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Abstract. We introduce a “family of metrics” associated with a potential and
give another proof of the variational characterization of Gibbs measures without the
use of “local specification property”.

1. Introduction

In [2], F. Ledrappier showed using the Ruelle’s nonlinear ergodic theorem ([4])
for a C2 map on an interval that the absolutely continuous invariant measures are
characterized by a variational principle. When one considers the behavior of a
one-sided shift under a given potential, one can define the Gibbs measure associated
with the potential and show that this measure is also characterized by a variational
principle ([1]). Indeed, R. Bowen showed this characterization using the “local
specification property” of Gibbs measures ([1] Theorem 1.2). In this paper using
Ledrappier’s technique and a “family of metrics associated with a potential” one
can give another proof of the variational characterization of Gibbs measures without
the use of “local specification property”. This “family of metrics” inform us of the
unstable nature of a one-sided shift under a given potential. Following Ledrappier’s
technique one can find the density of the associated Gibbs measure.

2. Family on metrics associated with potential

The set-up is the following. Let B={0, l}z + and T be the one-sided shift on
B, that is, (Tb),=b,, for each be B and neZ,. In order to consider the natu-
ral extension of (B, T), prepare “source space” X={0,1}" and the one-sided
shift S on X. So the natural extension of (B, T) is B=BxX. Here we shall
write an element of X as x=x,x, -, of B as b=---b;b,, and of B as
[b,x]="---b;box,x,- - -. Let o be the two-sided shift on Bie.o: [b,x]—[Th, byx]
where byx=byx,x,- - - € X. Define the holonomy mapping from be B to ce B by

hy(c): [c, X]1—-1[b, X]1: [c, x]—[b,x].
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When a potential on the original space B is given, we can define the “Jacobian” of
the holonomy with respect to this potential as follows.

Let D(B) be the space of functions on B with bounded logarithmic var1at10ns
Thus a positive-valued function f: B—(0, c0) belongs to D(B) if there are con-
stants C>0 and O<a<1 so that var,(f)=sup{|log f(b)—log f(c)|: b,=c, for all
n<k}<Co* for each ke Z,. In this paper we shall regard D(B) as the space of
potentials (Usually {log f'| feD(B)} is the space of potentials [1]). Associated with
/€ D(B) we can define its cocycle by the formula (0, b)=1and f(n, b)=[]!_, f(T'b)

and put a metric on each [c, X] in the following way. Fix fe(0, 1) and set f= ﬁi

11

where | f] is the sup-norm on B. For two distinct points x, y in X, one can de-
fine their initial common word w(x, y) and its length I(x,y), that is, I(x, y)=
min{neN:x,, 1 #y,+1} and w(x,y)=x;X, X, where it is empty word if
[(x, y)=0. Put a metric on [¢, X ] such that for x, ye X,

dx, y)={(j; (1, ), ew(x, y), i? ;‘i ;

where cw(x, y)= - - -¢;€0X1 X, - - Xy, ) € B. Notice that if f is constant, the associated
metrics are usual one. Indeed we can show that these are metrics.

LemMA 1. For each ce B, d, is a metric on X.

Proof. We show that d, is a non-archimedean metric i.e. d(x, z) <max{d,(x, y),
d(y, z)}. If I(x, 2) > I(x, y), then T"*2~1=¥(cw(x, z))=cw(x, y) and hence

ﬁ Ux,z) [ Ux,z)—Ux,y)— 1 ) I(x,z)—1 )
dx, z)= (‘) < I f(Tew, Z)))) [1  f(Tewlx, 2))

”f” i=0 J=Ux,z) = Ux,y)
B Ix,y) [ U(x,y)— 1
<piaTiey <~> < [T F(TXewl, y)))) <d(x,y).
11 k=0
If I(x, z)=1(x, y), then w(x, z)=w(x, y) and d/(x, z)=d(x, y). If I(x, z)<I(x, y), then
I(x, z2)=1(y, z) and hence w(x, z)=w(y, z) and d (x, z)=dJy, 2). |

Next we define the “Jacobian™ Dy, (c) of the mapping /,(c) at [c, x] by the

formula. Dy, e)=lim 405
y=x dfx, )

spect to the product topology of X. In fact the above limit exists.

where “y—x” means the convergence with re-

where

I Sbx; - - -x,)

LemMA 2. For each b, ce B, Dy, (c) exists and equals to
’ nx1 flex - x,

bxl. e Xpy= - 'blboxl' . 'anB..
Proof. Let x#ye X be arbitrarily given.

dy(x, y) _ A=t f(bx, - “Xix,y) - i) _ e fbx, - - “X;)
da{x, y) =0 flexy  Xyey—i) =1 flexy---x;)
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by letting j=I(x, y)—i. Since I(x, y) > o0 as y—>x and fe D(B), we get the desired
result. |

LemMA 3. For each bce B and xe X,

f(n> Cbn—l' : bO)

D b1+ bo)=D np »
[b,x](c n—1 0) an(b, ](C) f(n, b)

Proof. Indeed
oy ST,y box; - X))
Do x(€bn-1---bo)= kl;Il fleby_ i+ boxy---x;)
___( SUT"BYb,— 1+ - ~boxy- - - xy) ><"—1 fS(T"b)b, — - - -by) > f(n,chb,_y---by)
k=1 feby_y-boxy X)) i=0  flcb,_1- b)) f(n, b)
f(n, Cbn—l' ) bO)
S(n, b) '

= Dtr"[b,x](c)

3. Proof of the variational principle

One can define the exponential pressure A,>0 and f-conformal measure v, on
B of a potential f ([1]). They satisfies the following condition. For each i€ {0, 1},

dvpoTy,

&, (b)=A,f(b) vs-ae bel[il,

where [i]o={beB:b,=i} and vfoT]mo(E)=vf(TE) for each Borel subset Ec[i],
(Notice that TF is a Borel subset of B since T|[,-]0: [i]o — B is continuous injective).
So the f-conformality implies that 7 is strongly non-singular i.e. v {(TE)=0 for each
Borel subset Ec[i], with v/(E)=0 and that the distortion of T with respect to v,
is f up to multiplication by a constant. For the completeness we shall prove the
existence of A, and v, (See [1] theorem 1.7, p. 14). First define L, on the space
o) _
ceT- 1wy f(C)

. So L, is a positive linear operator and one can define the dual operator

of continuous functions on B in the following way: (L ¢)b)=

1 .
i=o f(bi)
L} on the space of finite Borel measures on B and its normalization %, on
the space of probability measures on B, that is, #;v=L}v/L}v(B). Since %, is
continuous on P(B), %, has a fixed point v, by the Schauder-Tychonoff’s theorem.
Let A,=L}v,(B). Then A, and v, satisfies the above condition. Indeed for each
subcylinder Cc[i],,

J Affdvf=J chdL}ka=J Lf(ch)de=J
c B B

xc(bi)dv (D)= j dveoTyy,
B c
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where y is the characteristic function of C (this is continuous). Here we remark that
Ay=exp P(T, —log f) where P(T, —log f) is the “pressure” of —log f (See [1], p.
30). To any T-invariant probability measure u on B we assign a o-invariant measure
i on B in a homogeneous way i.e. for each cylinder C={[b, x]:be[i,_,---ig]5*
and x;---x,=j - ju} (Where i_y, ", do,jy, * 5 jn€{0, 1} and [i_---iglo ™' =
{beB|b,_,--bo=i,_,---ip}), HC)=un(c "C)) where n: B—~B is the natural
projection. Consider the refining and generating sequence of partitions of B given by

Ly={[B,x]:xeX},

L,=0""Lo={[Bxy- "X, S"x]: xe X} .

We write the element of L, containing [b,x] as L,[b,x], that is, L,[b, x]=
{le,x]:ce[b,_1---bo]y™'}. By lemma 3, we can show the following.

LemMA 4. For each T-invariant probability measure pu on B and n>1,

fmwmw—fmf ——ML%W@M)
7Ln[b,x] Y f

[b x])

where v (Dy, ;)= f Dy v, .
B

Proof.
[b x] ~
fmf dv ;dji([b, x])
nLafb,x] VS (D b, x])
I Dyufd) ]
_ logj 0. dy o T" g @)D, x])
J;? Ty 1+bol3 ™ ! ﬂ.;vf(D[b,x]) f(n, d) S [b bol?

Da'"[b, x](c)

Ry v (c)dfi([b, x])

=nlogi,+ ﬁlog V(D )di([b, x]) —Llog
B B
(by letting d=cb,_,- - -b, and lemma 3)

—nJ log(4,f)du (by the invariance of u and fi).
B

Now we can give another proof of the variational characterization of Gibbs
measures. We write the conditional probability of Ec B at [b, x] about the Borel
o-algebra B(L,) generated by L, with respect to ji as i[E | L,1([b, x]), the conditional
entropy of L, under L, with respect to. ji as Hy(L, | L), the entropy of T with respect
to u as h,(T) and the entropy of o with respect to fi as /(o).

THEOREM 5. Let u be a T-invariant probability measure on B.
If u satisfies the formula h(T)= | glog(A,f)dp, then p is equivalent to v,.

Proof. By the assumption and lemma 4,
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—j log J _Dus gy (b, x7)=nh(T)=nhylo) = hiio™
B n

Lnib,x] Y f(D[b,x])
=Hy(L,|L,) (since {L,},, is generating)

- JL]Ogﬂ[L,J:b, X] | LO([ba X)dﬁ([b, X]) .

Thus

dfi([b, x])=0.

log
g A[L,[b, x]| Lo)([b, x])

Accordingly if we define a probability measure v on B(L,) so that

D,
[b, x]
J D
J wLaib,x1 Vy(Dpp,x)

W(E)= J f _Doa g, ;dii([b,x])  foreach EeB(L,),
B Jaf vf(D[b,x])

then | ﬁlog(dﬁ/dﬁ)dﬁ 0. By the concavity of the logarithm, v=/ on B(L,). Since

{L, },,> o is generating, we can extend ¥ to a probability measure on the Borel o-algebra

of Band #=fi. Here for each Borel subset Ec B, y(E)= ji(n~'E)="¥n""E). Therefore

p<v, by the definition of 7. Conversely if u(E)=0, then [ 5Dy, xg/V A Dpp, v p =

0 g-a.e. [b, x]€ B and hence v{(E)=0. |

Finally one can prove that if v, is non-atomic and ergodic under 7" and p is a
T-invariant probability measure equivalent to v, (such p is unique by the ergodicity),
then u satisfies the formula h,(T)= [ ,log(4,/)du ([3] corollary 3).

So we get the variational characterization of Gibbs measures.
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