H

(
X − ωf (τ(Θ))

)

where the product is taken over the left cosets τH of H in G contained in Gal(f ) π H , that
is, over τ = πσ π where πσ runs through a system of representatives of the left cosets of
Gal(f ) ∩ πHπ−1 in Gal(f ), and each hπ (X) is irreducible or a power of an irreducible
polynomial with deg(hπ(X)) = |Gal(f ) πH |/|H | = |Gal(f )|/|Gal(f ) ∩ πHπ−1|.

COROLLARY 2.2. If Gal(f ) ≤ πHπ−1 for some π ∈ G then RPΘ,G,f (X) has a
linear factor over M . Conversely, if RPΘ,G,f (X) has a non-repeated linear factor over
M then there exists π ∈ G such that Gal(f ) ≤ πHπ−1.

REMARK 2.3. When the resolvent polynomial RPΘ,G,f (X) has a repeated factor,
there always exists a suitable Tschirnhausen transformation f̂ of f over M (resp. X − Θ̂

of X − Θ over k) such that RP
Θ,G,f̂

(X) (resp. RP
Θ̂,G,f

(X)) has no repeated factors (cf.
[Gir83], [Coh93, Alg. 6.3.4], [Col95]).

In the case where RPΘ,G,f (X) has no repeated factors, we have the following theo-
rem:

THEOREM 2.4. For H ≤ G ≤ Sm, let Θ be a G-primitive H -invariant. We assume
Gal(f ) ≤ G and RPΘ,G,f (X) has no repeated factors. Then the following two assertions
hold :

(i) For π ∈ G, the fixed group of the field M
(
ωf (π(Θ))

)
corresponds to Gal(f )

∩πHπ−1. Indeed the fixed group of SplMRPΘ,G,f (X) corresponds to Gal(f ) ∩⋂
π∈G πHπ−1 ;

(ii) let ϕ : G → S[G:H ] denote the permutation representation of G on the left cosets
of G/H given by the left multiplication. Then we have a realization of the Galois group of
SplMRPΘ,G,f (X) as a subgroup of S[G:H ] by ϕ(Gal(f )).

2.2. Formal Tschirnhausen transformation
We recall the geometric interpretation of a Tschirnhausen transformation which is

given in [HM]. Let f (X) and g(X) be monic separable polynomials of degree n in M[X]
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and α1, . . . , αn the fixed ordering roots of f (X) in M . A Tschirnhausen transformation of
f (X) over M is a polynomial of the form

g(X) =
n∏

i=1

(
X − (c0 + c1αi + · · · + cn−1α

n−1
i )

)
, cj ∈ M .

Two polynomials f (X) and g(X) in M[X] are Tschirnhausen equivalent over M if they
are Tschirnhausen transformations over M of each other. For two irreducible separable
polynomials f (X) and g(X) in M[X], f (X) and g(X) are Tschirnhausen equivalent over
M if and only if the quotient fields M[X]/(f (X)) and M[X]/(g(X)) are isomorphic over
M .

In order to obtain an answer to the field intersection problem of k-generic polynomi-
als via multi-resolvent polynomials, we first treat a general polynomial whose roots are n

indeterminates x1, . . . , xn:

fs(X) =
n∏

i=1

(X − xi) = Xn − s1X
n−1 + s2X

n−2 + · · · + (−1)nsn ∈ k[s][X]

where k[x1, . . . , xn]Sn = k[s] := k[s1, . . . , sn], s = (s1, . . . , sn), and si is the i-th elemen-
tary symmetric function in n variables x = (x1, . . . , xn).

Let Rx := k[x1, . . . , xn] and Ry := k[y1, . . . , yn] be polynomial rings over k. Put
Rx,y := k[x, y, 1/∆x, 1/∆y], where ∆x := ∏

1≤i<j≤m(xj−xi) and ∆y := ∏
1≤i<j≤m(yj−

yi). We define an involution ι which exchanges the indeterminates xi’s and the yi’s:

ι : Rx,y −→ Rx,y, xi 	−→ yi, yi 	−→ xi, (i = 1, . . . , n) .(2.1)

We take another general polynomial ft(X) := ι(fs(X)) ∈ k[t][X], t = (t1, . . . , tn) with
roots y1, . . . , yn where ti = ι(si ) is the i-th elementary symmetric function in y = (y1, . . . ,

yn). We put
K := k(s, t) ;

it is regarded as the rational function field over k with 2n variables. For simplicity, we put

fs,t(X) := fs(X)ft(X) .

The polynomial fs,t(X) of degree 2n is defined over K . We denote

Gs := Gal(fs/K) , Gt := Gal(ft/K) , Gs,t := Gal(fs,t/K) .

Then we have Gs,t = Gs × Gt,Gs ∼= Gt ∼= Sn and k(x, y)Gs,t = K .
We intend to apply the results of the previous subsection for m = 2n, G = Gs,t ≤ S2n

and f = fs,t.
Note that over the field SplKfs,t(X) = k(x, y), there exist n! Tschirnhausen transfor-

mations from fs(X) to ft(X) with respect to yπ(1), . . . , yπ(n) for π ∈ Sn. We study the
field of definition of each Tschirnhausen transformation from fs(X) to ft(X). Let

D :=




1 x1 x2
1 · · · xn−1

1
1 x2 x2

2 · · · xn−1
2

...
...

...
. . .

...

1 xn x2
n · · · xn−1

n






56 A. HOSHI and K. MIYAKE

be the Vandermonde matrix of size n. The matrix D ∈ Mn(k(x)) is invertible because the
determinant of D equals det D = ∆x. The field k(s)(∆x) is a quadratic extension of k(s)
which corresponds to the fixed field of the alternating group of degree n. We define the
n-tuple (u0(x, y), . . . , un−1(x, y)) ∈ (Rx,y)

n by


u0(x, y)

u1(x, y)
...

un−1(x, y)


 := D−1




y1
y2
...

yn


 .(2.2)

It follows from Cramer’s rule that

ui(x, y) = ∆−1
x · det




1 x1 · · · xi−1
1 y1 xi+1

1 · · · xn−1
1

1 x2 · · · xi−1
2 y2 xi+1

2 · · · xn−1
2

...
...

...
...

...
...

1 xn · · · xi−1
n yn xi+1

n · · · xn−1
n


 .

In order to simplify the presentation, we write

ui := ui(x, y) , (i = 0, . . . , n − 1) .

The Galois group Gs,t acts on the orbit {π(ui) | π ∈ Gs,t} via regular representation from
the left. However this action is not faithful. We put

Hs,t := {(πx, πy) ∈ Gs,t | πx(i) = πy(i) for i = 1, . . . , n} ∼= Sn .

If π ∈ Hs,t then we have π(ui) = ui for i = 0, . . . , n − 1. Indeed we see the following
lemma:

LEMMA 2.5. For i, 0 ≤ i ≤ n − 1, ui is a Gs,t-primitive Hs,t-invariant.

Let Θ := Θ(x, y) be a Gs,t-primitive Hs,t-invariant. Let π = πHs,t be a left coset of
Hs,t in Gs,t. The group Gs,t acts on the set {π(Θ) | π ∈ Gs,t/Hs,t} transitively from the left
through the action on the set Gs,t/Hs,t of left cosets. Each of the sets {(1, πy) | (1, πy) ∈
Gs,t} and {(πx, 1) | (πx, 1) ∈ Gs,t} forms a complete residue system of Gs,t/Hs,t, and
hence the subgroups Gs and Gt of Gs,t act on the set {π(Θ) | π ∈ Gs,t/Hs,t} transitively.
For π = (1, πy) ∈ Gs,t/Hs,t, we obtain the following equality from the definition (2.2):

yπy(i) = πy(u0) + πy(u1)xi + · · · + πy(un−1)x
n−1
i for i = 1, . . . , n .

The set {(π(u0), . . . , π(un−1)) | π ∈ Gs,t/Hs,t} gives coefficients of n! different Tschirn-
hausen transformations from fs(X) to ft(X) each of which is defined over K(π(u0), . . . ,

π(un−1)), respectively. We call K(π(u0), . . . , π(un−1)), (π ∈ Gs,t/Hs,t) a field of formal
Tschirnhausen coefficients from fs(X) to ft(X). We put vi := ι(ui), for i = 0, . . . , n − 1.
Then vi is also a Gs,t-primitive Hs,t-invariant, and K(π(v0), . . . , π(vn−1)) gives a field of
formal Tschirnhausen coefficients from ft(X) to fs(X).

PROPOSITION 2.6. Let Θ be a Gs,t-primitive Hs,t-invariant. Then we have

k(x, y)πHs,tπ
−1 = K(π(u0), . . . , π(un−1)) = K(π(Θ)) and [K(π(Θ)) : K] = n! for each

π ∈ Gs,t/Hs,t.
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Hence, for each of the n! fields K(π(Θ)), we have SplK(π(Θ))fs(X) = SplK(π(Θ))ft(X),

(π ∈ Gs,t/Hs,t). We also obtain the following proposition:

PROPOSITION 2.7. Let Θ be a Gs,t-primitive Hs,t-invariant. Then we have
(i) K(x) ∩ K(π(Θ)) = K(y) ∩ K(π(Θ)) = K for π ∈ Gs,t/Hs,t ;

(ii) K(x, y) = K(x, π(Θ)) = K(y, π(Θ)) for π ∈ Gs,t/Hs,t ;
(iii) K(x, y) = K(π(Θ) | π ∈ Gs,t/Hs,t) .

We consider the formal Gs,t-relative Hs,t-invariant resolvent polynomial of degree n!
by Θ:

RPΘ,Gs,t(X) =
∏

π∈Gs,t/Hs,t

(X − π(Θ)) ∈ k(s, t)[X] .

It follows from Proposition 2.6 that RPΘ,Gs,t (X) is irreducible over k(s, t). From Propo-
sition 2.7 we have one of the basic results:

THEOREM 2.8. The polynomial RPΘ,Gs,t(X) is k-generic for Sn × Sn.

2.3. Field intersection problem Int(fs/M)

For a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Mn, we fix the order of roots α1, . . . , αn

(resp. β1, . . . , βn) of fa(X) (resp. fb(X)) in M . Put fa,b(X) := fa(X)fb(X) ∈ M[X].
We denote

La := M(α1, . . . , αn) , Lb := M(β1, . . . , βn) .

Then we have

La = SplMfa(X) , Lb = SplMfb(X) , La Lb = SplMfa,b(X) .

We define a specialization homomorphism ωfa,b by

ωfa,b : Rx,y −→ M(α1, . . . , αn, β1, . . . , βn) = La Lb ,

Θ(x, y) 	−→ Θ(α1, . . . , αn, β1, . . . , βn) .

We put
Da := ωfa,b (∆

2
x) , Db := ωfa,b(∆

2
y) .

We always assume that both of the polynomials fa(X) and fb(X) are separable over M ,
i.e. Da · Db �= 0. We also put

Ga := Gal(fa/M) , Gb := Gal(fb/M) , Ga,b := Gal(fa,b/M) .

Then we may naturally regard Ga,b as a subgroup of Gs,t. For π ∈ Gs,t/Hs,t, we put

ci,π := ωfa,b(π(ui)) , di,π := ωfa,b

(
π(ι(ui))

)
, (i = 0, . . . , n − 1) .(2.3)

Then it follows from the definition (2.2) of ui that

βπy(i) = c0,π + c1,π απx(i) + · · · + cn−1,π αn−1
πx(i) ,

απx(i) = d0,π + d1,π βπy(i) + · · · + dn−1,π βn−1
πy(i)

for each i = 1, . . . , n.
For each π ∈ Gs,t/Hs,t, there exists a Tschirnhausen transformation from fa(X) to

fb(X) over the field M(c0,π , . . . , cn−1,π ), and the n-tuple (d0,π , . . . , dn−1,π ) gives the
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coefficients of a transformation of the inverse direction. From the assumption Da ·Db �= 0,
we see the following elementary lemmas (see, for example, [HM, Lemma 3.1]):

LEMMA 2.9. Let M ′/M be a field extension. For a, b ∈ Mn with Da · Db �= 0, if
fb(X) is a Tschirnhausen transformation of fa(X) over M ′, then fa(X) is a Tschirnhausen
transformation of fb(X) over M ′. Indeed we have M(c0,π , . . . , cn−1,π ) = M(d0,π , . . . ,

dn−1,π ) for every π ∈ Gs,t/Hs,t.

LEMMA 2.10. For a, b ∈ Mn with Da · Db �= 0, the quotient algebras M[X]/
(fa(X)) and M[X]/(fb(X)) are M-isomorphic if and only if there exists π ∈ Gs,t such
that M = M(c0,π , . . . , cn−1,π ).

In order to obtain an answer to Int(fs/M) we study the n! fields M(c0,π , . . . , cn−1,π )

of Tschirnhausen coefficients from fa(X) to fb(X) over M .

PROPOSITION 2.11 ([HM, Proposition 3.2]). Under the assumption, Da · Db �= 0,
we have the following two assertions :

(i) SplM(c0,π ,...,cn−1,π )fa(X) = SplM(c0,π ,...,cn−1,π )fb(X) for each π ∈ Gs,t/Hs,t ;
(ii) LaLb = La M(c0,π , . . . , cn−1,π ) = Lb M(c0,π , . . . , cn−1,π ) for each π ∈

Gs,t/Hs,t .

Let Θ be a Gs,t-primitive Hs,t-invariant. Applying the specialization ωfa,b , we have a
Gs,t-relative Hs,t-invariant resolvent polynomial of fa,b by Θ:

RPΘ,Gs,t,fa,b(X) =
∏

π∈Gs,t/Hs,t

(
X − ωfa,b (π(Θ))

) ∈ M[X] .

A polynomial of this kind is called (absolute) multi-resolvent (cf. [GLV88], [RV99],
[Val]).

PROPOSITION 2.12 ([HM, Proposition 3.7]). Let Θ be a Gs,t-primitive Hs,t-
invariant. For a, b ∈ Mn with Da · Db �= 0, suppose that the resolvent polynomial
RPΘ,Gs,t,fa,b(X) has no repeated factors. Then the following two assertions hold :

(i) M(c0,π , . . . , cn−1,π ) = M
(
ωfa,b (π(Θ))

)
for each π ∈ Gs,t/Hs,t ;

(ii) SplMfa,b(X) = M(ωfa,b(π(Θ)) | π ∈ Gs,t/Hs,t).

We also get the followings (see, for example, [HM, Proposition 3.12, Corollary 3.13]):

PROPOSITION 2.13. For a, b ∈ Mn with Da · Db �= 0, if
√

Da · Db ∈ M then
the polynomial RPΘ,Gs,t,fa,b splits into two factors of degree n!/2 over M which are not
necessary irreducible.

COROLLARY 2.14. For a, b ∈ Mn with Da · Db �= 0, if Ga, Gb ⊂ An then
RPΘ,Gs,t,fa,b splits into two factors of degree n!/2 which are not necessary irreducible.

DEFINITION. For a separable polynomial f (X) ∈ k[X] of degree d , the decompo-
sition type of f (X) over M , denoted by DT(f/M), is defined as the partition of d induced
by the degrees of the irreducible factors of f (X) over M . We define the decomposition
type DT(RPΘ,G,f /M) of RPΘ,G,f (X) over M by DT(RP

Θ,G,f̂
/M) where f̂ (X) is a

Tschirnhausen transformation of f (X) over M which satisfies that RP
Θ,G,f̂

(X) has no
repeated factors (cf. Remark 2.3).
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We write DT(f ) := DT(f/M) for simplicity. From Theorem 2.1, the decompo-
sition type DT(RPΘ,Gs,t,fa,b) coincides with the partition of n! induced by the lengths
of the orbits of Gs,t/Hs,t under the action of Gal(fa,b). Hence, by Proposition 2.12,
DT(RPΘ,Gs,t,fa,b) gives the degrees of n! fields of Tschirnhausen coefficients M(c0,π , . . . ,

cn−1,π ) from fa(X) to fb(X) over M; the degree of M(c0,π , . . . , cn−1,π ) over M is equal
to |Gal(fa,b)|/|Gal(fa,b) ∩ πHs,tπ

−1|.
We conclude that the decomposition type of the resolvent polynomialRPΘ,Gs,t,fa,b(X)

over M gives us information about the field intersection problem for fs(X) through the
degrees of the fields of Tschirnhausen coefficients M(c0,π , . . . , cn−1,π ) over M which
is determined by the degeneration of the Galois group Gal(fa,b) under the specialization
(s, t) 	→ (a, b).

THEOREM 2.15 ([HM, Theorem 3.8]). Let Θ be a Gs,t-primitive Hs,t-invariant.
For a, b ∈ Mn with Da · Db �= 0, the following conditions are equivalent :

(i) The quotient algebras M[X]/(fa(X)) and M[X]/(fb(X)) are M-isomorphic ;
(ii) The decomposition type DT(RPΘ,Gs,t,fa,b) over M includes 1.

In the case where Ga and Gb are isomorphic to a transitive subgroup G of Sn and every
subgroups of G with index n are conjugate in G, the condition that the quotient algebras
M[X]/(fa(X)) and M[X]/(fb(X)) are M-isomorphic is equivalent to the condition that
SplMfa(X) and SplMfb(X) coincide. Hence we obtain an answer to the field isomorphism
problem via the resolvent polynomial RPΘ,Gs,t,fa,b(X).

COROLLARY 2.16 (An answer to Isom(f G
s /M)). For a, b ∈ Mn with Da · Db �=

0, we assume that both of fa(X) and fb(X) are irreducible over M , that Ga and Gb
are isomorphic to G and that all subgroups of G with index n are conjugate in G. Then
DT(RPΘ,Gs,t,fa,b) includes 1 if and only if SplMfa(X) and SplMfb(X) coincide.

For subgroups H1 and H2 of Sn, we obtain a k-generic polynomial for H1 × H2 as a
generalization of Theorem 2.8.

THEOREM 2.17 ([HM, Theorem 3.10]). Let M = k(q1, . . . , ql, r1, . . . , rm), (1 ≤
l, m ≤ n − 1) be the rational function field over k with (l + m) variables. For a ∈
k(q1, . . . , ql)

n, b ∈ k(r1, . . . , rm)n, we assume that fa(X) ∈ M[X] and fb(X) ∈ M[X]
be k-generic polynomials for H1 and H2, respectively. If RPΘ,Gs,t,fa,b(X) ∈ M[X] has no
repeated factors, then RPΘ,Gs,t,fa,b (X) is a k-generic polynomial for H1 ×H2 which is not
necessary irreducible.

3. The cases of S4 and of A4

Let M be an overfield of k of characteristic �= 2. We take a k-generic polynomial

f
S4
s,t (X) = X4 + sX2 + tX + t ∈ k(s, t)[X]

for S4. The discriminant of f
S4
s,t (X) with respect to X is given by

Ds,t := t (16s4 − 128s2t − 4s3t + 256t2 + 144st2 − 27t3) .
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For a = (a, b) ∈ M , we always assume that f
S4
a (X) is separable over M , i.e. Da �= 0.

From the definition, for a general quartic polynomial

g4(X) = X4 + a1X
3 + a2X

2 + a3X + a4 ∈ k[X], (a1, a2, a3, a4 ∈ M) ,

there exist a, b ∈ M such that SplMf
S4
a,b(X) = SplMg4(X). Indeed we may take such

a, b ∈ M as follows: The polynomials g4(X) and

h4(X) := g4(X − a1/4) = X4 + A2X
2 + A3X + A4

have the same splitting field over M , where

A2 = −3a2
1 + 8a2

8
, A3 = a3

1 − 4a1a2 + 8a3

8
, A4 = −3a4

1 + 16a2
1a2 − 64a1a3 + 256a4

256
.

If we put

a := A2A
2
3

A2
4

and b := A4
3

A3
4

then the polynomials h4(X) and

X4 + aX2 + bX + b =
(A3

A4

)4 · h4

(A4

A3
X

)

have the same splitting field over M . Hence we see SplMf
S4
a,b(X) = SplMg4(X).

Let S4 act on k(x1, x2, x3, x4) by π(xi) = xπ(i), (π ∈ S4). We put

σ := (1234) , ρ1 := (123) , ρ2 := (234) , ω := (12) ∈ S4 .

For the field k(x, y) := k(x1, . . . , x4, y1, . . . , y4), we take the interchanging involution

ι : k(x, y) −→ k(x, y) , xi 	−→ yi, yi 	−→ xi, (i = 1, . . . , 4)

as in (2.1). Put (σ ′, ρ′
1, ρ

′
2, ω

′) := (ι−1σ ι, ι−1ρ1ι, ι
−1ρ2ι, ι

−1ωι) then σ ′, ρ′
1, ρ

′
2, ω

′ ∈
Autk(k(y)). For simplicity we write

S4 = 〈σ,ω〉 , S ′
4 = 〈σ ′, ω′〉 , S ′′

4 = 〈σσ ′, ωω′〉 ,

A4 = 〈ρ1, ρ2〉 , A′
4 = 〈ρ′

1, ρ
′
2〉 , A′′

4 = 〈ρ1ρ
′
1, ρ2ρ

′
2〉 .

Note that S ′′
4 (∼= S4) and A′′

4 (∼= A4) are subgroups of S4 × S ′
4.

We take an S4 × S ′
4-primitive S ′′

4 -invariant

P := x1y1 + x2y2 + x3y3 + x4y4

and we put f
S4
s,s′(X) := f

S4
s (X)f

S4
s′ (X) where (s, s′) = (s, t, s′, t ′). Then we get an S4 ×

S ′
4-relative S ′′

4 -invariant resolvent polynomial of f
S4
s,s′(X) by P as follows:

Rs,s′(X) := RP
P,S4×S ′

4,f
S4
s,s′

=
(
G1

s,s′(X)
)2 − DsDs′

(
G2

s,s′(X)
)2 ∈ k(s, s′)[X](3.1)

where

G1
s,s′(X) =X12 − 8ss′X10 − 24tt ′X9 + (11s2s′2 + 4ts′2 + 4s2t ′ − 80t t ′)X8

+ 128sts′t ′X7+c6X
6 − 64tv(3s2u2 + 4tu2 + 4s2v − 16tv)X5+∑4

i=0 ciX
i ,

G2
s,s′(X) = − 5X6 + 12ss′X4 + 8tt ′X3 + (−9s2s′2 + 20ts′2 + 20s2t ′ − 16t t ′)X2
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− 32sts′t ′X + 2s3s′3 − 8sts′3 + 9t2s′3 − 8s3s′t ′ + 32sts′t ′

− 4t2s′t ′ + 9s3t ′2 − 4stt ′2 − (t2t ′2/2)

and c6, c4, c3, . . . , c0 ∈ k(s, s′) are given by

c6 = − 2
[
8sts′3 + 13t2s′3 − 84t2s′t ′

] − 28s3s′3 + 576sts′t ′ + 57t2t ′2 ,

c4 = 8
[
3s2ts′4 − 14t2s′4 + 6st2s′4 + 304t2s′2t ′ − 4st2s′2t ′ − 208st2t ′2

]
+ 17s4s′4 − 1216s2ts′2t ′ − 3840t2t ′2 − 380st2s′t ′2 ,

c3 = − 8tt ′
(−2

[
40sts′3 + 9t2s′3 + 60t2s′t ′

] − 12s3s′3 + 832sts′t ′ + 37t2t ′2
)
,

c2 = − 2
[
16s3ts′5 − 96st2s′5 + 9s2t2s′5 + 108t3s′5 + 1280st2s′3t ′

+ 168s2t2s′3t ′ − 288t3s′3t ′ − 1328s2t2s′t ′2 + 1472t3s′t ′2 − 270t3s′2t ′2]
− 4s5s′5 + 768s3ts′3t ′ + 7168st2s′t ′2 + 141s2t2s′2t ′2 + 1616t3t ′3 ,

c1 = 8tt ′
(−8

[
3s2ts′4 + 18t2s′4 + 48t2s′2t ′ + 36st2s′2t ′ − 16st2t ′2

]
− s4s′4 + 704s2ts′2t ′ − 256t2t ′2 + 84st2s′t ′2

)
,

c0 = [
16s4ts′6 − 128s2t2s′6 − 4s3t2s′6 + 256t3s′6 + 144st3s′6 − 27t4s′6

+ 1280s2t2s′4t ′ + 176s3t2s′4t ′ − 2048t3s′4t ′ − 1728st3s′4t ′ + 540t4s′4t ′

− 704s3t2s′2t ′2 + 4096t3s′2t ′2 + 4864st3s′2t ′2 − 720t4s′2t ′2 + 256t3s′3t ′2

+ 1008st3s′3t ′2 − 270t4s′3t ′2 − 1024st3t ′3 + 64t4t ′3 − 72t4s′t ′3
]

− 256s4ts′4t ′ − 4096s2t2s′2t ′2 − 76s3t2s′3t ′2 − 704st3s′t ′3 − (27t4t ′4/2)

with simplifying notation
[
a
] := a + ι(a). It follows from the definition of ι that

ι(s, t, s′, t ′) = (s′, t ′, s, t).
Note that the polynomial Rs,s′(X) splits into two factors of degree 12 over the field

k(s, s′)(
√

DsDs′) as

Rs,s′(X) =
(
G1

s,s′(X) + √
DsDs′ G2

s,s′(X)
)(

G1
s,s′(X) − √

DsDs′ G2
s,s′(X)

)
,

and one of the two factors of Rs,s′(X) above is the A4 ×A′
4-relative A′′

4-invariant resolvent

polynomial RP
P,A4×A′

4,f
S4
s,s′

(X) of f
S4
s,s′(X) by P .

For a = (a, b), a′ = (a′, b′) ∈ M2 with Da · Da′ �= 0, we put

La := SplMf S4
a (X) , Ga := Gal(f S4

a /M) , Ga,a′ := Gal(f S4
a,a′/M) .

By Theorem 2.1, we get an answer to Int(f S4
s /M) via Rs,s′(X). Here we treat only

the case where both f
S4
a (X) and f

S4
a′ (X) are irreducible over M and Ga = S4 or A4. We

will treat the case where Ga ≤ D4 (resp. f
S4
a (X) is reducible) in Section 4 (Table 3 and

Table 4 in Theorem 4.9) (resp. Section 6 (Table 5 and Table 6 in Theorem 6.1)).
An answer to Int(f S4

s /M) is given as follows:
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THEOREM 3.1. For a = (a, b), a′ = (a′, b′) ∈ M2 with Da · Da′ �= 0, assume that
both of f

S4
a (X) and f

S4
a′ (X) are irreducible over M , #Ga ≥ #Ga′ and Ga = S4 or A4. If

Ga = S4 (resp. Ga = A4) then an answer to the intersection problem of f
S4
s,t (X) is given

by Table 1 according to the decomposition types DT(Ra,a′).

TABLE 1.

Ga Ga′ GAP ID Ga,a′ DT(Ra,a′ )
(I-1) [576, 8653] S4 × S4 La ∩ La′ = M 24

S4
(I-2) [288, 1026] (A4 × A4) � C2 [La ∩ La′ : M] = 2 12, 12
(I-3) [96, 227] (V4 × V4) � S3 [La ∩ La′ : M] = 6 12, 8, 4
(I-4) [24, 12] S4 La = La′ 8, 6, 6, 3, 1

A4 (I-5) [288, 1024] S4 × A4 La ∩ La′ = M 24
(I-6) [192, 1472] S4 × D4 La ∩ La′ = M 24

S4 D4
(I-7) [96, 187] (A4 × C4) � C2 [La ∩ La′ : M] = 2 24
(I-8) [96, 195] (A4 × V4) � C2 [La ∩ La′ : M] = 2 24
(I-9) [96, 195] (A4 × V4) � C2 [La ∩ La′ : M] = 2 12, 12

C4
(I-10) [96, 186] S4 × C4 La �= La′ 24
(I-11) [48, 30] A4 � C4 [La ∩ La′ : M] = 2 12, 12

V4
(I-12) [96, 226] S4 × V4 La �= La′ 24
(I-13) [48, 48] S4 × C2 [La ∩ La′ : M] = 2 24
(I-14) [144, 184] A4 × A4 La ∩ La′ = M 12, 12

A4 (I-15) [48, 50] (V4 × V4) � C3 [La ∩ La′ : M] = 3 12, 4, 4, 4

A4
(I-16) [12, 3] A4 La = La′ 6, 6, 4, 4, 3, 1

D4 (I-17) [96, 197] A4 × D4 La ∩ La′ = M 24
C4 (I-18) [48, 31] A4 × C4 La ∩ La′ = M 24
V4 (I-19) [48, 49] A4 × V4 La ∩ La′ = M 12, 12

We checked the decomposition types by using the computer algebra system GAP
[GAP] (with the command DoubleCosetRepsAndSizes). We note that the cases
{(I-6), (I-7), (I-8)} and {(I-12), (I-13)} may be distinguished by comparing the quadratic
extensions of M in the splitting fields. In the case where Ga = S4, the unique quadratic
extension of M is given by

M
(√

b(16a4 − 128a2b − 4a3b + 256b2 + 144ab2 − 27b3)
)

(see Section 4 for the case of Ga′ = D4) .

EXAMPLE 3.2. We give some numerical examples of Theorem 3.1.
(i) Take M = Q and a = (0, 1), a′ = (2, 1). Then

f S4
a (X) = X4 + X + 1 and f

S4
a′ (X) = X4 + 2X3 + X + 1 .

We see that Ga = Ga′ = S4 and Ra,a′(X) splits over Q as

Ra,a′(X) = (X − 3)(X + 1)3(X6 − 6X5 + 12X4 − 8X3 − 64X2 + 128X − 64)

· (X6 + 6X5 + 24X4 + 56X3 + 32X2 − 32X − 256)

· (X8 + 6X6 − 16X5 − 89X4 − 48X3 + 686X2 − 1048X + 4233) .
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Hence it follows from Theorem 3.1 that SplMf
S4
a (X) = SplMf

S4
a′ (X).

(ii) Take M = Q and

a = (0, b), a′ = (a′, b′) = (2b, b2) with b = 26

32 .

Then we see that Ga = Ga′ = A4 and Ra,a′(X) splits over Q as

Ra,a′(X) =
(
X − 26

3

)(
X + 26

32

)3(
X4 + 213

33 X2 − 221

36 X + 224

36

)(
X4 − 221

36 X + 226

37

)

·
(
X6 − 27

3
X5 + 214

33 X4 − 221

36 X3 − 224

36 X2 + 231

38 X − 236

310

)

·
(
X6 + 27

3
X5 + 215

33 X4 + 221 · 7

36 X3 + 224 · 29

37 X2 + 231 · 13

39 X+ 236 · 19

312

)
.

By Theorem 3.1, we get SplMf
S4
a (X) = SplMf

S4
a′ (X).

3.1. Isomorphism problem of f
S4
s (X) = X4 + sX2 + tX + t

Now we consider the problems Isom(f
S4
s /M) and Isom∞(f

S4
s /M). By Theorem 3.1,

we have a criterion to the field isomorphism problem Isom(f
S4
s /M) for fixed a, a′ ∈ M2.

However we may not know when Ra,a′(X) has a linear factor over M . In particular, we

may not answer to Isom∞(f
S4
s /M), i.e., for a fixed a ∈ M2 whether there exist infinitely

many a′ ∈ M2 such that SplMf
S4
a (X) = SplMf

S4
a′ (X) or not.

In [HM07], [HM] we gave an answer to Isom∞(f
S3
s /M), Isom∞(f

C3
s /M) by us-

ing formal Tschirnhausen transformation (cf. Section 2). We use the same technique to
Isom∞(f

S4
s /M). Here we explain an outline of the proof and we will give the proof in the

next subsection.
For a = (a, b), a′ = (a′, b′) ∈ M2 with a �= a′ and Da · Da′ �= 0, we take

ci,π = ωfa,b(π(ui)), (i = 0, . . . , 3), and the field of coefficients M(c0,π , . . . , c3,π ) of

Tschirnhausen transformations from f
S4
a (X) to f

S4
a′ (X) as in Subsection 2.2. Then we

have

f
S4
a′ (X) = ResultantY (f S4

a (Y ),X − (c0,π + c1,πY + c2,πY 2 + c3,πY 3)) .(3.2)

By Lemma 2.10, the splitting field of f
S4
a (X) and of f

S4
a′ (X) over M coincide if and only

if M = M(c0,π , . . . , c3,π ) for some π ∈ S4 unless Gal(f S4
a /M) = D4. Thus we take such

π ∈ S4, and put
(x, y, z,w) := (c0,π , . . . , c3,π ) .

From the assumption a �= a′, we see (z,w) �= (0, 0). Hence we should consider the two
cases (i) w = 0 and z �= 0, (ii) w �= 0. In the case of (i) (resp. of (ii)), we put

p := 2y

z
,

(
resp. u := 4y

w
, v := 2z

w

)
.

Then by the equality (3.2) we get the following result:
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THEOREM 3.3. For a = (a, b), a′ = (a′, b′) ∈ M2 with a �= a′ and Da · Da′ �= 0,
two M-algebras M[X]/(f S4

a (X)) and M[X]/(f S4
a′ (X)) are M-isomorphic if and only if

either (i) there exists p ∈ M such that

a′ = Pa,pQ2
a,p

R2
a,p

, b′ = Q4
a,p

R3
a,p

(3.3)

where Ps,p,Qs,p, Rs,p ∈ M[s, p] with s = (s, t) are given by

Ps,p = −2(s2 − 4t) + 6tp + sp2 ,

Qs,p = −8t2 − 8stp − 2(s2 − 4t)p2 + tp3 ,

Rs,p = s4 − 8s2t + 16t2 + 8st2 + 2t (s2 − 4t)p + s(s2 − 4t)p2 − stp3 + tp4 ,

or (ii) there exist u, v ∈ M such that

a′ = Ua,u,vV
2
a,u,v

W 2
a,u,v

, b′ = V 4
a,u,v

W 3
a,u,v

(3.4)

where Us,u,v, Vs,u,v,Ws,u,v ∈ M[s, u, v] with s = (s, t) are given by

Us,u,v = 16s3 − 48st − 6t2 − 8s2u + 16tu + su2 − 28stv + 6tuv − 2s2v2 + 8tv2 ,

Vs,u,v = 96s3t − 96st2 + 8t3 − 64s2tu + 16t2u + 14stu2 − tu3 + 32s4v − 160s2tv

+ 128t2v − 40st2v − 16s3uv + 64stuv + 12t2uv + 2s2u2v − 8tu2v − 32s2tv2

+ 64t2v2 + 8stuv2 + 8t2v3 ,

Ws,u,v = 144s3t2 + 256t3 + 144st3 − 3t4 − 128st2u − 120s2t2u − 32t3u + 16s2tu2

+ 32t2u2 + 33st2u2 − 8stu3 − 3t2u3 + tu4 + 96s4tv − 288s2t2v + 256t3v

+ 68st3v − 64s3tuv + 80st2uv − 18t3uv + 14s2tu2v − stu3v + 16s5v2

− 112s3tv2 + 192st2v2 + 2s2t2v2 + 120t3v2 − 8s4uv2 + 48s2tuv2

− 64t2uv2 + s3u2v2 − 4stu2v2 − 4s3tv3 + 16st2v3 + 24t3v3 + 2s2tuv3

− 8t2uv3 + s4v4 − 8s2tv4 + 16t2v4 + 8st2v4 .

COROLLARY 3.4 (An answer to Isom(f
S4
s /M)). Let a, a′ ∈ M2 be as in Theorem

3.3. We also assume that Gal(f S4
a /M) �= D4. Then two splitting fields of f

S4
a (X) =

X4 + aX2 + bX + b and of f
S4
a′ (X) = X4 + a′X2 + b′X + b′ over M coincide if and only

if either (i) there exists p ∈ M which satisfies (3.3) or (ii) there exists a pair of u, v ∈ M

which satisfies (3.4)

By Theorem 3.3 we obtain an answer to Isom∞(f
S4
s /M) as follows: We use the case

(i) of Theorem 3.3 (we may also use (ii) instead of (i)). We regard p as an independent
parameter over M formally and take f

S4
a′ (X) ∈ M(p)[X] where

a′ = Pa,pQ2
a,p

R2
a,p

, b′ = Q4
a,p

R3
a,p
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as in (3.3). Then we have SplM(p)fa(X) = SplM(p)fa′(X). The discriminant of f
S4
a′ (X)

with respect to X is given by
DaQ

12
a,pS2

a,p

R12
a,p

where Sa,p = −64b2+16(a2−4b)p2+8sp4+p6. Thus for p ∈ M we have SplMfa(X) =
SplMfa′(X) unless Qa,pRa,pSa,p = 0. Since only finitely many p ∈ M satisfy
Qa,pRa,pSa,p = 0, we have the following corollary:

COROLLARY 3.5 (An answer to Isom∞(f
S4
s /M)). Let M ⊃ k be an infinite field.

For a ∈ M2 with Da �= 0, there exist infinitely many a′ ∈ M2 such that SplMf
S4
a (X) =

SplMf
S4
a′ (X).

REMARK 3.6. By eliminating the variable v (resp. u) from the two equalities in
(3.4) of Theorem 3.3, we get the equation h = 0 where h ∈ M(a, b, a′, b′)[u] is a poly-
nomial in u (resp. v) of degree 24. This polynomial h coincides with the S4 × S ′

4-relative

S ′′
4 -invariant resolvent polynomial of f

S4
a,a′(X) by u (resp. v); for, from the definition of u

(resp. v), we may regard u = 4u1/u3 (resp. v = 2u2/u3) where ui is the formal Tschirn-
hausen coefficient which is defined in (2.2). Hence from Theorem 3.3 we also get a solution
to Int(f S4

s /M) by using Table 1 via DT(h) instead of DT(Ra,a′).

EXAMPLE 3.7. We give some numerical examples of Theorem 3.3. Note that we
always assume Da �= 0 for a = (a, b) ∈ M2.

(i) If we take p = 0 then we have

(Pa,Qa, Ra) = (−2(a2 − 4b),−8b2, a4 − 8a2b + 16b2 + 8ab2) .

Hence two splitting fields of f
S4
a (X) = X4 + aX2 + bX + b and of

f
S4
a′ (X) = X4− 27(a2 − 4b)b4

(a4 − 8a2b + 16b2 + 8ab2)2
X2+ 212b8

(a4 − 8a2b + 16b2 + 8ab2)3
(X + 1)

over M coincide. The corresponding Tschirnhausen transformation from f
S4
a (X) to

f
S4
a′ (X) as in (3.2) is given by

f
S4
a′ (X) = ResultantY

(
f S4

a (Y ),X −
(
− 8b2(a + 2Y 2)

(a4 − 8a2b + 16b2 + 8ab2)

))
.

In particular, if we take a = 0 then we see that the polynomials

f
S4
0,b(X) = X4 + bX + b and f

S4
2b,b2(X) = X4 + 2bX2 + b2(X + 1)

have the same splitting field over M . We remark that this example is a generalization of
Example 3.2 (i), (ii).

(ii) If we take p = 2 then we have(
Pa,Qa, Ra

) = (−2(−2a + a2 − 10b),−8(a2 − 5b + 2ab + b2) ,

4a3 + a4 + 16b − 24ab − 4a2b + 8ab2) .
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Hence two splitting fields of f
S4
a (X) = X4 + aX2 + bX + b and of

f
S4
a′ (X) = X4 + 27(2a − a2 + 10b)(a2 − 5b + 2ab + b2)2

(4a3 + a4 + 16b − 24ab − 4a2b + 8ab2)2
X2

+ 212(a2 − 5b + 2ab + b2)4

(4a3 + a4 + 16b − 24ab − 4a2b + 8ab2)3 (X + 1)

over M coincide. The corresponding Tschirnhausen transformation from f
S4
a (X) to

f
S4
a′ (X) is given by

f
S4
a′ (X) = ResultantY

(
f S4

a (Y ),X −
(
− 8(a2 − 5b + 2ab + b2)(a + 2Y + 2Y 2)

4a3 + a4 + 16b − 24ab − 4a2b + 8ab2

))
.

In particular, if we take a = 0 then we see that the polynomials

f
S4
0,b(X) = X4+bX+b and f

S4
5b(b−5)2,b(b−5)4(X) = X4+5b(b−5)2X2+b(b−5)4(X+1)

have the same splitting field over M .
(iii) If we take u = v = 0 then we have(

Ua, Va,Wa
) = (

2(8a3 − 24ab − 3b2), 8b(12a3 − 12ab + b2),

b2(144a3 + 256b + 144ab − 3b2)
)
.

Hence two splitting fields of f
S4
a (X) = X4 + aX2 + bX + b and of

f
S4
a′ (X) = X4 + 27(8a3 − 24ab − 3b2)(12a3 − 12ab + b2)2

b2(144a3 + 256b + 144ab − 3b2)2 X2

+ 212(12a3 − 12ab + b2)4

b2(144a3 + 256b + 144ab − 3b2)3 (X + 1)

over M coincide. The corresponding Tschirnhausen transformation from f
S4
a (X) to

f
S4
a′ (X) is given by

f
S4
a′ (X) = ResultantY

(
f S4

a (Y ),X −
(
− 8(12a3 − 12ab + b2)(3b + 4Y 3)

b(144a3 + 256b + 144ab − 3b2)

))
.

In particular, if we take a = 0 then we see that the polynomials

f
S4
0,b(X)=X4+bX+b and f

S4
−6B2,−8B3(X)=X4−6B2X2−8B3(X+1) with B = 8b

3b − 256
have the same splitting field over M . We give examples in the case of b,B ∈ Z in Table 2.

We note that Gal(f S4
0,b/Q) = S4 for the b’s in Table 2 except for b = −256, 128, 768

and that Gal(f S4
0,b/Q) = D4 for the exceptional cases b = −256, 128, 768.
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TABLE 2.

b −256 64 80 84 85 86

B 2 −8 −40 −168 −680 344

−6B2 −24 −384 −9600 −169344 −2774400 −710016

−8B3 −64 4096 512000 37933056 2515456000 −325660672

b 88 96 128 256 768

B 88 24 8 4 3

−6B2 −46464 −3456 −384 −96 −54

−8B3 −5451776 −110592 −4096 −512 −216

3.2. Proof of Theorem 3.3
By Lemma 2.10, two splitting fields of f

S4
a (X) and of f

S4
a′ (X) over M coincide if and

only if there exist x, y, z,w ∈ M such that

f
S4
a′ (X) = R′(x, y, z,w, a, b; X)(3.5)

where

R′(x, y, z,w, s, t; X)

:= ResultantY (f S4
a (Y ),X − (x + yY + zY 2 + wY 3))

= t3w4 + 3st2w3x − t3w3x + s3w2x2 − 3stw2x2 + 3t2w2x2 − 3twx3 + x4

− 2st2w3y + t3w3y − s2tw2xy − 5t2w2xy − 2s2wx2y + 4twx2y + s2tw2y2

+ 2t2w2y2 + 2stwxy2 + sx2y2 − 2stwy3 − txy3 + ty4 − t3w3z − 2s2tw2xz

+ 4t2w2xz + st2w2xz + stwx2z − 2sx3z − st2w2yz + 4stwxyz − 3t2wxyz

+ 3tx2yz + 3t2wy2z − 4txy2z + st2w2z2 + t2wxz2 + s2x2z2 + 2tx2z2 − 4t2wyz2

− stxyz2 + sty2z2 − 2stxz3 + t2xz3 − t2yz3 + t2z4 + (−3st2w3 + t3w3 − 2s3w2x

+ 6stw2x − 6t2w2x + 9twx2 − 4x3 + s2tw2y + 5t2w2y + 4s2wxy − 8twxy

− 2stwy2 − 2sxy2 + ty3 + 2s2tw2z − 4t2w2z − st2w2z − 2stwxz + 6sx2z

− 4stwyz + 3t2wyz − 6txyz + 4ty2z − t2wz2 − 2s2xz2 − 4txz2 + styz2 + 2stz3

− t2z3)X + (
s3w2 − 3stw2 + 3t2w2 − 9twx + 6x2 − 2s2wy + 4twy + sy2

+ stwz − 6sxz + 3tyz + s2z2 + 2tz2)X2 + (
3tw − 4x + 2sz

)
X3 + X4 .

We first see that (z,w) �= (0, 0) as follows: If we assume (z,w) = (0, 0) then we should
have

R′(x, y, 0, 0, s, t; X) = x4 + sx2y2 − txy3 + ty4 + (−4x3 − 2sxy2 + ty3)X

+ (6x2 + sy2)X2 − 4xX3 + X4 .
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By comparing the coefficients of X3 in (3.5), we obtain x = 0. It also follows that y = 1
because we see ty3 = ty4 by R′(0, y, 0, 0, s, t; X) = X4 + sy2X2 + ty3X + ty4. Thus we
obtain a = a′ which contradicts the assumption.

(i) The case of w = 0 and z �= 0. By comparing the coefficients of X3 in (3.5), we
see −4x + 2sz = 0; hence we have x = sz/2. By direct computation, we then have

R′(sz/2, y, z,w, s, t; X) = c0 + c1X + c2X
2 + X4

where

c0 = (
16ty4 − 8sty3z + 4s3y2z2 − 16sty2z2 + 4s2tyz3

− 16t2yz3 + s4z4 − 8s2tz4 + 16t2z4 + 8st2z4)/16 ,

c1 = ty3 − s2y2z + 4ty2z − 2styz2 − t2z3 ,

c2 = (
2sy2 + 6tyz − s2z2 + 4tz2)/2 .

Now it follows from (3.5) that c0 = c1. We put

p := 2y

z
.

Then, by c0 = c1, we get an equation which is linear in z. From this equation we have

z = 2(−2p2s2 + 8p2t + p3t − 8pst − 8t2)

p2s3 + s4 + p4t − 4p2st − p3st − 8s2t + 2ps2t + 16t2 − 8pt2 + 8st2 =: z′ .

Thus we get x̃ := (x, y, z) = (sz′/2, pz′/2, z′) and

R′ (̃x, s, t; X) = Q4
s,t

R3
s,t

+ Q4
s,t

R3
s,t

X + Ps,tQ
2
s,t

R2
s,t

X2 + X4 .

(ii) The case of w �= 0. By comparing the coefficients of X3 in (3.5), we see
3tw − 4x + 2sz = 0. Hence follows x = (3tw + 2sz)/4. By direct computation, we have

R′((3tw + 2sz)/4, y, z,w, s, t; X) = C0 + C1X + C2X
2 + X4

where

C0 = (
144s3t2w4 + 256t3w4 + 144st3w4 − 3t4w4 − 512st2w3y − 480s2t2w3y

− 128t3w3y + 256s2tw2y2 + 512t2w2y2 + 528st2w2y2 − 512stwy3

− 192t2wy3 + 256ty4 + 192s4tw3z − 576s2t2w3z + 512t3w3z + 136st3w3z

− 512s3tw2yz + 640st2w2yz − 144t3w2yz + 448s2twy2z − 128sty3z

+ 64s5w2z2 − 448s3tw2z2 + 768st2w2z2 + 8s2t2w2z2 + 480t3w2z2 − 128s4wyz2

+ 768s2twyz2 − 1024t2wyz2 + 64s3y2z2 − 256sty2z2 − 32s3twz3 + 128st2wz3

+ 192t3wz3 + 64s2tyz3 − 256t2yz3 + 16s4z4 − 128s2tz4 + 256t2z4

+ 128st2z4)/256 ,

C1 = (−12s3tw3 + 12st2w3 − t3w3 + 32s2tw2y − 8t2w2y − 28stwy2 + 8ty3

− 8s4w2z + 40s2tw2z − 32t2w2z + 10st2w2z + 16s3wyz − 64stwyz
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− 12t2wyz − 8s2y2z + 32ty2z + 16s2twz2 − 32t2wz2 − 16styz2 − 8t2z3)/8 ,

C2 = (
8s3w2 − 24stw2 − 3t2w2 − 16s2wy + 32twy + 8sy2 − 28stwz + 24tyz

− 4s2z2 + 16tz2)/8 .

Now it follows from (3.5) that C0 = C1. We put

u := 4y

w
, v := 2z

w
.

Then, by C0 = C1, we get an equation which is linear in w. From this equation we have

w = −4
(
96s3t − 96st2 + 8t3 − 64s2tu + 16t2u + 14stu2 − tu3 + 32s4v − 160s2tv

+ 128t2v − 40st2v − 16s3uv + 64stuv + 12t2uv + 2s2u2v − 8tu2v − 32s2tv2

+ 64t2v2 + 8stuv2 + 8t2v3)/(
144s3t2 + 256t3 + 144st3 − 3t4 − 128st2u

− 120s2t2u − 32t3u + 16s2tu2 + 32t2u2 + 33st2u2 − 8stu3 − 3t2u3 + tu4

+ 96s4tv − 288s2t2v + 256t3v + 68st3v − 64s3tuv + 80st2uv − 18t3uv

+ 14s2tu2v − stu3v + 16s5v2 − 112s3tv2 + 192st2v2 + 2s2t2v2 + 120t3v2

− 8s4uv2 + 48s2tuv2 − 64t2uv2 + s3u2v2 − 4stu2v2 − 4s3tv3 + 16st2v3

+ 24t3v3 + 2s2tuv3 − 8t2uv3 + s4v4 − 8s2tv4 + 16t2v4 + 8st2v4) =: w′ .
We finally have x̃ := (x, y, z,w) = ((3t + 2sv)w′/4, uw′/4, vw′/2, w′) and

R′ (̃x, s, t; X) = V 4
s,t

W 3
s,t

+ V 4
s,t

W 3
s,t

X + Us,tV
2
s,t

W 2
s,t

X2 + X4 . �

4. The case of D4

Let M be an infinite overfield of k with char k �= 2. We take a k-generic polynomial

f
D4
s,t (X) = X4 + sX2 + t ∈ k(s, t)[X] .

The discriminant of f
D4
s,t (X) with respect to X is given by

Ds,t := 16t (s2 − 4t)2 .

We always assume that for a = (a, b) ∈ M2, f
D4
a (X) is separable over M , i.e. Da �= 0.

4.1. Transformation to X4 + sX2 + t

From the definition of generic polynomial, for a separable quartic polynomial

g4(X) = X4 + a1X
3 + a2X

2 + a3X + a4 ∈ M[X] , (a1, a2, a3, a4 ∈ M) ,

with Gal(g4/M) ≤ D4, there exist a, b ∈ M such that SplMf
D4
a,b (X) = SplMg4(X).

Indeed, in 1928, Garver [Gar28-1] proved that g4(X) (a1 = 0) can be transformed
into the form f

D4
a,b (X) by certain Tschirnhausen transformation for k = Q. The aim of
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this subsection is to give an explicit formula of such a transformation for general g4(X)

(including the case a1 �= 0) via resolvent polynomial.
Let k(x) := k(x1, . . . , x4) be the rational function field over k with variables x1, . . . ,

x4 as in Section 2. We put

z1 := x1 − x3 , z2 := x2 − x4;
then the group D4 = 〈σ, τ1〉 where σ = (1234) and τ1 = (13) acts on k(z1, z2) ⊂
k(x1, . . . , x4) as

σ : z1 	→ z2 , z2 	→ −z1 , τ1 : z1 	→ −z1 , z2 	→ z2 .

Take an S4-primitive D4-invariant θ := x1x3 + x2x4. Then we have k(x)D4 = k(s1, . . . ,

s4)(θ) where si is the i-th elementary symmetric functions in x. We consider the minimal
polynomial of z1 over k(s1, . . . , s4)(θ):

(X − z1)(X + z1)(X − z2)(X + z2)

= X4 + (−(x2
1 + x2

2 + x2
3 + x2

4) + 2(x1x3 + x2x4)
)
X2 + (x1 − x3)

2(x2 − x4)
2

= X4 + (−s2
1 + 2s2 + 2θ)X2 + (s2

2 − 4s1s3 + 16s4 + 2s2θ − 3θ2) .

Then we have

LEMMA 4.1. The polynomials fs(X) = X4 − s1X
3 + s2X

2 − s3X + s4 and

X4 + (−s2
1 + 2s2 + 2θ)X2 + (s2

2 − 4s1s3 + 16s4 + 2s2θ − 3θ2)

are Tschirnhausen equivalent over k(s1, . . . , s4)(θ).

Proof. It can be checked directly that

x1 = s2
1s2 − 4s2

2 + 4s1s3 − s2
1θ + 4θ2 + (s3

1 − 4s1s2 + 8s3)z1 + (s2
1 − 4s2 + 4θ)z2

1

2(s3
1 − 4s1s2 + 8s3)

.

By the successive actions of σ on both sides of this equality, we obtain the assertion. �
We take an absolute (i.e. S4-primitive) D4-invariant resolvent polynomial of g4(X) by

θ :

RPθ,S4,g4(X) = (X − (x1x3 + x2x4))(X − (x1x2 + x3x4))(X − (x1x4 + x2x3))(4.1)

= X3 − a2X
2 + (a1a3 − 4a4)X − a2

3 − a2
1a2

4 + 4a2a4 .

We note that if g4(X) is separable over M then RPθ,S4,g4(X) is also separable over M ,
because their discriminants exactly coincide.

From the assumption of Gal(g4/M) ≤ D4, the resolvent polynomial RPθ,D4,g4(X)

has a root c ∈ M . By specializing parameters (s1, s2, s3, s4) 	→ (−a1, a2,−a3, a4) ∈ M4

in Lemma 4.1, we get

LEMMA 4.2. For (a1, a2, a3, a4) ∈ M4, we assume that a3
1 − 4a1a2 + 8a3 �= 0.

Then the two polynomials g4(X) = X4 + a1X
3 + a2X

2 + a3X + a4 with Gal(g4/M) ≤
D4 and f

D4
a,b (X) = X4 + aX2 + b are Tschirnhausen equivalent over M (in particular,
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SplMg4(X) = SplMf
D4
a,b (X)) where

a = −a2
1 + 2a2 + 2c , b = a2

2 − 4a1a3 + 16a4 + 2a2c − 3c2

and c ∈ M is a root of RPθ,D4,g4(X) as in (4.1).

REMARK 4.3. We may assume a3
1 − 4a1a2 + 8a3 �= 0 for our purpose because we

should treat only the case of a1 = 0 and a3 �= 0.

EXAMPLE 4.4. Take M = Q and (a1, a2, a3, a4) = (1, 1, 1, 1). Then we obtain the
5-th cyclotomic polynomial g4(X) = X4+X3+X2+X+1 and the corresponding resolvent
polynomial RPθ,D4,g4(X) = X3 − X2 − 3X + 2 which splits as (X − 2)(X2 + X − 1)

over Q. Thus we take c = 2 to have (a, b) = (5, 5). Hence it follows that g4(X) =
X4 + X3 + X2 + X + 1 and X4 + 5X + 5 have the same splitting field over Q.

4.2. Intersection problem of f
D4
s (X) = X4 + sX2 + t

We take the rational function field k(x) := k(x1, . . . , x4) over k with variables x1, . . . ,

x4 as in Section 2. In the case of D4, by a result of the previous subsection, we may spe-
cialize x3 := −x1, x4 := −x2 and consider the field k(x1, x2) = k(x). Put

σ := (1234) , τ1 := (13) , τ2 := (24) , τ3 := (12)(34) , τ4 := (14)(23) .

Then the group D4 = 〈σ, τi〉, (i = 1, . . . , 4) acts on k(x1, x2) as in the previous subsection
by

σ : x1 	→ x2, x2 	→ −x1 ,

τ1 : x1 	→ −x1, x2 	→ x2 , τ2 : x1 	→ x1, x2 	→ −x2 ,

τ3 : x1 	→ x2 	→ x1 , τ4 : x1 	→ −x2, x2 	→ −x1 .

We first see that k(x1, x2)
D4 = k(s, t) =: k(s) where

s := −x2
1 − x2

2 , t := x2
1x2

2 .

The element x1 (resp. x2) is a D4-primitive 〈τ2〉-invariant (resp. 〈τ1〉-invariant). Thus two
fields k(x1, x2)

〈τ2〉 = k(s)(x1) and k(x1, x2)
〈τ1〉 = k(s)(x2) are non-Galois quartic fields

over k(s) = k(s, t).
By Kemper-Mattig’s theorem [KM00], we see that the D4-primitive 〈τ1〉-invariant

resolvent polynomial

f
D4
s,t (X) := RPx2,D4(X) = (X2 − x2

1 )(X2 − x2
2 )

= X4 + sX2 + t ∈ k(s, t)[X]
by x2 is a k-generic polynomial forD4. In this section, we treat only the case where f

D4
a (X)

is irreducible over M . (See Section 6 for reducible cases.)
The group D4 has five elements of order two and they form three S4-conjugacy classes

{τ1, τ2}, {τ3, τ4}, {σ 2 = τ1τ2 = τ3τ4}, and the group 〈σ 2〉 is the center of D4.
The element x1 + x2 (resp. x1 − x2) is a D4-primitive 〈τ3〉-invariant (resp. 〈τ4〉-

invariant). Hence the fields k(x)〈τ3〉 = k(s)(x1 + x2) and k(x)〈τ4〉 = k(s)(x1 − x2) are
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also non-Galois quartic fields over k(s). Thus the D4-primitive 〈τ3〉-invariant resolvent
polynomial

gD4
s,t (X) := RPx1+x2,D4(X) = (

X2 − (x1 + x2)
2)(X2 − (x1 − x2)

2)
= X4 + 2sX2 + (s2 − 4t) ∈ k(s, t)[X]

by x1 + x2 is also a k-generic polynomial for D4. We see gD4
s,t (X) = f

D4
2s,s2−4t

(X) and that

the discriminant of gD4
s,t (X) with respect to X equals 212t2(s2 − 4t).

We note that k(s)[X]/(fD4
s (X)) and k(s)[X]/(gD4

s (X)) are not isomorphic over k(s)
although Splk(s)f

D4
s (X) = Splk(s)g

D4
s (X) = k(x1, x2). From above we see

LEMMA 4.5. Assume that Gal(fD4
a /M) = D4 for a = (a, b) ∈ M2. For a′ =

(a′, b′) ∈ M2, the following two conditions are equivalent :
(i) SplMf

D4
a′ (X) = SplMf

D4
a (X);

(ii) M[X]/(fD4
a′ (X)) is M-isomorphic to either M[X]/(fD4

a (X)) or M[X]/
(f

D4
2a,a2−4b

(X)).

In the case of Gal(fD4
a /M) = C4 or V4, we see that SplMf

D4
a′ (X) = SplMf

D4
a (X) if

and only if M[X]/(fD4
a′ (X)) ∼= M[X]/(fD4

a (X)) (cf. Corollary 2.16).

The Galois biquadratic field k(x)〈σ 2〉 of k(s) is given as k(x)〈σ 2〉 = k(s)(x1/x2) which
is obtained as the minimal splitting field of

RPx1/x2,D4(X) =
(
X2 −

(x1

x2

)2)(
X2 −

(x2

x1

)2) = X4 − s2 − 2t

t
X2 + 1

over k(s). The group D4 has three subgroups 〈τ1, τ2〉, C4 = 〈σ 〉 and 〈τ3, τ4〉 of index two.
The cyclic group C4 = 〈σ 〉 acts on k(x)〈σ 2〉 = k(s)(x1/x2) by σ : x1/x2 	→ −x2/x1.
Hence we take

u := x1

x2
− x2

x1
= x2

1 − x2
2

x1x2
= √

(s2 − 4t)/t , v := x1x2 = √
t .

Then three quadratic fields k(x)〈σ 〉, k(x)〈τ1,τ2〉 and k(x)〈τ3,τ4〉 of k(s) are given as

k(x)〈σ 〉 = k(s)(u) = k(s)(
√

(s2 − 4t)/t) ,

k(x)〈τ1,τ2〉 = k(s)(v) = k(s)(
√

t) ,

k(x)〈τ3,τ4〉 = k(s)
(
(x1 + x2)(x1 − x2)

) = k(s)(
√

s2 − 4t) .

Note that t = s2/(u2 + 4). From the above observation, we see the following three
elementary lemmas (cf. [Buc1910], [Gar28-2], [Les38], [Plo87], [KW89], [JLY02, Chapter
2]):

LEMMA 4.6. Let k be a field of char k �= 2. Then we have
(i) f

C4
s,u(X) = X4 + sX2 + s2/(u2 + 4) ∈ k(s, u)[X] is k-generic for C4 ;

(ii) f
V4
s,v (X) = X4 + sX2 + v2 ∈ k(s, v)[X] is k-generic for V4.
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LEMMA 4.7. For a = (a, b) ∈ M2 with Da �= 0, the polynomial f
D4
a (X) = X4 +

aX2 + b is reducible over M if and only if either
√

a2 − 4b ∈ M ,
√

−a + 2
√

b ∈ M or√
−a − 2

√
b ∈ M .

Note that

gD4
a (X) = RP

x1+x2,D4,f
D4
a

(X) = X4 + 2aX2 + (a2 − 4b)

=(
X−

√
−a +2

√
b
)(

X+
√

−a +2
√

b
)(

X −
√

−a − 2
√

b
)(

X +
√

−a − 2
√

b
)
.

LEMMA 4.8. For a = (a, b) ∈ M2 with Da �= 0, assume that f
D4
a (X) = X4 +

aX2 + b is irreducible over M . Then the following assertions hold :
(i)

√
b ∈ M if and only if Gal(fD4

a /M) = V4 ;
(ii)

√
(a2 − 4b)/b ∈ M if and only if Gal(fD4

a /M) = C4 ;
(iii)

√
b �∈ M and

√
(a2 − 4b)/b �∈ M if and only if Gal(fD4

a /M) = D4.

In the case of Gal(fD4
a /M) = D4, three quadratic extensions of M are given as

M(
√

b) , M(
√

(a2 − 4b)/b) , M(
√

a2 − 4b) .(4.2)

For the field k(x, y) := k(x1, x2, y1, y2), we take the interchanging involution

ι : k(x, y) −→ k(x, y) , x1 	−→ y1, y1 	−→ x1, x2 	−→ y2, y2 	−→ x2

as in Section 3. For σ = (1234), τ1 = (13) ∈ S4, we put (σ ′, τ ′
1) := (ι−1σ ι, ι−1τ1ι); then

σ ′, τ ′
1 ∈ Autk(y); and we write

D4 = 〈σ, τ1〉 , D′
4 = 〈σ ′, τ ′

1〉 , D′′
4 = 〈σσ ′, τ1τ

′
1〉 .

Note that D′′
4 (∼= D4) is a subgroup of D4 × D′

4.
Take an S4 ×S ′

4-primitive S ′′
4 -invariant P := x1y1 +x2y2 +x3y3 +x4y4 as in Section

3. Put f
D4
s,s′ (X) := f

D4
s (X)f

D4
s′ (X) where (s, s′) = (s, t, s′, t ′). Then the S4 × S ′

4-relative

S ′′
4 -invariant resolvent polynomial Rs,s′(X) of f

D4
s,s′ by P splits as

Rs,s′(X) := RP
P,S4×S ′

4,f
D4
s,s′

(X) = R1
s,s′(X) · (R2

s,s′(X)
)2

where

R1
s,s′(X) := RP

P,D4×D′
4,f

D4
s,s′

(X)

= X8 − 8ss′X6 + 16(s2s′2 + 2ts′2 + 2s2t ′ − 16t t ′)X4(4.3)

− 128ss′(ts′2 + s2t ′ − 8t t ′)X2 + 256(ts′2 − s2t ′)2,

R2
s,s′(X) := X8 − 4ss′X6 + 2(3s2s′2 − 4ts′2 − 4s2t ′ − 16t t ′)X4

− 4ss′(s2 − 4t)(s′2 − 4t ′)X2 + (s2 − 4t)2(s′2 − 4t ′)2.

Note that P is regarded as D4 × D′
4-primitive D′′

4 -invariant in (4.3). The discriminant
of R1

s,s′(X) with respect to X is given by

280t4t ′4(s2 − 4t)4(s′2 − 4t ′)4(s2t ′ − s′2t)2(s2s′2 − 4s′2t − 4s2t ′)4 .
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For a = (a, b), a′ = (a′, b′) ∈ M2 with Da · Da′ �= 0, we put

La := SplMfD4
a (X) , Ga := Gal(fD4

a /M) , Ga,a′ := Gal(fD4
a,a′/M) .

Using Theorem 2.1, we obtain an answer to Int(fD4
s /M) via resolvent polynomialR1

s,s′(X)

as follows:

THEOREM 4.9. For a = (a, b), a′ = (a′, b′) ∈ M2 with Da · Da′ �= 0, assume that
both of f

D4
a (X) and f

D4
a′ (X) are irreducible over M and #Ga ≥ #Ga′ . If Ga = D4 (resp.

Ga = C4 or V4) then an answer to the intersection problem of f
D4
s,t (X) is given by Table 3

(resp. by Table 4) according to DT(Ra,a′).

REMARK 4.10. By comparing six fields M(
√

b), M(
√

(a2 − 4b)/b),
M(

√
a2 − 4b), M(

√
b′), M(

√
(a′2 − 4b′)/b′) and M(

√
a′2 − 4b′) each of which is a qua-

dratic extension of M or coincides with M as in (4.2) (cf. Lemma 4.8), we may distinguish
all cases in Table 3 and Table 4 except for {(II-7), . . . , (II-13)} and {(III-2), (III-3)}.

REMARK 4.11. In the case of Ga = Ga′ = D4, the decomposition type 4, 2, 2
of R1

a,a′(X) over M means that the splitting fields La and La′ coincide and the quotient

TABLE 3.

Ga Ga′ GAP ID Ga,a′ DT(R1
a,a′ ) DT(Ra,a′ )

(II-1) [64, 226] D4 × D4 La ∩ La′ = M 8 16, 8
(II-2) [32, 27] (V4 × V4) � C2 [La ∩ La′ : M] = 2 8 16, 8
(II-3) [32, 27] (V4 × V4) � C2 [La ∩ La′ : M] = 2 4, 4 16, 4, 4
(II-4) [32, 27] (V4 × V4) � C2 [La ∩ La′ : M] = 2 4, 4 8, 8, 4, 4
(II-5) [32, 28] (C4 × V4) � C2 [La ∩ La′ : M] = 2 8 16, 8
(II-6) [32, 34] (C4 × C4) � C2 [La ∩ La′ : M] = 2 4, 4 16, 4, 4

D4 (II-7) [16, 3] (C4 × C2) � C2 [La ∩ La′ : M] = 4 8 16, 8
(II-8) [16, 3] (C4 × C2) � C2 [La ∩ La′ : M] = 4 4, 4 16, 4, 4
(II-9) [16, 3] (C4 × C2) � C2 [La ∩ La′ : M] = 4 4, 4 8, 8, 4, 4
(II-10) [16, 11] D4 × C2 [La ∩ La′ : M] = 4 4, 4 16, 4, 4

(II-11) [16, 11] D4 × C2 [La ∩ La′ : M] = 4 2, 2, 2, 2 82, 24

D4 (II-12) [8, 3] D4 La = La′ 4, 2, 2 8, 8, 4, 2, 2

(II-13) [8, 3] D4 La = La′ 2, 2, 2, 1, 1 8, 42, 23, 12

(II-14) [32, 25] D4 × C4 La ∩ La′ = M 8 16, 8

C4
(II-15) [16, 3] (C4 × C2) � C2 [La ∩ La′ : M] = 2 4, 4 16, 4, 4
(II-16) [16, 3] (C4 × C2) � C2 [La ∩ La′ : M] = 2 4, 4 8, 8, 4, 4
(II-17) [16, 4] C4 � C4 [La ∩ La′ : M] = 2 8 16, 8
(II-18) [32, 46] D4 × V4 La ∩ La′ = M 8 8, 8, 8
(II-19) [16, 11] D4 × C2 [La ∩ La′ : M] = 2 8 8, 8, 8

V4
(II-20) [16, 11] D4 × C2 [La ∩ La′ : M] = 2 8 8, 8, 4, 4
(II-21) [16, 11] D4 × C2 [La ∩ La′ : M] = 2 4, 4 8, 8, 4, 4
(II-22) [8, 3] D4 La ⊃ La′ 8 8, 4, 4, 4, 4
(II-23) [8, 3] D4 La ⊃ La′ 4, 4 8, 4, 4, 4, 4
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TABLE 4.

Ga Ga′ GAP ID Ga,a′ [La ∩ La′ : M] DT(R1
a,a′ ) DT(Ra,a′ )

(III-1) [16, 2] C4 × C4 La ∩ La′ = M 4, 4 16, 4, 4

C4 (III-2) [8, 2] C4 × C2 [La ∩ La′ : M] = 2 2, 2, 2, 2 82, 24

C4
(III-3) [4, 1] C4 La = La′ 22, 14 44, 22, 14

(III-4) [16, 10] C4 × V4 La ∩ La′ = M 8 8, 8, 8
V4 (III-5) [8, 2] C4 × C2 [La ∩ La′ : M] = 2 8 8, 8, 4, 4

(III-6) [8, 2] C4 × C2 [La ∩ La′ : M] = 2 4, 4 8, 8, 4, 4
(III-7) [16, 10] V4 × C4 La ∩ La′ = M 8 8, 8, 8

C4 (III-8) [8, 2] C2 × C4 [La ∩ La′ : M] = 2 8 8, 8, 4, 4
(III-9) [8, 2] C2 × C4 [La ∩ La′ : M] = 2 4, 4 8, 8, 4, 4

(III-10) [16, 14] V4 × V4 La ∩ La′ = M 4, 4 46

V4 (III-11) [8, 5] V4 × C2 [La ∩ La′ : M] = 2 4, 4 44, 24

V4
(III-12) [8, 5] V4 × C2 [La ∩ La′ : M] = 2 4, 2, 2 44, 24

(III-13) [8, 5] V4 × C2 [La ∩ La′ : M] = 2 2, 2, 2, 2 44, 24

(III-14) [4, 2] V4 La = La′ 4, 2, 2 42, 26, 14

(III-15) [4, 2] V4 La = La′ 22, 14 42, 26, 14

fields M[X]/(fD4
a (X)) and M[X]/(fD4

a′ (X)) are not M-isomorphic (cf. Theorem 2.15
and Lemma 4.5).

4.3. Isomorphism problems of f
D4
s (X) = X4 + sX2 + t

We treat the problems Isom(f
D4
s /M) and Isom∞(f

D4
s /M) more explicitly because

by Theorem 4.9 we can not clearly see the existence of a′ ∈ M2, (a′ �= a) which satisfies
SplM(f

D4
a (X)) = SplM(f

D4
a′ (X)), i.e., Ra,a′(X) has a linear factor or DT(R1

a,a′(X)) is
4, 2, 2.

The problem Isom(f
D4
s /M) was investigated by van der Ploeg [Plo87] in the case

M = Q and Gal(fD4
a /Q) = D4 (see Lemma 4.14 below) to explain Shanks’ incredible

identities [Sha74]. We study Isom(f
D4
s /M) for general M ⊃ k and Gal(fD4

a /M) ≤ D4
via formal Tschirnhausen transformation which is given in Section 2.

For f
D4
s (X) = X4 + sX2 + t , the problem Isom∞(f

D4
s /M) has a trivial solution

because for an arbitrary c ∈ M , f
D4
a,b (X) and f

D4
a′,b′(X) = f

D4
ac2,bc4(X) = f

D4
a,b (X/c) · c4

have the same splitting field over the infinite field M . Indeed, we have SplMf
D4
a,b (X) =

SplMf
D4
a′,b′(X) for a′, b′ ∈ M with a2b′ = a′2b and b′/b = c4, c ∈ M . Thus for f

D4
s (X)

we consider the refined question:
Isom∞′

(f
D4
s /M) : for a given a, b ∈ M , are there infinitely many

a′, b′ ∈ M with a2b′ − a′2b �= 0 or b′/b �= c4, (c ∈ M)

such that SplMf
D4
a,b (X) = SplMf

D4
a′,b′(X) ?
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We take the formal Tschirnhausen coefficients ui = ui(x, y) ∈ k(x, y), (i = 0, 1, 2, 3)

which is defined in (2.2). Then the element ui , (i = 0, 1, 2, 3), becomes an S4 × S ′
4-

primitive S ′′
4 -invariant and we may take the corresponding resolvent polynomials

F i
s,s′(X) := RP

ui ,S4×S ′
4,f

D4
s,s′

(X) , F
i,1
s,s′(X) := RP

ui ,D4×D′
4,f

D4
s,s′

(X) , (i = 0, 1, 2, 3) .

In the latter case, we regard the ui’s as D4 × D′
4-primitive D′′

4-invariants. Now we put

(d, d ′) := (s2 − 4t, s′2 − 4t ′) .

Then by the definition we may evaluate the resolvent polynomial F i
s,s′(X), (i = 0, 1, 2, 3),

which splits as

F 0
s,s′(X) = X8

(
X4 + s2s′

2d
X2 + s4d ′

16d2

)4
, F 1

s,s′(X) = F
1,1
s,s′ (X) · (F 1,2

s,s′ (X))2 ,

F 2
s,s′(X) = X8

(
X4 + 2s′

d
Z2 + d ′

d2

)4
, F 3

s,s′(X) = F
3,1
s,s′ (X) · (F 3,2

s,s′ (X))2

where

F
0,1
s,s′ (X) = F

2,1
s,s′ (X) = X8,

(4.4)

F
1,1
s,s′ (X) = X8 − 2ss′(s2 − 3t)

dt
X6

+ s6s′2 − 6s4s′2t + 9s2s′2t2 + 2s′2t3 + 2s6t ′−12s4t t ′ + 18s2t2t ′ − 16t3t ′

d2t2 X4

− 2ss′(s2 − 3t)(s′2t3 + s6t ′ − 6s4t t ′ + 9s2t2t ′ − 8t3t ′)
d3t3

X2

+ (−s′2t3 + s6t ′ − 6s4tt ′ + 9s2t2t ′)2

d4t4 ,

F
1,2
s,s′ (X) = X8− ss′(s2 − 3t)

dt
X6

+ 3s6s′2−18s4s′2t+27s2s′2t2−4s′2t3−4s6t ′+24s4t t ′−36s2t2t ′−16t3t ′

8d2t2
X4

− ss′(s2 − 3t)(s2 − t)2d ′

16d2t3
X2 + (s2 − t)4d ′2

256d2t4
,

F
3,1
s,s′ (X) = X8− 2ss′

dt
X6+ s2s′2 + 2s′2t + 2s2t ′−16t t ′

d2t2 X4 − 2ss′(s′2t + s2t ′ − 8t t ′)
d3t3 X2

+ (s2t ′ − s′2t)2

d4t4 ,

F
3,2
s,s′ (X) = X8 − ss′

dt
X6 + 3s2s′2 − 4s′2t − 4s2t ′ − 16t t ′

8d2t2
X4 − ss′d ′

16d2t3
X2 + d ′2

256d2t4
.
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The discriminants of F
1,1
s,s′ (X) and of F

3,1
s,s′ (X) with respect to X are given by

disc(F 1,1
s,s′ (X)) = 224t ′4(s2 − t)8(s′2 − 4t ′)4(s6t ′ − 6s4t t ′ + 9s2t2t ′ − s′2t3)2

(s2 − 4t)24t16

· (s6s′2 − 6s4s′2t + 9s2s′2t2 − 4s′2t3 − 4s6t ′ + 24s4t t ′ − 36s2t2t ′)4 ,

disc(F 3,1
s,s′ (X)) = 224t ′4(s′2 − 4t ′)4(s2t ′ − s′2t)2(s2s′2 − 4s′2t − 4s2t ′)4

(s2 − 4t)24t24 .

For a, a′ ∈ M2 with Da ·Da′ �= 0, we assume that fD4
a (X) and f

D4
a′ (X) are irreducible

over M and we write

Ga := Gal(fD4
a /M) , Ga′ := Gal(fD4

a′ /M) .

From Lemma 2.10, two fields M[X]/(fD4
a (X)) and M[X]/(fD4

a′ (X)) are M-isomorphic if
and only if there exist x, y, z,w ∈ M such that

f
D4
a′ (X) = R′(x, y, z,w, a, b; X)(4.5)

:= ResultantX(fD4
a (X),X − (x + yY + zY 2 + wY 3))

where

(x, y, z,w) = ωfa,a′ (π(u0), π(u1), π(u2), π(u3)) for some π ∈ S4 × S ′
4 .(4.6)

LEMMA 4.12. For a = (a, b), a′ = (a′, b′) ∈ M2 with Da · Da′ �= 0, we assume
that C4 ≤ Ga,Ga′ . If M[X]/(fD4

a (X)) ∼=M M[X]/(fD4
a′ (X)) then (x, z) = (0, 0). Namely

f
D4
a′ (X) is obtained from f

D4
a (X) by Tschirnhausen transformation of the form yX+wX3.

Proof. By Theorem 2.15, two fields M[X]/(fD4
a (X)) and M[X]/(fD4

a′ (X)) are M-
isomorphic if and only if DT(F i

s,s′(X)) includes 1. It follows from the assumption C4 ≤
Ga,Ga′ and Tables 3 and 4 of Theorem 4.9 that DT(F i

s,s′(X)) includes 1 if and only if

DT(F
i,1
s,s′(X)) includes 1. Thus we see that π ∈ D4 ×D′

4 and (x, z) = (0, 0) by F
0,1
s,s′ (X) =

F
2,1
s,s′ (X) = X8.

We see that (x, z) = (0, 0) directly as follows: The coefficient of X3 of R′(x, y, z,w,

a, b; X) equals −2(2x − az). Hence by comparing the coefficient of X3 in (4.5), we see
x = az/2. We also get

R′(az/2, y, z,w, a, b; X)

= X4 + (
(2a3w2 − 6abw2 − 4a2wy + 8bwy + 2ay2 − a2z2 + 4bz2)/2

)
X2

− (a2 − 4b)(a2w2 − bw2 − 2awy + y2)zX + (16b3w4 − 32ab2w3y

+ 16a2bw2y2 + 32b2w2y2 − 32abwy3 + 16by4 + 4a5w2z2 − 28a3bw2z2

+ 48ab2w2z2 − 8a4wyz2 + 48a2bwyz2 − 64b2wyz2 + 4a3y2z2 − 16aby2z2

+ a4z4 − 8a2bz4 + 16b2z4)/16 .
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Hence, by comparing the coefficient of X in (4.5), we have

(a2 − 4b)(a2w2 − bw2 − 2awy + y2)z = 0 .

It follows from the assumption Da = 16b(a2−4b)2 �= 0 that a2−4b �= 0. If (a2w2−bw2−
2awy+y2) = 0 and w �= 0, then b = (

(aw−y)/w
)2

is square in M . This contradicts C4 ≤
Ga. If (a2w2 − bw2 − 2awy + y2) = 0 and w = 0 then we have y = 0. This contradicts
C4 ≤ Ga′ because f

D4
a′ (X) = R′(az/2, 0, z, 0, a, b; X) = (X2 + bz2 − (a2z2/4))2.

Hence we conclude that (x, z) = (0, 0) from the assumption C4 ≤ Ga,Ga′ . �
REMARK 4.13. From the proof, we see that Lemma 4.12 is not true in general for

Ga = V4, because the case where a2w2 − bw2 − 2awy + y2 = 0 and w �= 0 occurs. This
case corresponds to the case of (III-14) on Table 4 of Theorem 4.9.

Van der Ploeg [Plo87] showed the following result when M = Q and Ga = D4.

LEMMA 4.14. For a = (a, b), a′ = (a′, b′) ∈ M2 with Da · Da′ �= 0, we assume
that C4 ≤ Ga,Ga′ . Then the following conditions are equivalent :

(i) M[X]/(X4 + aX2 + b) ∼=M M[X]/(X4 + a′X2 + b′);
(ii) there exist y,w ∈ M such that

a′ = a3w2 − 3abw2 − 2a2wy + 4bwy + ay2 , b′ = b(bw2 − awy + y2)2;
(iii) there exist y ′, w ∈ M such that

a′ = abw2 − 4bwy ′ + ay ′2 , b′ = b(bw2 − awy ′ + y ′2)2 .

Moreover, if a2b′ − a′2b �= 0 or b′/b is not a fourth power in M , then the conditions above
are equivalent to

(iv) there exist u,w ∈ M such that

a′ = (a3 − 3ab − 2a2u + 4bu + au2)w2 , b′ = b(b − au + u2)2w4 .

Proof. The equivalence of (i) and (ii) follows from Lemma 4.12 and

R′(0, y, 0, w, a, b; X)

= X4 + (a3w2 − 3abw2 − 2a2wy + 4bwy + ay2)X2 + b(bw2 − awy + y2)2 .

By putting y ′ := aw − y, the equivalence of (ii) and (iii) follows. If a2b′ − a′2b �= 0 or
b′/b �= c4, (c ∈ M) then w �= 0. Hence the condition (iv) is obtained by putting u := y/w

in (ii). �
By Lemma 4.5 and Lemma 4.14 we obtain an answer to Isom(f

D4
s /M):

PROPOSITION 4.15 (An answer to Isom(f
D4
s /M)). For a = (a, b), a′ = (a′, b′) ∈

M2 with Da ·Da′ �= 0, we assume that Ga = D4. Then SplM(X4 +aX2 +b) = SplM(X4 +
a′X2 + b′) if and only if there exist p, q ∈ M such that either

a′ = ap2 − 4bpq + abq2 , b′ = b(p2 − apq + bq2)2 or

a′ = 2(ap2 − 4bpq + abq2) , b′ = (a2 − 4b)(p2 − bq2)2 .
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Proof. It follows from Lemma 4.5 that SplMf
D4
a (X) = SplMf

D4
a′ (X) if and

only if either M[X]/(fD4
a′ (X)) ∼=M M[X]/(fD4

a (X)) or M[X]/(fD4
a′ (X)) ∼=M M[X]/

(f
D4
2a,a2−4b

(X)). The former case is obtained by putting (p, q) := (y ′, w) in Lemma

4.14 (iii) and the latter case is obtained by putting (a, b) := (2a, a2 − 4b) and (p, q) :=
(y − aw, 2w) in Lemma 4.14 (ii). �

Finally by using Lemma 4.14, we get an answer to Isom∞′
(f

D4
s /M) over Hilbertian

field M as follows:

THEOREM 4.16 (An answer to Isom∞′
(f

D4
s /M)). Let M ⊃ k be a Hilbertian

field. For a = (a, b) ∈ M2 with Da �= 0, there exist infinitely many a′ = (a′, b′) ∈ M2

which satisfy the condition that b′/b is not a fourth power in M and SplMf
D4
a (X) =

SplMf
D4
a′ (X).

Proof. By Lemma 4.14 (iv), for an arbitrary u ∈ M , f
D4
a (X) and f

D4
a′ (X) with

a′ = (a3 − 3ab − 2a2u + 4bu + au2) , b′ = b(b − au + u2)2

have the same splitting field over M . By Hilbert’s irreducibility theorem, there exist infin-
itely many u ∈ M such that

X2 − (b − au + u2) = X2 − (u2 − a/2)2 + (a2 − 4b)/4

is irreducible over M because a2 − 4b �= 0. For such infinitely many u ∈ M , b′/b =
(b − au + u2)2 is not a fourth power in M . �

5. The cases of C4 and of V4

We take k-generic polynomials

f C4
s,u(X) := X4 + sX2 + s2

u2 + 4
∈ k(s, u)[X] ,

f V4
s,v (X) := X4 + sX2 + v2 ∈ k(s, v)[X]

for C4 and forV4 respectively (cf. Lemma 4.6). The discriminant of f
C4
s,u(X) (resp. f

V4
s,v (X))

with respect to X is given by 16 s6u4/(u2 +4)3 (resp. 16 v2(s +2v)2(s −2v)2). We always
assume that for (a, c) ∈ M2 (resp. for (a, d) ∈ M2), f

C4
a,c(X) (resp. f

V4
a,d(X)) is well-

defined and separable over M , i.e. ac(a2 + 4) �= 0 (resp. d(a + 2d)(a − 2d) �= 0).
As in (4.3) of Section 4, we take D4 ×D′

4-primitive D′′
4-invariant P := x1y1 + x2y2 +

x3y3 + x4y4 and D4 × D′
4-relative D′′

4 -invariant resolvent polynomial by P :

R1
s,s′(2X)/28 = RP

P,D4×D′
4,f

D4
s,s′

(2X)/28

= X8 − 2ss′X6 + (s2s′2 + 2ts′2 + 2s2t ′ − 16t t ′)X4

− 2ss′(ts′2 + s2t ′ − 8t t ′)X2 + (ts′2 − s2t ′)2 .
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By specializing parameters (s, s′) = (s, t, s′, t ′) 	→ (s, s2/(u2 + 4), s′, s′2/(u′2 + 4))

of R1
s,s′(2X)/28, we have the following decomposition:

ωf (R1
s,s′(2X)/28)

=
(
X4 − ss′X2 + s2s′2(u + u′)2

(u2 + 4)(u′2 + 4)

)(
X4 − ss′X2 + s2s′2(u − u′)2

(u2 + 4)(u′2 + 4)

)

where f = f
C4
s,uf

C4
s ′,u′ . By Theorem 4.9, we obtain an answer to Isom(f

C4
s,u/M).

THEOREM 5.1 (An answer to Isom(f
C4
s,u/M)). For a = (a, c), a′ = (a′, c′) ∈ M2

with aa′cc′(c2 + 4)(c′2 + 4) �= 0, we assume that c �= ±c′ and c �= ±4/c′. Then the
splitting fields of f

C4
a,c(X) and of f

C4
a′,c′(X) over M coincide if and only if either f

C4
A,C+(X)

or f
C4
A,C−(X) has a linear factor over M where

f
C4
A,C±(X) = X4 − aa′X2 + a2a′2(c ± c′)2

(c2 + 4)(c′2 + 4)
with A = −aa′, C± = cc′ ∓ 4

c ± c′ .

REMARK 5.2. The discriminant of f
C4
A,C±(X) with respect to X equals

16 a6a′6(c ± c′)2(cc′ ∓ 4)

(c2 + 4)3(c′2 + 4)3
.

We may assume that c �= ±c′ and c �= ±4/c′ without loss of generality as we have ex-
plained it in Remark 2.3.

EXAMPLE 5.3. For f
C4
a,c(X) = X4 + aX2 + a2/(c2 + 4), we first note that

SplMf C4
a,c(X) = SplMf

C4
a,−c(X) and SplMf C4

a,c(X) = SplMf
C4
ae2,c

(X) for a, c, e ∈ M .

By Theorem 5.1, we have

SplMf C4
a,c(X) = SplMf

C4
(c2+4)/a,c

(X) for f
C4
(c2+4)/a,c

(X) = X4 + c2 + 4

a
X2 + c2 + 4

a2

(5.1)

because we have f
C4
A,C+(X) = (X−2)(X+2)(X−c)(X+c) for (a′, c′) = ((c2 +4)/a, c).

Although Theorem 5.1 is not applicable to the case of c′ = 4/c, it follows from SplM(X4 +
aX2 + b) = SplM(X4 + 2aX2 + a2 − 4b) that

SplMf C4
a,c(X) = SplMf

C4
2a,4/c(X) for f

C4
2a,4/c(X) = X4 + 2aX2 + a2c2

c2 + 4
.(5.2)

By (5.1) and (5.2), we also see the polynomials

f C4
a,c(X) and f

C4
2(c2+4)/a,4/c

(X) = X4 + 2(c2 + 4)

a
X2 + c2(c2 + 4)

a2

have the same splitting field over M .
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EXAMPLE 5.4. We take M = Q and the simplest quartic polynomial

hn(X) = X4 − nX3 − 6X2 + nX + 1 ∈ Q[X] , (n ∈ Z)

with discriminant 4(n2 + 16)3 whose Galois group over Q is isomorphic to C4 except
for n = 0,±3 (cf. for example, [Gra77], [Gra87], [Laz91], [LP95], [Kim04], [HH05],
[Duq07], [Lou07], and the references therein). By Lemma 4.2, we see that hn(X) and

Hn(X) := f
C4
−(n2+16),n/2

(X) = X4 − (n2 + 16)X2 + 4(n2 + 16)

have the same splitting field over Q. For n∈Z, we may assume 1≤n because SplQHn(X) =
SplQH−n(X) and Hn(X) splits over Q only for n = 0, ±3. For 1 ≤ m < n, we apply The-
orem 5.1 to Hm(X), Hn(X) with (a, c, a′, c′) = (−(m2 +16),m/2,−(n2 +16), n/2), then
we see

f
C4
A,C+(X) = (X − 60)(X + 60)(X − 80)(X + 80) for (m, n) = (2, 22) ,

f
C4
A,C−(X) = (X − 255)(X + 255)(X − 340)(X + 340) for (m, n) = (1, 103) ,

f
C4
A,C+(X) = (X − 2080)(X + 2080)(X − 4992)(X + 4992) for (m, n) = (4, 956) .

Hence we get

SplMhm(X) = SplMhn(X) for (m, n) ∈ {(1, 103), (2, 22), (4, 956)} .

For just two cases (m, n) = (1, 16), (2, 8), Theorem 5.1 was not applicable. However it
works for a suitable Tschirnhausen transformation of Hn(X) as in Remark 2.3. Indeed we
may use (5.2) in the previous example.

We checked by Theorem 5.1 that for integers m,n in the range 1 ≤ m < n ≤ 105,
f
C4
A,C±(X) has a linear factor over Q, i.e. SplMhm(X) = SplMhn(X), only for the values of

(m, n) = (1, 103), (2, 22), (4, 956).

REMARK 5.5. In the case where the field M includes a primitive 4th root i :=
e2π

√−1/4 of unity, the polynomial gC4
t (X) := X4 − t ∈ k(t)[X] is k-generic for C4 by

Kummer theory. Indeed we see that the polynomials f
C4
a,c(X) = X4 + aX2 + a2/(c2 + 4)

and

gC4
a2(c−2i)/(c+2i)

(X) = X4 − a2(c − 2i)

c + 2i
are Tschirnhausen equivalent over M because

ResultantX
(
f C4

a,c(X), Y −
( (c + i)(c − 2i)

c
X + c2 + 4

ac
X3

))
= gC4

a2(c−2i)/(c+2i)
(Y )

(we may assume that ac �= 0 since f
C4
0,c(X) = X4 and f

C4
a,0 = (X2 + a/2)2). In this case,

for b, b′ ∈ M with b · b′ �= 0, the splitting fields of gC4
b (X) and of gC4

b′ (X) over M coincide
if and only if the polynomial (X4 − bb′)(X4 − b3b′) has a linear factor over M .

Finally let us check the field isomorphism problem Isom(f
V4
s,v /M). By specializing

parameters (s, s′) = (s, t, s′, t ′) 	→ (s, v2, s′, v′2) of R1
s,s′(X), we have

RV4
s,v,s ′,v′(X) := ωf (R1

s,s′(2X)/28)
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= (
X4 − (ss′ + 4vv′)X2 + (sv′ + s′v)2)

· (X4 − (ss′ − 4vv′)X2 + (sv′ − s′v)2)
where f = f

V4
s,v f

V4
s ′,v′ . As in the case of f

C4
s,u(X), if RV4

a,d,a′,d ′(X) has a (simple) linear factor

over M for a, d, a′, d ′ ∈ M then SplMf
V4
a,d(X) = SplMf

V4
a′,d ′(X). However the converse

dose not hold by group theoretical reason (see Table 4 of Theorem 4.9).
Although we could not get an answer to Isom(f

V4
s,v /M) via RV4

s,v,s ′,v′(X), the answer
can be obtained easily by comparing quadratic subfields (see Remark 4.10).

6. Reducible cases

In this section, we treat reducible cases. We take the k-generic polynomial

f
S4
s,t (X) = X4 + sX2 + tX + t ∈ k(s, t)[X]

for S4 with discriminant

Ds,t := t (16s4 − 128s2t − 4s3t + 256t2 + 144st2 − 27t3)

and the S4 × S ′
4-relative S ′′

4 -invariant resolvent polynomial Rs,s′(X) of the product

f
S4
s,s′(X) := f

S4
s,t (X) · f

S4
s ′,t ′(X) by P := x1y1 + x2y2 + x3y3 + x4y4 as in (3.1) of Sec-

tion 3.
For a = (a, b), a′ = (a′, b′) ∈ M2 with Da · Da′ �= 0, we put

La := SplMf S4
a (X) , Ga := Gal(f S4

a /M) , Ga,a′ := Gal(f S4
a,a′/M) .

We assume that Ga = S3 or C3 and omit the cases where #Ga ≤ 2 or #Ga′ ≤ 2.

THEOREM 6.1. For a = (a, b), a′ = (a′, b′) ∈ M2 with Da · Da′ �= 0, assume
that Ga = S3 or C3, and #Ga′ ≥ 3. If Ga = S3 (resp. Ga = C3) then an answer to the
intersection problem of f

S4
s,t (X) is given by DT(Ra,a′) as Table 5 (resp. Table 6) shows.

For example, if we take a = (1,−1), a′ = (−1, 1) and M = Q then we have
f
S4
a (X) = (X − 1)(X3 + X2 + 2X + 1) and f

S4
a′ (X) = (X + 1)(X3 − X2 + 1). We

see that SplQf
S4
a (X) = SplQf

S4
a′ (X) because DT(Ra,a′) is given by 62, 33, 2, 1.
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TABLE 5.

Ga Ga′ GAP ID Ga,a′ DT(Ra,a′ )
(IV-1) [144, 183] S3 × S4 La ∩ La′ = M 24

S4 (IV-2) [72, 43] (C3 × A4) � C2 [La ∩ La′ : M] = 2 12, 12
(IV-3) [24, 12] S4 La ⊂ La′ 12, 8, 4

A4 (IV-4) [72, 44] S3 × A4 La ∩ La′ = M 24
(IV-5) [48, 38] S3 × D4 La ∩ La′ = M 24

D4
(IV-6) [24, 6] D12 [La ∩ La′ : M] = 2 12, 12

S3
(IV-7) [24, 8] (C3 × V4) � C2 [La ∩ La′ : M] = 2 24
(IV-8) [24, 8] (C3 × V4) � C2 [La ∩ La′ : M] = 2 12, 12

C4
(IV-9) [24, 5] S3 × C4 La ∩ La′ = M 24
(IV-10) [12, 1] C3 � C4 [La ∩ La′ : M] = 2 12, 12
(IV-11) [24, 14] S3 × V4 La ∩ La′ = M 24
(IV-12) [24, 14] S3 × V4 La ∩ La′ = M 12, 12

V4 (IV-13) [12, 4] D6 [La ∩ La′ : M] = 2 12, 12
(IV-14) [12, 4] D6 [La ∩ La′ : M] = 2 12, 6, 6
(IV-15) [12, 4] D6 [La ∩ La′ : M] = 2 6, 6, 6, 6

(IV-16) [36, 10] S3 × S3 La ∩ La′ = M 18, 6

S3
S3 (IV-17) [18, 4] (C3 × C3) � C2 [La ∩ La′ : M] = 2 9, 9, 3, 3

(IV-18) [6, 1] S3 La = La′ 62, 33, 2, 1
C3 (IV-19) [18, 3] S3 × C3 La ∩ La′ = M 18, 6

TABLE 6.

Ga Ga′ GAP ID Ga,a′ DT(Ra,a′ )
S4 (V-1) [72, 42] C3 × S4 La ∩ La′ = M 24

A4
(V-2) [36, 11] C3 × A4 La ∩ La′ = M 12, 12

C3
(V-3) [12, 3] A4 La ⊂ La′ 12, 4, 4, 4

D4 (V-4) [24, 10] C3 × D4 La ∩ La′ = M 24
C4 (V-5) [12, 2] C12 La ∩ La′ = M 12, 12
V4 (V-6) [12, 5] C3 × V4 La ∩ La′ = M 12, 12

S3 (V-7) [18, 3] C3 × S3 La ∩ La′ = M 18, 6
C3 C3

(V-8) [9, 2] C3 × C3 La ∩ La′ = M 9, 9, 3, 3

(V-9) [3, 1] C3 La = La′ 37, 13
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