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Introduction

Weyl geometry is not merely a generalization of Riemannian geometry but also
a synthesis of Riemannian geometry and conformal geometry (cf. [6]). From this
point of view, we would like to pay attention to conformal manifolds on which Weyl
geometry is developed.

A Weyl structure on a conformal manifold (M, C) is regarded as a torsion-free
affine connection compatible with the conformal class C. The Weyl conformal
curvature tensor W, among others, is a primary invariant of the conformal class C
(dim M =4). Then it is natural to ask ourselves the following question: Is there a
Weyl structure on (M, C) whose curvature tensor coincides with the Weyl tensor W
of C? It turns out that such a structure is nothing but a Ricci-flat Weyl structure
(see [10]). We should remark that not every conformal manifold can admit a Ricci-flat
Weyl structure. The existence of such a structure may be rather a strong condition.

Ricci-flat Weyl manifolds form a special class of Einstein-Weyl manifolds which
satisfy an analogue of the Finstein equations in Riemannian geometry. In Weyl
geometry, it is an interesting and important problem to construct Einstein-Weyl
manifolds. Recently there have appeared many research papers on this subject (see
[97, [12], [13] and the references therein). Almost all examples, however, are obtained
by using known techniques for constructing Einstein metrics. Of course, examples
of Ricci-flat Weyl manifolds have been constructed. Through such examples, we
wondered that there might be at most two Ricci-flat Weyl structures on a given
conformal manifold.

The main purpose of this paper is first to study the number of Ricci-flat Weyl
structures on a conformal manifold and then to clarify the structure of compact
conformal manifolds which admit Ricci-flat Weyl structures. Since every flat Weyl
structure is necessarily Ricci-flat, these studies enable us to obtain some results on
conformal manifolds which admit flat Weyl structures.

Let D be a Weyl struture on a conformal manifold (M, C). For each metric g
in C, there is a unique 1-form w, on M such that Dg= —2w,®g. D is said to be
closed if the distance curvature ¢ of D vanishes identically on M, ie., dw,=0 (cf.
[71, [17]). In this case, we can define an characteristic class ci(D) as an element of
the first de Rham cohomology group (see [9]). As every Ricci-flat Weyl structure D
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is closed, we can exploit the characteristic class ch(D).

Now we shall give a survey of our results. Let (M, C) be a connected conformal
manifold with dim M = 3. We start with the number of Ricci-flat Weyl structures on
(M, C). To study it, we need the following fact. If there are two distinct Ricci-flat
Weyl structures D, and D, on (M, C), then ch(D,)+ ch(D,)=0. Using this formula,
we obtain a general finiteness theorem: If there is a Ricci-flat Weyl structure D on
(M, C) with ch(D)x0 then (M, C) admits at most two Ricci-flat Weyl structures (see
Theorem 3.2). Note that, in this general theorem, M is not necessarily assumed to
be compact. In the compact case, we can improve the theorem as follows:

A compact conformal manifold (M, C) admits at most two Ricci-flat Weyl
structures. Furthermore, (M, C) admits just two Ricci-flat Weyl structures if and only
if there is a Ricci-flat Weyl structure D on (M, C) such that ch(D)x0 (see Corollary 4.4).

To prove these facts, we shall use the result, due to P. Gauduchon [5], which
asserts that for any Weyl structure D on a compact conformal manifold (M, C)
there exists a metric ge C, unique up to a constant factor, such that the 1-form w,
is co-closed with respect to g. The pair (g, w,) is often called the Gauduchon gauge.

Our task is then to determine 1) all compact Ricci-flat Riemannian manifolds
and 2) all compact conformal manifolds which admit just two Ricci-flat Weyl
structures. We shall investigate the second case 2) because the first case falls within
Riemannian geometry. Consider a Riemannian manifold (N, /) and a homomorphism
p of Z into the group of isometries I(N, h). Then we can define a manifold N(p) so
that it forms a fibre bundle N(p) - S* with standard fibre N. For each non-zero real
number a, the metric /4 induces a natural conformal class C, , on N(p). We shall say
that (N(p), C,,) is a standard conformal manifold if (N, h) is an Einstein manifold with
positive constant scalar curvature. We can see that (N(p), C,,) admits two natural
Ricci-flat Weyl structures D, and D_,. We shall call D, the standard Ricci-flat Weyl
structure on (N(p), G, ,). Then our result can be stated as follows.

Let (M, C) be a compact, connected conformal manifold with dim M =3. Assume
that there is a Ricci-flat Weyl structure D on (M, C) with ch(D)x0. Then there is a
compact, standard conformal manifold (N(p), C,,) such that D is isomorphic to the
standard Ricci-flat Weyl structure D, on (N(p), C,,) (see Theorem 4.5).

In [8], Gauduchon studied the same problem and obtained a weaker result. We
can see from Theorem 4.5 that a compact conformal manifold admitting two Ricci-flat
Weyl structures is identified with a certain compact standard conformal manifold.
However, there are many standard Ricci-flat Weyl structures which are mutually
isomorphic. This requires us to deal with the equivalence problem for standard
Ricci-flat Weyl structures. Fortunately we can accomplish it for the compact case
(see Theorem 6.1).

As for flat Weyl structures, we can prove that a non-Riemannian flat Weyl
structure D on a compact conformal manifold is isomorphic to a certain standard
flat Weyl structure D, on (N(p), C, ), where (N, h) is a Riemannian manifold of
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positive constant curvature (see Theorem 5.4 and [8]).

After recalling the rudiments of Weyl geometry, we shall first construct in Section
2 standard Ricci-flat Weyl manifolds. The general finiteness theorem is proved in
Section 3. Section 4 is devoted to studying compact conformal manifolds. In Section
5, we deal with flat Weyl structures. In the last section, we study the equivalence
problem for standard Ricci-flat Weyl structures.

§1. Weyl structures on conformal manifolds and isomorphisms

Throughout this paper, M will denote a connected, paracompact C“-manifold
of dimension n=3. All metrics under consideration are assumed to be positive
definite.

Now consider a conformal class C on M. C determines a CO(n)-structure B on
M, where CO(n) denotes the conformal group of degree n. A torsion-free connection
on B is called a Weyl connection. When we fix a Weyl connection I" on B, we call
the system D=(C, I') a Weyl structure on (M, C). As usual, we identify I' with the
induced torsion-free affine connection on M, which we also denote by D. Then, for
each metric g in C, there is a unique 1-form w, on M such that

(1.1) Dg=—-2w,®g .

The pair (g, w,) is called a gauge of D. We shall denote the 1-form by wy(D) if the
Weyl structure D needs to be specified. Note that the form of the equation (1.1) is
invariant under a ‘“Weyl transformation”

(1.2) g—g=e¥g, o, w;=0,—df,
g g g9

where f is a smooth function on M.

Conversely, for a metric g in Cand a 1-form w on M, there is a unique torsion-free
affine connection D such that Dg= —2w®g. In fact, denoting by V the Levi-
Civita connection of g and by ¢ the vector field dual to w with respect to g, we have
only to set

(1.3) DyY=VyY+oX)Y+uo(Y)X—gX, Y),

where X and Y are arbitrary vector fields on M. The affine connection D induces a
Weyl connection I' on B, so that D is a Weyl structure on (M, C). The pair (g, w)
turns out to be a gauge of D. We shall also say that D is determined by (g, w). It
should be remarked that for any smooth function f on M the pair (e*/g, w —df)
determines the same Weyl structure D.

Let D be a Weyl structure on (M, C). The distance curvature 8 of D is defined
by 0=dw,, geC (see [17] p. 124). Following Gauduchon [7], we shall say that D
is closed if 0 vanishes identically on M. In this case, the de Rham cohomology class
[w,]€ H'(M) of the closed 1-form w, does not depend on the metric geC. For
simplicity, we write ch(D)=[w,], which can be considered as a Chern-Simons
characteristic class arising from the Weyl connection I" on B (see [9]). It is obvious
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that a closed Weyl structure D on (M, C) is identified with the Levi-Civita connection
of a certain Riemannian metric g in C if and only if ch(D)=0.

Let D be a Weyl structure on (M, C) and let R be the Ricci tensor of D. Denoting
by S the symmetric part of R, we get R=S—(n/2)0. Then we can see that D is closed
if and only if R=S on M. Let us fix a gauge (g, ) of D and consider the Levi-Civita
connection V of g. We denote by é,w the codifferential of w and by | w |, the pointwise
norm of w with respect to g. Then, in terms of the Ricci tensor r, of g, S is given by

n—

2

where we put H (w)(X, Y)=(Vyo)(Y)+ ¥ yw)X).

For each metric g in C, we define a function 4, on M to be the trace of R with
respct to g. A4, is often called the conformal scalar curvature of D (cf. [13]). Under
the Weyl transformation (1.2), the conformal scalar curvature changes as
Ag=A,- e If we set K=A,- g, then K does not depend on the metric ge C. The
traceless Ricci tensor S, of D is defined by S,=S—(1/n)K. Then the Ricci tensor R
is decomposed as follows

(1.4) S=r,— 2 (H(w) 2w w)+0,0—n—2)|wl*)-qg,

(1.5) R=—"o+ ks,
2 n

which corresponds to the irreducible decomposition of the CO(n)-module of algebraic
2-tensors (see [10]). Let 7 (M) denote the C*(M )-module of all tensor fields of type
(r,s) on M, where s denotes the covariant degree. Then we can construct
C*(M)-module homomorphisms p, o: 7,(M)— Z5(M) in such a way that the
curvature tensor % of D is decomposed as follows

(1.6) @=p(9)+_——1— o(K)+

L a(So)+ W,
2n(n—1) n—g TS W

where W is the Weyl conformal curvature tensor of C. Note that if dim M =3 then
W vanishes identically on M. The decomposition (1.6) corresponds to the irreducible
and orthogonal decomposition of the CO(n)-module of algebraic curvature tensors
(see [10] and also [6]).

A Weylstructure D on (M, C)is called an Einstein-Weyl structure if the symmetric
part S of R is proportional to a metric in C. This is equivalent to saying that the
traceless Ricci tensor S, of D vanishes identically on M. If D is Ricci-flat, i.e., R=0,
then D is a closed Einstein-Weyl structure. We have proved in [10] that if D is a
closed Einstein-Weyl structure for which cA(D)* 0, then D is Ricci-flat (see also [8]).
A Ricci-flat Weyl structure has the following characteristic property.

PrROPOSITION 1.1. Let D be a Weyl structure on a conformal manifold (M, C)
with dim M = 3. Then D is Ricci-flat if and only if the curvature tensor of D coincides
with the Weyl conformal curvature tensor W of C at eavery point of M. In particular,
if dim M =3, every Ricci-flat Weyl structure is flat.



Conformal Manifolds Admitting Ricci-flat Weyl Structures 19

This follows from the decompositions (1.5) and (1.6) (see [10]).

Next we consider isomorphisms. Let (M’, C’) be another conformal manifold.
A diffeomorphism F: M — M’ is called an isomorphism of (M, C) onto (M’, C’) if,
for a metric g'e C’, the metric F*g' on M belongs to C. This definition does not
depend on the choice of metric in C’. In this case, (M, C) and (M’, C’) are said to
be isomorphic. Let D (resp. D’) be a Weyl structure on (M, C) (resp. (M’, C")). An
isomorphism F of (M, C) onto (M’, C’) is called an isomorphism of D onto D’ if F
is an affine isomorphism of D onto D’. More precisely, F satisfies

(1.7) F (DyY)=Dp xF,Y

for all vector fields X and Y on M. In this case, we shall say that D and D’ are
isomorphic or equivalent. We shall frequently use the following

ProrosiTiON 1.2. Let (M, C),(M’', C"), D and D' be as above. Take an arbitrary
gauge (g', ') of D'. Then an isomorphism F of (M, C) onto (M', C') is an isomorphism
of D onto D' if and only if D is determined by the pair (F*g', F*w').

Proof. 'We shall denote by X, Y and Z arbitrary vector fields on M. Define a
(1, 2)-tensor field f on M by

(1.8) B(X, Y)=DxY—F,'(DpxF,Y).

Since D and D’ are torsion-free, f§ is symmetric, i.e., B(X, Y)=p(Y, X). Let us set
g=F*g' and w=F*w’. Then it is not hard to verify

(1.9) (Dxg)Y, Z)= —20(X)g(Y, Z)—(9(B(X, ), Z)+4(Y, B(X, Z))) .

Now suppose first F'is an affine isomorphism of D onto D’. From (1.7) and (1.8),
we have =0, and hence (Dxg)(Y,Z)= —2w(X)g(Y, Z). This implies that D is
determined by (g, w).

Conversely, suppose Dg= —2w ®g. The formula (1.9) yields

9(B(X, Y), Z)+4(Y, B(X, Z))=0.

Since § is symmetric, we have g(f(X, Y), Z)=0, and hence f=0. Then it follows
from (1.8) that F is an affine isomorphism of D onto D'.

§2. Standard conformal manifolds

Before going to our general theory, we construct examples of Ricci-flat Weyl
manifolds, which will play an important role in the sequel.

We consider the circle S'=R/Z and the universal covering space of S':
ny: R—S'. We regard it as a principal fibre bundle with structure group Z. Let
n=3 and let (N, h) be an (n—1)-dimensional connected Riemannian manifold.
Consider a homomorphism p of Z into the full group of isometries I(N, h). It is clear
that p is completely determined by the isometry p(1). Since p defines in a natural
way a left action of Z on N, the principal fibre bundle n,: R — S* determines a fibre
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bundle p: N(p) - S* with standard fibre N. More precisely, define a right action of
Z on R x N by

2.1 (t, x) = m=(t+m, p(—m)x)),

where (¢, x)e Rx N and me Z. Then N(p) is the orbit space of R x N by the action
(see [8] and [11]). We denote the action of me Z by R,,. The natural surjective map
n: Rx N — N(p) is a covering projection. Then the universal covering space of N(p)
is given by R x N*, where N* is the universal covering space of N. Moreover, we
can see from (2.1) that if p(1) coincides with the identity transformation idy of N
then N(p)=S"' x N.

For a non-zero real number a, we define a metric on R x N by g* =(adf)*+h.
Since g} is invariant under the action of Z, there is a unique metric g, on N(p) such
that m*g,=g*. By the same reason, the 1-form adf on R x N induces a unique 1-form
®, on N(p) such that n*w,=adt. It should be remarked that w, is a parallel 1-form
with respect to the metric g,. For later use, we mention here a special property of
g,. For every point z of N(p) and every tangent vector v to N(p) at z, the metric g,
satisfies the following inequality:

22 90, V) Z w,(v)* .

This follows immediately from the definiton of g}*.

Now we denote by C,, the conformal class on N(p) determined by g, and by
D, the Weyl structure determined by the pair (g,, w,). Since g_,=g,, we have
C,. —.=Cy, Then both D, and D_, are Weyl structures on the same conformal
manifold (N(p), C, ). Since w, is closed, D, and D _, are closed Weyl structures. By
definition, we have ch(D,)=[w,], and hence ch(D,)x0.

ProPOSITION 2.1. Let the notation be as above. Then the following two conditions
are mutually equivalent:

1) The Weyl structure D, on (N(p), C,,) is Ricci-flat;

2) (N, h) is an Einstein manifold with constant scalar curvature (n—1)(n—2).
Moreover, if the condition 1) is satisfied, then D _, is also Ricci-flat.

Proof. Since the 1-form w, is parallel with respect to g,, it follows from (1.4)
that the Ricci tensor S, of D, is given by
(23) Sa=ra+(n_2)(wa'wa_lwalzga)9

where r, is the Ricci tensor of g, and |, | is the pointwise norm of w, with respect
to g,. Let r be the Ricci tensor of 4. Then we get n*r,=r. Since |w,|=1, we have

7%, =1+ (n—2)(adt) —gX) =1 —(n—2)h .

Therefore the vanishing of S, is equivalent to the Einstein equation r=(n—2)h. The
last assertion also follows from (2.3).

We shall say that (N(p), C,,) is a standard conformal manifold (with fibre (N, h))
if (N, h) satisfies the condition 2) in Proposition 2.1. In this case, D, will be called a
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standard Ricci-flat Weyl structure. Then Proposition 2.1 says that a standard
conformal manifold (N(p), C,,) admits at least two Ricci-flat Weyl structures. The
relation between D, and D _, is realized by

(2.4) ch(D,)+ch(D_)=0..

Now we consider the equivalence between standard Ricci-flat Weyl structures.
Let (N, h) and (N, h') be (n— 1)-dimensional connected Einstein manifolds satisfying
the condition 2) in Proposition 2.1. Let p: Z—I(N,h) and p': Z—I(N',h’) be
homomorphisms. Then we can consider the standard Ricci-flat Weyl structure D,
on (N(p), C,,) and the standard Ricci-flat Weyl structure D, on (N'(p"), Cy ), Where
a and b are non-zero real numbers.

PROPOSITION 2.2. Let the notation be as above. Then D, and D, are isomorphic
if the following two conditions are satisfied:

1) a=eb, where ¢ is either +1 or —1;

2) There is an isometry ¢ of (N, h) onto (N', h’) such that

@op(m)=p'(em)oq .
for any me Z.

Proof. Define a diffeomorphism @: RxN—RxN' by &(, x)=(et, p(x)),
(t, x)e R x N. Then we have ®*(bdt)=adt and @ *g =gX. It follows from 2) and (2.1)
that ®o R, (t, x) =R, D(t, x) for any (¢, x)€ R x N and any me Z. This means that ¢
induces a unique diffeomorphism F of N(p) onto N'(p’) satisfying no®=Fon. Then
it is easy to verify F*g,=g, and F*w,=w,. Proposition 2.2 follows now from
Proposition 1.2.

COROLLARY 2.3. Let (N, h), p and a be as before. If the homomorphism p satisfies
p(2m)=idy for all me Z, then the standard Ricci-flat Weyl structures D, and D _, on
(N(p), C,,) are isomorphic.

In fact, we can rewrite the condition as follows: p(m)=p(—m). Then the
conditions 1) and 2) in Proposition 2.2 are satisfied by setting e= —1 and @ =id)y.
In particular, consider the case where p(m)=idy for all meZ. Then we get
N(p)=S* x N, which we call the trivial standard conformal manifold. We have
immediately

COROLLARY 2.4. Let(N, h)and a be as before. Then the standard Ricci-flat Weyl
structures D, and D _, on the trivial standard conformal manifold (S* x N, C,,) are
isomorphic.

It should be remarked that Proposition 2.2 is still valid without the assumption
that (N, h) and (N, h’) are Einstein manifolds. Here we have restricted ourselves only
to Ricci-flat Weyl structures.
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§3. A finiteness theorem

In the previous section, we have constructed examples of conformal manifolds
which admit at least two Ricci-flat Weyl structures. Then a question arises whether
a conformal manifold can admit only finite number of Ricci-flat Weyl structures.
To answer this question, we need the following generalization of the crucial relation
(2.4).

ProrosiTION 3.1, Let (M, C)be a connected conformal manifold with dim M = 3.
If there are two distinct Ricci-flat Weyl structures D, and D, on (M, C), then

ch(D,)+ ch(D,)=0.

Proof. Let m: M* — M be the universal covering space of M. Fix a metric g
in C and set ;=w,(D;) (i=1, 2). Since w; is closed, there is a smooth function fion
M* such that n*w;=df; (i=1, 2). Define a metric g; on M* by

(E€R)) gi=exp(2f;)-n*g  (i=1,2)

and smooth functions 4 and u on M* by A=f,—f, and u=f, +f,, respectively.
Moreover, we set w=w,—w; and go=e’g;. Then we have easily g,=e?’g,,
go=e'n*g and n*w=dA. Let ¢ denote the vector field dual to w with respect to g
and let £* denote the lift of ¢ to M*. 1t is easy to see that the vector field dual to
dA with respect to g, is given by e “¢*. Let |dA|, denote the pointwise norm of di
with respect to g,. Then we have

|dAlG=e"2go(E*, EX)=e " Hm*g)E*, £¥),
and hence
(3.2) |dAlS - et =n*f,

where we put f=g(¢, &).
Let r; be the Ricci tensor of g; (i=1, 2). Since g,=e?*g,, it follows from the
well-known formula that

(3.3) ry=r1—m—=2)(Vdi—di-dA)+(AL—n—2)|dA|}g, ,

where V, A and |dA|; denote, respectively, the Levi-Civita connection, the Laplacian
and the pointwise norm of dA with respect to g, (cf. (1.4)). Let D;* denote the lift of
the connection D; to M* (i=1, 2). Then, from (3.1), we can see that D} coincides
with the Levi-Civita connection of g; (i=1, 2). Since D¥ and D are Ricci-flat, 4
satisfies the following differential equation:

(n—=2)VdA—dA+dA)=(AA—(n—2)|dA|})g, .
Taking the trace of this equation with respect to g,, we get
(3.4) 20A=(n—2)|dA|?,

and hence
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(3.5) (n—2)(VdA—dA-dil)=—(Ad)g, .

Let V° be the Levi-Civita connection of g,. Since g, =e’g, * V° is related to V
as follows:

(3.6) VY=V, Y+% (dAX)* Y+dA(Y)+ X—g,(X, Y)grad ),

where grad 4 is the vector field dual to dA with respect to g, (cf. (1.3)). Let us calculate
VOdJ. The formula (3.6) yields immediately

(VxdANY)=(VxdA)(Y)—dA(X) - dA( Y)+% |di|?-9:(X, Y).

Substituting (3.5) into this expression, we get
2An—2)(VdA(Y)= —2(AN)g,(X, Y)+(n—2)|dA|} - g,(X, Y)
=—Q2M—(n-2)|dA|}) 9:(X, V),

and hence (V2dA)Y)=0 by (3.4). This implies that |dA|, is a constant. Putting
c=|dA|3, we see from (3.2) that ¢ - e*=n*f. If c=0, we get w, =w,. But this cannot
occur since D, # D,. Thus we must have ¢>0 and u=n*(log ' —logc). Then, by the
definition of p, we finally obtain w, +w,=d(log f), and hence ch(D,)+ ch(D,)=0.
We have thereby proved Proposition 3.1.

Now assume that (M, C) admits a Ricci-flat Weyl structure D with ch(D)x0.
Suppose there were three distinct Ricci-flat Weyl structures Dy =D, D, and D, on
(M, C). Since D, % D,, it follows from Proposition 3.1 that ch(D,)= —ch(D,). By the
same reason, we also have ch(D,)= —ch(D;). Hence, ch(D,)=ch(D;). But, since
D, D5, we must have ch(D,)=0. This contradicts the assumption. Thus we arrive
at the following finiteness theorem.

THEOREM 3.2. Let (M, C) be a connected conformal manifold with dim M = 3.
If there is a Ricci-flat Weyl structure D on (M, C) such that ch(D)xO0, then (M, C)
admits at most two Ricci-flat Weyl structures.

We consider again an n-dimensional standard conformal manifold (N(p), C, ,),
where (N, h)is an (n — 1)-dimensional connected Einstein manifold with constant scalar
curvature (n— 1)(n—2) and a is a non-zero real number. Then the standard Ricci-flat
Weyl structure D, on (N(p), C,,) satisfies ch(D,)%0. Thus we have

COROLLARY 3.3. Every standard conformal manifold (N(p), C, ,) admits just two
Ricci-flat Weyl structutes, that is, D, and D _,.

If we restrict ourselves to (geodesically) complete Ricci-flat Weyl structures, we
can prove that a connected conformal manifold can admit at most one complete
Ricci-flat Weyl structure (cf. [14]).
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§4. Compact conformal manifolds and Ricci-flat Weyl structures

In this section, we deal with compact conformal manifolds. Then we can improve
Theorem 3.2 and determine the structure of compact conformal manifolds which
admit Ricci-flat Weyl structures. To carry out our study, we need the following

LemMA 4.1. Let (M, C) be a compact conformal manifold and let D be a Weyl
structure on (M, C). Then there exists a Riemannian metric g in C, unique up to a
constant factor, such that the 1-form o= w (D) satisfies 6,0 =0, where d, denotes the
codifferential with respect to g.

This important fact, due to Gauduchon [5], shows how Weyl geometry is
properly connected with Riemannian geometry. Lemma 4.1 is proved by using some
analysis on compact manifold (see [5] and also [15]). A gauge (g, w) of D is called
the Gauduchon gauge if the 1-form w is co-closed with respect to g.

LemMa 4.2 (cf. [8]). Let (M,C) be a compact conformal manifold with
dim M = 3. Assume that there is a Ricci-flat Weyl structure D on (M, C). Let (g, w) be
the Gauduchon gauge of D. Then w is a parallel 1-form with respect to the Levi-Civita
connection of g.

Proof. Since D is Ricci-flat, we have, from (1.4).
r—m=2Vo+n—-2)w w—(n-2)|wl|*g=0,

where r is the Ricci tensor of g and |w| is the pointwise norm of w with respect to
g. Let us calculate the pointwise norm | Vo |. Using the usual tensor notation, we get
@ (n=2)| Vo |* =(n—2)(Vi0;)(V'w’)
' =1, Vi) +(n—2)w,0 Vo —(n—2)|o [2g; Vo) .
Define a 1-form o on M by o;=r;;w’. Then
riViol =Vir,0’)—(Virj)w’
4.2)
= —0,0+ (0,1,

where w® denotes the vector field dual to @ with respect to g. By the differential
Bianchi identity, the scalar curvature s of g satisfies ds= —24,r. Then (4.2) can be
written as

o 1
riVio'= ——5g<x—? {ds,w) ,

where ( , ) denotes the pointwise inner product with respect to g. On the other hand,
we have

| 1 1
w,-ij’wJ=7(5gw)[culz—?5g(|w|2a))=—759(|w|2w)
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and ¢;;Vio’=0. Substituting these results into (4.1), we obtain
2(n—2)| Vo |*= —(n—2)5 (| |*w) —26 4 — {ds, ®) .

Integrating this equation over M with respect to the Riemannian volume element,
we get

2n—2)|Vo||* = —(ds, w)= — (s, 6,w)=0,

and hence Vo =0, where ( , ) (resp. || * ||) denotes the L?-inner produdt (resp. L*-norm)
with respect to g. We have thereby proved Lemma 4.2.

THEOREM 4.3. Let (M, C) be a compact, connected conformal manifold with
dim M = 3. Assume that there is a Ricci-flat Weyl structure D on (M, C).

1) If ch(D)=0, there exists a Ricci-flat Riemannian metric g in C such that
Dg=0. In this case, (M, C) admits only one Ricci-flat Weyl structure D.

2) If ch(D)0, there exists another Ricci-flat Weyl structure D" on (M, C) such
that ch(D"Y= —ch(D). In this case, (M, C) admits just two Ricci-flat Weyl structures
D and D'.

Proof. 1) The first assertion may be evident. Let D’ be a Ricci-flat Weyl
structure on (M, C). Suppose D’ D. Then it follows from Proposition 3.1 that
ch(D')=0. Hence there is another Ricci-flat Riemannian metric g’ in C such that
D'g’ =0. This implies that there is a non-constant function A on M satisfying g’ =e**g.
Since g and g'are Ricci-flat metrics, we get

4.3) 20A=(n—2)|dA|; ,

where 4 is the Laplacian of g (see (3.3) and (3.4)). Then, by the Hopf maximum
principle, we can deduce from (4.3) that A is a constant. This is a contradiction.
Hence we must have D'=D.

2) Consider the Gauduchon gauge (g, w) of D and the Weyl structure D’ on
(M, C) determined by (g, —w). Since by Lemma 4.2  is parallel with respect to g,
the Ricci tensor S’ of D’ coincides with that of D (see (1.4)). Hence we have S'=0.
Suppose D'=D. Then we get w=0, which contradicts the assumption ci(D)=0.
Hence D’ x D. The last assertion follows immediately from Theorem 3.2.

COROLLARY 4.4. Let (M, C) be a compact, connected conformal manifold with
dimM=3. Then

1) (M, C) admits at most two Ricci-flat Weyl structures;

2) (M, C) admits just two Ricci-flat Weyl structures if and only if there is a
Ricci-flat Weyl structure D on (M, C) such that ch(D)*0.

In this way, we have arrived at the final result on the number of Ricci-flat Weyl
structures on a conformal manifold. Then we should clarify the structure of compact
conformal manifolds which admit just two Ricci-flat Weyl structures.
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THEOREM 4.5. Let (M, C) be a compact, connected conformal manifold of
dimension n=3. Assume that there is a Ricci-flat Weyl structure D on (M, C) satisfying
ch(D)*0. Then there exist an (n— 1)-dimensional, compact, connected Einstein manifold
(N, h) with constant scalar curvature (n—1)(n—2), a homomorphism p of Z into the
Jull group of isometries I(N, h) and a positive number a such that D is isomorphic to
the standard Ricci-flat Weyl structure D, on (N(p), C,.,).

Proof.  Let us consider the Gauduchon gauge (g, w) of D. By Lemma 4.2, w is
parallel with respect to g. Since w never vanishes, effecting a homothetic change of
g if necessary, we can assume that the pointwise norm | w | with respect to g satisfies
|w|=1 at each point of M. Let xe M and let 2, denote the linear space consisting
of all tangent vectors v to M at x satisfying w(v)=0. Since w is parallel, @y is invariant
under the action of the holonomy group H, of (M,g). We can see that the
(n—1)-dimensional distribution & is completely integrable. Let us fix a point x, of
M and consider the leaf N of & passing through the point x,. Let 1: N— M be the
inclusion map and set z=1*g. Then (N, &) is a totally geodesic submanifold of (M, g)
(see [11]). Since (M, g) is complete, so is (N, h). It is easy to see that the Ricci tensor
ry of (N, h) satisfies r,=1*r,, where r, is the Ricci tensor of (M, g). Since D is Ricci-flat
and o is parallel, it follows from (1.4) that

4.4) r,=n—2)g—w-w).

Hence we have r,=(n—2)h at each point of N. Thus we can conclude that (N, A) is
an (n— 1)-dimensional connected Einstein manifold with constant scalar curvature
(n—1)(n—2). Moreover, by Myers’ theorem, we know that N is compact.

Let £ denote the vector field dual to @. Then ¢ is also parallel and satisfies
[€]=1 at each point of M. Let {¢,} be the 1-parameter group of diffeomorphisms
generated by &. Each ¢, is an isometry of (M, g). For each positive number a, we
define a differentiable map ®,: Rx N— M by @(t, x)=¢,(x), (t, x)e R x N. Let us
describe the differential (@,),, of @,. Set y=@,(t, x). As usual, we identify the tangent
space T{R) with R. Take any u€ R and any ve T(N). Then, by the Leibniz formula,
we have

4.5) (Po)y(u+v)=au, +(@u)y(v) .

We define a Riemannian metric on R x N by g*=(adt)?>+ h. For all u, u’€ R and all
v,v" e T(N), we obtain

(Prg)u+v,u'+v)=glaul, +(9u)4v) , au's,+(Pa)(v")
=a’uu' +(phg)v, v')
=a’uu'+h(v, v'),
and hence ®Fg=gF. Then ®,: (R x N, g¥)— (M, g) is an isometric immersion. Since
(Rx N, g¥) is complete, it follows that @, is a covering projection.

In order to clarify the structure of the covering space, we consider again the
distribution 2. We remark that ¢, leaves & invariant. This implies that ¢, maps each
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leaf of & onto a leaf of 2. Taking account of this fact, we define a subset I" of R by
I'={teR|(x,)eN}.

This is equivalent to saying that I' consists of all ze R satisfying ¢,(N)=N. Since N
is compact, I' is a closed subgroup of R. We should first prove that I' contains
non-zero numbers. Suppose I' = {0}. Putting a=1, we consider the covering map &;.
Assume that @ (¢, x)=®(s, y) for (t, x), (s, y) € R x N. Then we have ¢,_((x)=y. Since
x, y€ N, it follows that ¢, _(N)=N. By the remark above, we get t—seI', and hence
t=s. This means that @, is injective. Thus we can see that @, is a diffeomorphism
of R x N onto M. But this is a contradiction since M is compact. Therefore I" contains
non-zero numbers.

Now we shall prove that I' is discrete in R. There are an open neighborhood
U of x, and a function f on U satisfying w=df and f(x,)=0. Shrinking U if
necessary, we can assume that N n U is given by

NnU={xeU|f(x)=0}.

Suppose, for any ¢>0, there were a number #(¢)e " such that 0<|#(e)|<e. It may
be sufficient to consider positive numbers ¢ such that @,,(x,)€ U. Then the condition
H(e)e I" implies that @,)(x,) lies in N n U. Hence we get

. 1
o) =£1_I£ E {f(@45(x0)) —f(x0)}=0.

But this is a contradiction since |¢|=1 at x,. Then there is a positive ¢ such that
(—¢,&) nI'={0}. Thus I' is a discrete subgroup of R. Putting

(4.6) a=inf{|t||teT, 10},

we finally obtain I'=a- Z.

For each meZ, we define a diffeomorphism p(m) of N by p(m)(x)= @),
xeN. It is easy to see that each p(m) is an isometry of (N, h) and that the map
p: Z—I(N, h) is a homomorphism. The group Z acts on R x N as follows:

(t, x) - m=(t+m, p(—=m)(x)) ,

where (t, x)e R x N and me Z. It is clear that the action is free. We denote the right
action by R,,. Here we reconsider the covering map &, : R x N — M, where a denotes
the positive number given by (4.6). For simplicity, we write ®=®,. Then it is easy
to prove the following properties.

P-1) &(R,(t, x))=(t, x) for all (t, x)e Rx N and all me Z.

P-2) If two points (¢, x) and (s, y) of R x N satisfy @(t, x)=&(s, y), then there is
an integer m e Z such that (s, y)=R, (¢, x).
By P-1) and P-2), we can conclude that ¢: Rx N— M is a principal fibre bundle
with structure group Z. The orbit space of R x N by the Z-action is nothing but the
space N(p) (see §2). It follows that @ induces a unique diffeomorphism F: N(p) > M
satisfying For=@. Let g, denote the metric on N(p) determined by g, i.e., n*g,=gF.

a
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Then we have easily F*g=g,. The 1-form adt on R x N induces a unique 1-form w,
such that n*w,=adt. Then, since ®*w =adt by (4.5), we have F*w=w,. Therefore,
by Proposition 1.2, we can conclude that F is an isomorphism of the standard
Ricci-flat Weyl structure D, on (N(p), C,,) onto D. This completes the proof of
Theorem 4.5.

CoROLLARY 4.6. Let (M, C) be a compact, connected conformal manifold with
dim M =3. If (M, C) admits two distinct Ricci-flat Weyl structures, then (M, C) is
isomorphic to a compact standard conformal manifold.

COROLLARY 4.7. Let (M, C) be as above. Assume that (M, C) admits two distinct
Ricci-flat Weyl structures. Then y(M)=0 and b,(M)=1, where y(M) is the Euler
characteristic of M and b(M) is the first Betti number of M.

In fact, considering again the smooth vector field £ on M, we have immediately
x(M)=0. Since M is diffeomorphic to N(p), we can consider the fibre bundle
p: N(p)— S* with standard fibre N. Then the conclusion 5,(M)=1 follows from the
fact that the fundamental group =,(N) of N is finite (see [1]).

By the formula (4.4), we can prove that (M, g)is a compact connected Riemannian
manifold of non-negative Ricci curvature. Then the famous work of J. Cheeger and
D. Gromoll can be well applied to the space (M, g) (see [2] and [3]). However,
Theorem 4.5 cannot be deduced from their general results.

§5. Flat Weyl structures

In this section, we deal with flat Weyl structures. Since every flat Weyl structure
is Ricci-flat, almost all results in the previous sections hold good for flat Weyl
structures. First of all, we deduce from Proposition 1.1 the following

PrROPOSITION 5.1. Let D be a Weyl structure on a conformal manifold (M, C)
with dim M = 3. Then the following two conditions are mutually equivalent:

1) D is flat;

2) D is Ricci-flat, and the Weyl conformal curvature tensor W of C vanishes
identically on M.
Moreover, if the condition 1) is satisfied, then every Ricci-flat Weyl structure on (M, C)
is necessarily flat.

By virtue of Proposition 5.1, Theorems 3.2 and 4.3 are still valid if we replace
the term “Ricci-flat” by “flat”. Let us restate Corollary 4.4.

THEOREM 5.2. Let (M, C) be a compact, connected conformal manifold with
dim M =3. Then

1) (M, C) admits at most two flat Weyl structures;

2) (M, C) admits just two flat Weyl structures if and only if there is a flat Weyl
structure D on (M, C) such that ch(D)x=0.
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To clarify the structure of compact conformal manifolds which admit two flat
Weyl structures, we first consider a standard conformal manifold. Let n=3 and let
(N, h) be an (n—1)-dimensional, connected Einstein manifold with constant scalar
curvature (n—1)(n—2). Let p be a homomorphism of Z into the group of isometries
I(N, h) and let a be a non-zero real number. Then we can consider the standard
conformal manifold (N(p), C,,) (see §2).

PrOPOSITION 5.3. Let (N, h), p and a be as above. Then the following two
conditions are equivalent:
1) The standard Ricci-flat Weyl structures D, and D _, on (N(p), C, ) are flat;
2) (N, h) is a space of constant curvature with sectional curvature +1.
In particular, if dim N(p)=3 or 4, then D, and D _, are flat.

Proof. By Proposition 5.1, 1) is equivalent to the vanishing of the Weyl
conformal curvature tensor W of C, .. If dim N=2, it is obvious that both 1) and
2) are true. If dim N = 3, the vanishing of W is equivalent to saying that the product
metric g*=(adt)*+h on Rx N is conformally flat. But this is equivalent to the
condition 2) (see [1] p. 61). On the other hand, every 3-dimensional Einstein manifold
is a space of constant curvature. Therefore, if dim N(p)=4, D, is flat.

We call D, the standard flat Weyl structure on (N(p), C, ) if (N, h) satisfies the
condition 2) in Proposition 5.3. Then we have the following

THEOREM 5.4. Let (M, C) be a compact, connected conformal manifold with
dim M = 3. Assume that there is a flat Weyl structure D on (M, C) satisfying ch(D)=0.
Then there exist a compact, connected Riemannian space (N, h) of constant curvature
with sectional curvature + 1, a homomorphism p: Z — I(N, h) and a positive number
a such that D is isomorphic to the standard flat Weyl structure D, on (N(p), C, ).

This follows immediately from Theorem 4.5 and Proposition 5.3. It should be
remarked that the universal covering space of (N, &) is given by (S"~ !, can), where
n=dim M. Then we can see that M itself is covered by R x S"~!. In the 4-dimensional
case, Gauduchon called N(p)’s “variétés de type S' x $3” (see [8]). The situation as
in Theorem 5.4 has been also studied from various points of view (cf. [4], [16]).
Finally, from Proposition 5.3 and Theorem 5.4 we have

ProrosiTiON 5.5 (cf. [8]). Let (M,C) be a 3 or 4-dimensional, compact,
connected conformal manifold. If (M, C) admits a Ricci-flat Weyl structure D with
ch(D)x0, then D is flat.

§6. Equivalence problem for standard Ricci-flat Weyl structures

We know now that every compact conformal manifold which admits
non-Riemannian Ricci-flat Weyl structures is isomorphic to a certain standard
conformal manifold. Our task is then to study the equivalence problem for standard
Ricci-flat Weyl structures. We have already found in Proposition 2.2 a sufficient



30 T. Hica

condition. Here we shall prove the converse of Proposition 2.2 for the compact
case.

Let n=3. Let (N, h) and (N, h') be (n—1)-dimensional, compact, connected
Einstein manifolds with positive constant scalar curvature (n—1)(n—2). Let
p: Z—I(N,h)and p’: Z—I(N', ') be a homomorphisms. Let a and b be non-zero
real numbers.

THEOREM 6.1. Let the notation be as above. Consider the standard Ricci-flat
Weyl structure D, on (N(p), C,,) and the standard Ricci-flat Weyl structure D, on
(N'(p"), Cy 3). Then D, and D, are isomorphic if and only if the following two conditions
are satisfied.:

1) a=eb, where ¢ is either +1 or —1;

2) There is an isometry ¢ : (N, h)—(N', h') such that

@op(m)=p’'(em)oe
for any meZ.

Proof. Suppose F: N(p)— N'(p’) is an isomorphism of D, onto D,. Consider
the gauge (g,, w,) of D, and the gauge (g,, ®,) of D, constructed in §2. Since w, (resp.
w,) is parallel with respect to g, (resp. ¢,), (., ®,) (resp. (g;, w,)) is the Gauduchon
gauge of D, (resp. D,) (see Lemma 4.1). Since F is an isomorphism of D, onto D,,
it follows from Proposition 1.2 that (F*g,, F*w,) is also the Gauduchon gauge of D,.
Thus there is a positive constant A such that

(6.1) F*g,=2g, .
Furthermore, we get
(6.2) Fro,=w,.

We shall first prove A =1. Define a vector field £} on R x N (resp. £ on R x N') by

s 1 (0 (2
(6.3) i= (6t> <resp. & 5 <0t >>

Since the vector field &} (resp. &) is invariant under the action of Z, there is a unique
vector filed £, on N(p) (resp. &, on N'(p")) such that 7, E¥=¢, (resp. n,&F =¢&,). The
equation (6.2) yields w,(F,£,)=1. Then it follows from (2.2) that

gb(F*éa’ F*éa)g(wb(F*éa))z = 1 .
On the other hand, we have
98 E)=(m*gEF, L) =g (EF, EH=1.

These results together with (6.1) yields A=1. Next let us consider the inverse map
F~': N'(p") - N(p). Then we get (F~')*g,=1"'g, and w,(F!),&)=1. By the same
argument, we can verify A~ 1>1. Therefore we finally obtain A=1.

The equation (6.2) means that F maps each fibre of p: N(p)— S* onto a fibre
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of p': N'(p’)— S*. Tt follows that F induces a diffeomorphism f, of S' onto S*
satisfying p’oF=f,op. Then there is a diffecomorphism f: R— R such that
noo f = foomo, where my : R — S is the covering projection. Then (6.2) can be rewritten
as f*(bdt)=adt. Hence we get f(t)=¢t+c, where we put ¢=a/b and c is a constant.
But, since f induces f;,, we must have ¢= + 1. This proves 1).

Now we can see that F maps the fibre N,=p !(n,(0)) onto the fibre
N.=(p') " X(my(c). We define a diffeomorphism B: N— N,<=N(p) by B(x)=n(0, x),
xeN, and a diffecomorphism f': N'—-> N, cN'(p’) by B'(y)==nlc,y), yeN'. Since
F(Ny)=N,, we can define a diffeomorphism ¢ of N onto N’ by

(6.4) Brop=F:p.

We have easily B*g,=h and (8')*g,=Hh'". Then, from (6.4), we see that ¢ is an isometry
of (N, h) onto (N', i').

Here we consider again vector fields &, on N(p) and &, on N'(p’). Let {®,} (resp.
{®,}) denote the 1-parameter group of difftomorphisms generated by &F (resp. &F).
Then, from (6.3), we have the following explicit expression:

d(t, x)= (i +1, x> (resp. DUt, y)= (% +t, y)) s
a

where (f, x)€ R x N (resp. (t, y)€ R x N'). Let {¢,} (resp. {¢,}) denote the 1-parameter
group of diffeomorphisms generated by &, (resp. &,). Since F, £, =¢,, we have

(65) Fo(psz(psloF,

for all se R. The relation n, &} =¢, yields mo®,= ¢ on. Therefore, for all me Z and
all xe N, we get

Pan(m(0, X)) =7(P,,(0, x)) = 7(m, x) ,

and hence

(6.6) Pam® = Pop(m).
In a similar way, we have

(6.7) Pomo B =P"=p'(m).

From (6.4), (6.5) and (6.6), we have immediately
B'(@ep(m)(x))=@om°B > @(x) ,
for all me Z and all xe N. Using the relation a=¢b and (6.7), we get
B'(@epm)(x))=B'(p'(em)° p(x)) ,

and hence @ o p(m)=p’'(em)o@. This proves 2).
The converse is proved in Proposition 2.2. We have thereby proved Theorem 6.1.

COROLLARY 6.2. Let (N, h), p and a be as before. Then the standard Ricci-flat
Weyl structures D, and D _, on (N(p), C,,) are isomorphic if and only if there is an
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isometry @ of (N, h) such that
@ p(m)=p(—m)e @
for any me Z.

This follows immediately from Theorem 6.1. Now we set p *(m)= p(—m) for any
meZ. Then p* is also a homomorphism of Z into the group of isometries I(N, ).
The condition in Corollary 6.2 is equivalent to saying that p(m) and p*(m) are
conjugate in I(N, h) for all me Z. Moreover, we have

COROLLARY 6.3. Let (N, h), p, p* and a be as above. Then the standard Ricci-flat
Weyl structure D_, on (N(p), C, _,) is isomorphic to the standard Ricci-flat Weyl
structure D, on (N(p*), C, ).

In view of Corollary 6.3, it is sufficient to consider only positive numbers a.
Note that the homomorphism p is determined by the isometry p(1) of (N, A).

Let us now fix an (n— 1)-dimensional, compact, connected Einstein manifold
(N, h) with constant scalar curvature (n— 1)(n—2). Then we can see from Theorem
6.1 and Corollary 3.3 that an n-dimensional, compact, standard conformal manifold
with fibre (N, /) is completely determined by the following data:

1) a positive number a;

2) a representative p(1) of a conjugate class in I(N, h).
If we consider (S" !, can), then the determination of all conjugate classes in
I(S"™ !, can) is reduced to the well-known result of linear algebra.
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