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There was a critical error in the proof of Theorem 3.7(i). As a consequence, the
proof of Corollary 3.8 must be modified. The problem is that Theorem 3.5(ii) is only
valid for the cases stated there which are not enough for the proof of Theorem 3.7(i).
The authors would like to thank Prof. Andrzej Daszkiewicz at Copernicus University,
Poland, and his student Mr. Maciej Koprowski for pointing out this to the authors.
The authors also appreciate Prof. Yuichiro Taguchi at Hokkaido University, Japan
for discussion. It is plausible that the algorithm in the original paper raise “division
by zero” with probability 1/p2. If this exception does not occur, the original algorithm
always returns a correct answer.

To obtain the correct version of Theorem 3.7 and Corollary 3.8 (ie., a
deterministic polynomial time algorithm of discrete log problem on anomalous elliptic
curve), we use a certain property on canonical lift. For an ordinary elliptic curve
E/F »» we call a lifting E'/Q, of E the canonical lift of E if End(E") is isomorphic to
End(E). The existence of such a lifting is classically studied by Deuring [1], and, in
the context of modern algebraic geometry by Serre-Tate (see e.g. Messing [3]). Let
K be a complete discrete valuation field of characteristic zero whose residue field k&
is algebraically closed field of characteristic p. Let E/K be an elliptic curve with the
ordinary reduction E/k. For ScE, we denote by K(S) the field generated by
coordinates of all the points in S—{0}. Recall that a finite extension L/K is defined
to be tamely ramified if e£0mod p (and e> 1), where e is the ramification index of
L/K. We notice that 1 <e<[L:K] in any case. (See e.g. Lang [2, Part one, Chap.
IT] for details on this topic.) With these conventions, we can state a theorem by
Serre, which is a key to our proof.

THEOREM (Serre). Let E/K be an elliptic curve with the ordinary reduction Efk
and E' the canonical lift of E. Assume j(E) is algebraic over F » Define u(E) by

3 (j(EN=0),
WE)=< 2 (j(EN=1728),
1 (otherwise) .
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Then the following conditions are equivalent:
(1) K(E[pl)/K is tamely ramified.
() J(E)=j(E")mod p' *#®.

According to Nakamura [4], this theorem is obtained by Serre. However,
Nakamura [4] gives an elementary proof. In what follows, we let K be the maximal
unrarr~1iﬁed extension of Q,. Then, k is the algebraic closure of F, and the condition
on j(F) is automatically satisfied.

THEOREM 3.7. Let p>5 and E/Q, be an elliptic curve whose reduction E'/Fp is
anomalous. Assume Az=0. Then j(E)=j(E")mod p**#®,

Proof. Without loss of generality, we may assume F is given by the Weierstrass
equation on which —(x, y)=(x, —y). By Corollary 3.4, ;=0 implies the group
H:=E(Z, n E[ p] is a cyclic group of order p. Put G:=E[ p] n Kern. We show G
is also a cyclic group of order p. Otherwise, G={0} since G cannot be whole
E[pl=Z/pZ® Z/pZ. For PeE[ p], there exists Qe H satisfying n(P)=mn(Q). Then
P—QeG and P=Q by G={0}. Hence E[ p]=H and thus p>=*E[ p]<*H=p, a
contradiction. Therefore, only possibility is G~ Z/pZ. By the similar argument, we
obtain E[p]=H® G as a group. Hence HcE(Z)) yields K(E[ p])=K(G). Let
(&, M)eG—{0O}. Then K(G)=K(&, n) because G=Z/pZ and E is defined over Z,. By
Silverman [6, Theorem VII.3.4], K(&, #)/K is a ramified extension. Since o(P)e G
for all PeG and all oeGal(E/Qp), the group G is defined over @, (hence over K).
Thus [K(¢): K]<*{x:(x,y)eG—{0}}=(p—1)/2. Of course [K(& n):K(&)]<2.
Therefore [K(&,1): K]<p—1<p and K(E[p])/K must be tamely ramified. Using
the above mentioned Theorem of Serre-Nakamura we complete the proof. [

COROLLARY 3.8. Letp>5andE:y*=x3+a,x+agwitha,, age Z be an elliptic
curve. Assume 0<a,<p? and 0<aq<p? We denote its reduction modulo p by
E:y*=x3+a,x+d,. Assume E is anomalous and Ay=0. Then, Ay #0 where E' is
defined by

V= pxbag @=0).
yi=x’tax+p (ds=0),
v =x*+(a,+p)x+as  (otherwise).

Especially, we can solve the discrete logarithm problem in E(F, ) with O((log p)*) bit
operation time complexity.

Proof. In case of @, =0 (hence d #0): Let weF, be a primitive third root of
unity. The automorphism [w] defined by [w](x, y):=(wx, y) is of order 3. By the
definition of the canonical lifting, [w] lifts to an element [w]" of Aut(£") and the
order of [w]" is 3. Hence j(E")=0 by Silverman [6, Theorem II1.10.1]. Since

1728 4p

i(E)=—————20 mod p*,
T = a2 P
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Theorem 3.7 gives Ag #0. Similarly in case of dg=0, using automorphism
[e](x, ) :=(—x, gy) with o?>=—1, we see *Aut(E)=4 and j(E")=1728. Then,
J(EN=1728 (1 —=27p?*/(4a3)+ O(p?)). Hence iz #O0.
Finally, assume &, #0 and @ #0. Note j(E") is neither 0 nor 1728. Hence 1;=0

implies j(E)=j(E")mod p? by Theorem 3.7. Using

0j 1227 - aZa

da, (4a3+27a2)
we see j(E')#j(E)mod p?, and therefore Az #0 again by Theorem 3.7. The proof of
the remaining assertion is the same as in the original paper. []

REMARKS. (i) The curve y?=x>+3x over Fj is the only anomalous curve for
which dg=0 by Olson [5, Corollary 2.2].

(i) We have concerned how to construct quickly a lifting of £ “away from”
its canonical lift. On the contrary, Voloch [7] obtains the third approach for discrete
log problem of p-part of elliptic curves over finite fields. This method uses the
canonical lift and the theory of p-descent.

Other misprints: p. 86, line 2 and p. 88, line 7: insert a “—" just after Ag(o)=.

References

[1] Deuring, M.: Die Typen der Multiplikatorenringe elliptischer Funktionenkdrper. Abh. Math.
Sem. Univ. Hamburg, 14, 197-272 (1941).

[2] Lang, S.: Algebraic number theory. Reading. Mass.: Addison-Wesley Pub., 1970.

[3] Messing, W.: The crystals associated to Barsotti-Tate groups: with applications to Abelian schemes.
Lect. Notes in Math., 264. Berlin-Heidelberg-New York: Springer 1972.

[4] Nakamura, T.: A note on elliptic curves with ordinary reduction. Arch. Math., 60, 440445
(1980).

[5] Olson,L.D.: Hasse invariants and anomalous primes for elliptic curves with complex multiplication.
J. Number Theory, 8, 397414 (1976).

[6] Silverman,J. H.: The arithmetic of elliptic curves. GTM, 106. Berlin-Heidelberg-New York: Springer
1985.

[7] Voloch, J. F.: The discrete logarithm problem on elliptic curves and descents, (1998). preprint

Takakazu Satoh

Dept. Mathematics, Fac. Sci.

Saitama University

255 Shimo-ookubo, Urawa

Saitama 338-8570, Japan

E-mail: tsatoh@rimath.saitama-u.ac.jp

Kiyomichi Araki

Dept. Computer Eng., Fac. Eng.
Tokyo Institute of Technology
2-12-1 Oh-okayama, Meguro
Tokyo 152-8552, Japan

E-mail: araki@ss.titech.ac.jp



