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Introduction

Let G be a connected semisimple Lie group with finite center, and K be a maximal
compact subgroup of G. The corresponding complexified Lie algebras are denoted
respectively by g and . We assume Harish-Chandra’s rank condition rank G=rank X,
which is necessary and sufficient for G to have a non-empty set of discrete series,
consisting of square-integrable irreducible unitary representations of G ([6]).

Concrete geometric realizations of discrete series representations have been
obtained in several ways (see e.g., the survey article [4]). Among others, Hotta and
Parthasarathy [8] realize such representations on the kernel spaces of certain G-
invariant differential operators 2, of gradient-type (originally due to Schmid [10]),
defined on vector bundles over the symmetric space G/K, by using some elementary
differential calculus on G/K (see §5). Here 4 denotes the highest weight of the lowest
K-type of the corresponding discrete series representation of G. As we have shown
in [19] and [22], the operators 9, allow us to determine the embeddings of discrete
series into various important induced G-modules.

The purpose of this paper is to give an elementary proof, based on the above
work of Hotta-Parthasarathy, for the following theorem, which describes the as-
sociated varieties of Harish-Chandra (g, K)-modules of the discrete series.

TaeoreM (Theorem 3.1). If H, is the (g, K)-module of discrete series with
Harish-Chandra parameter A=A+ p,— p,(see §2), then its associated variety ¥ (H,) =g
(see §1 for the definition) coincides with the nilpotent cone Kcp_. Here K. is the
analytic subgroup of adjoint group G :=1Int(g) of g, with Lie algebra ¥, and p _ denotes
the sum of root subspaces of @ corresponding to the non-compact roots which are
negative with respect to A.

It follows from this theorem that the vareity ¥ (U(g)/l,,) defined by the primitive
ideal I,:=Anny(H;) in the enveloping algebra U(g) of g equals the closure of the

*  Supported in part by Grant-in-Aid for Scientific Research (B), The Ministry of Education, Science,
Sports and Culture.

35



36 H. YAMASHITA

cone G¢op_ (Theorem 3.2). We note that the Gelfand-Kirillov dimensions d(H ,):=
dim ¥"(H,) of discrete series can be computed explicitly by specifying the unique
nilpotent Ks-orbit in p, or the unique nilpotent G.-orbit in g (see Proposition 3.8),
which intersects p_ densely. See [S], [17] and [21, Theorem 4] for some explicit
computation by combinatorial method.

We know that Theorem 3.1 can be deduced from the results in [3, III] and
[11], by passing to D-modules via Beilinson-Bernstein correspondence. In fact, (a)
the associated variety of a Harish-Chandra module is gained, through the moment
map, as the image of characteristic variety of corresponding D-module over the
complexified flag variety X of G, and (b) the characteristic vareity of a discrete series
D-module can be specified as the conormal bundle of a closed K-orbit on X. However
these (a) and (b) rely on several deep results about the classification of irreducible
G-representations through D-modules, K -orbit structure of the variety X, etc.,
although the associated variety is a very simple object defined for each finitely
generated U(g)-module in a purely algebraic context (see §1). From these reasons,
we make here a short-cut and give a direct and an elementary proof for the description
of the variety 7"(H ,) only by using some basic facts on realization of discrete series.
This method allows us to get new information on the annihilator ideal of the graded
module Gr H, over the symmetric algebra S(g)~gr U(g) of g (Theorem 6.5). Here
are placed our motivation and emphasis of this presentation.

In order to prove Theorem 3.1 we first assume that the parameter 4 is sufficiently
regular, and we pass to a graded space of coefficients of Taylor expansions of analytic
sections in Ker2,. This space of coefficients, say Gr(Ker2,), admits a natural
S(g)-module structure. Then it can be shown by using Theorem 1 of [8] that the
corresponding annihilator ideal in S(g) defines the associated variety of dual discrete
series module H} as the common zero. Another point in proving Theorem 3.1 is
that the S(g)-module Gr(Ker%,) is characterized as the kernel of a differential operator
Gr[2,] defined on a space of (vector-valued) polynomial functions on p, which
naturally arises from 2, by passing to the gradation ([8], see Theorem 5.1).

These two results allow us to establish Theorem 3.1 for sufficiently regular A,
by examining in §6 the annihilator ideal of S(g)-module Ker(Gr[2,]) more closely.
We further find that for such a A the ideal Anngg Ker(Gr[%,]) coincides with its
radical in S(g) (Corollary 6.6). Finally, our theorem for arbitrary 4 follows from the
result for the above sufficiently regular case, with in mind Zuckerman’s translation
principle (see §7).

This paper is organized as follows. We begin with introducing in §§1-2 the
associated varieties for U(g)-modules and the discrete series for G. §3 describes the
variety ¥"(H ,) (Theorem 3.1), and we deduce two important consequences (Theorem
3.2 and Proposition 3.8) from Theorem 3.1. The succeeding four sections, §§4-7, are
devoted to proving Theorem 3.1.

The first version of this article was written in April 1993, and the main results
have been announced in [21].
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1. Associated varieties for U(g)-modules

Let g be a finite-dimensional complex Lie algebra, and U(g) be the universal
enveloping algebra of g. We begin with introducing two important invariants: the
associated variety and Gelfand-Kirillov dimension, for finitely generated U(g)-
modules.

Denote by (Uy(g))k=o.1.... the natural increasing filtration of U(g), when U(g)
is the subspace of U(g) generated by elements X, - - - X, (m<k) with X;e g (1 <j<m).
By the Poincaré-Birkhoff-Witt theorem, we can and do identify the associated graded
ring

gr U(g)= kgr)o U(9)/Ui-1(8)  (U_1(9):=(0))

with the symmetric algebra S(g)= @ kZOS"(g) of g in the canonical way. Here S*(g)
denotes the homogeneous component of S(g) of degree k.

Let H be a finitely generated U(g)-module. Take a finite-dimensional subspace
H, of H such that H=U(g)H,. Setting H,=UJ(g)H, (k=1,2,---), one gets an
increasing filtration (H,), of H and correspondingly a finitely generated, graded
S(g)-module

(1.1) M=gr(H; Hy):= @ M, with M,=H/H,_, .
k>0
The annihilator Anngg,M:={DeS(g)|Dv=0 (Yve M)} of M is a graded ideal
of S(g), and it defines an algebraic cone in the dual space g* of g:

V' (M):={ieg*|f(A)=0 (Vf € Anngey M)},

as the common zero of elements of Anng, M. Here S(g) is looked upon as the
polynomial ring over g* in the canonical way. It is then easily seen that the variety
(M) does not depend on the choice of a generating subspace H,. So, hereafter we
write ¥ (H) for this invariant 7" (M) of H.

DEerINITION. (Cf. [14], [20]) For a finitely generated U(g)-module H, the
variety ¥"(H)=g* and its dimension d(H):=dim ¥ (H) are called respectively the
associated variety and the Gelfand-Kirillov dimension of H.

It should be noticed that, by the Hilbert-Serre theorem (cf. [20, Th. 1.1]), the
map k+— dim H, coincides with a polynomial in k of degree d(H), for sufficiently
large k.
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2. Discrete series for a semisimple Lie group

Let G be a connected semisimple Lie group with finite center, and K be a maximal
compact subgroup of G. The corresponding Lie algebras are denoted respectively by
8o and f,. Then one has a Cartan decomposition g, =T, +p, of g,. We always assume
the rank condition rank G=rank K, which is necessary and sufficient for G to have
a non-empty discrete series. In this section we collect some basic facts and fix notation
on the discrete series representations of G.

Take a maximal abelian subalgebra t,, of ,, which is a compact Cartan subalgebra
of g by the above assumption on G. Let g denote the complexification of g,, and
we write h =g for the complexification of a real vector subspace b, of g, by dropping
the subscript ‘0°. If aet* is a root of g with respect to t, the corresponding root
subspace

9, ={Xeg|[Z, X]=Z)X (VZel)}

is contained either in f or in p. A root o is said to be compact or non-compact
according as g,=f or g, p. We denote the totality of roots (resp. compact roots,
non-compact roots) by 4 (resp. 4., 4,).

Now fix a positive system 4. of 4. Let Z be the set of linear forms A on t

satistying the following three conditions:

(2.1) (A4, 0)>0 for any aed/, i.e., A is A -dominant,

(2.2) (A, x)#0 for any ae 4, ie., A is A-regular,

(2.3) the map Z—exp{A+p, Z) (Zet,) defines a well-defined unitary character
of the Cartan subgroup 7:=expt,, i.e., A+p is T-integral.

Here (-, +) denotes the bilinear form on t* induced canoniacally from the Killing

form of g restricted to t, and p is half the sum of positive roots in 4 with respect

to any fixed positive system of A. Notice that the condition (2.3) does not depend

on the choice of a positive system which defines p.

By Harish-Chandra, there exists a bijective correspondence, say A+ 7, from
Z onto the set of (equivalence classes of) discrete series representations of G (see
e.g., [19, I, Prop. 1.1]). We say that the discrete series representation =, has Harish-
Chandra parameter A.

What is more important in this article is however the lowest K-type property
which characterizes the discrete series m,. To be precise, for a 4;-dominant, T-
integral linear form pet*, let (r,, ¥,) denote the finite-dimensional irreducible
K-module with highest weight u. We set for a A€ Z.

24 hi=A—=p.+p,=(A=2p)+p=(A+2p,)~p,

where half the sum p of positive roots is defined by the positive system 4% :=
{xed|(4, x)>0}, and p,:=(1/2) " Ynesrds Pui=p—p,.

ProrosiTioN 2.1. (See e.g., [4]) (i) The discrete series representation T,
looked upon as a K-module, has lowest K-type t,;
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(a) =4 contains t, with multiplicity one,
(b) the highest weight of any irreducible K-representation occurring in m 4 is of
the form

At Y no
aedt
with non-negative integers n,.
(i) Conversely, if an irreducible unitary representation © of G satisfies (a) and
(b), then m is unitarily equivalent to m,.

Suggested by this proposition, we call A=A—p + p, the lowest highest weight
(or the Blattner parameter) of 7 ,.

3. Description of the associated varieties for the discrete series

For a AeZ, let H, be the Harish-Chandra (g, K)-module corresponding to 7 4,
which is gained by passing to the K-finite part of = ,. It follows that H , is irreducible
as a U(g)-module because of the irreducibility of the corresponding G-representation
n4. See e.g., [18, I, 2.4] for the definition and basic facts on Harish-Chandra (g, K)-
modules.

In this section, we describe the associated varieties #"(H ,) for the discrete series
(Theorem 3.1), and deduce from it two important consequences (Theorem 3.2 and
Proposition 3.8).

3.1. Varieties 7' (H,) and ¥ (U(g)/I,)
Now we put

(3.1 Pri= D Giys

where 4, ={xe4,|(A4, o)>0} denotes the set of non-compact positive roots with
respect to A. Notice that the subspaces p. depend only on the chamber in which
the Harish-Chandra parameter A lives. Let G be the adjoint group of g, and K. be
the analytic subgroup of G, corresponding to the Lie subalgebra .

THEOREM 3.1. The associated variety ¥ (H ,) of discrete series Harish-Chandra
module H, coincides with the nilpotent cone Kcp_. Here ¥ (H,) is regarded as a
variety in g by identifying g* with g through the Killing form of g.

We will prove this theorem in the succeeding sections, §§4-7, by using the
gradient-type differential operators 2, on G/K whose kernels realize the discrete
series representations of G (cf. [8]).

The above theorem allows us to describe also the variety 7" (U(g)/I,) associated
to the primitive ideal 7,:=Anny, H ,, as follows.

THEOREM 3.2. One has the equality ¥ (U(g)/1,)=Gcp_, where A denotes the
Zariski closure of a subset A of g, and U(g) acts on U(g)/I, by left multiplication.
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This is a direct consequence of Theorem 3.1 together with the following pro-
position.

ProposiTION 3.3. ([14]) Let H be an irreducible (g, K)-module and I = Anny, ) H
be the corresponding primitive ideal of U(g). Then variety ¥7:=v"(U(g)/I) is related
to the associated variety ¥ (H) of H as

(3.2) V1=GcV (H) .

3.2. For the sake of completeness we show here how to prove Proposition 3.3.
The proof uses four fundamental facts on the nilpotent G- or K-orbits, associated
varieties and primitive ideals, which we are going to list up.

LemmaA 3.4. (Cf. [20, Lemma 3.1]) Let A be the variety of all nilpotent
elements of g, and put N (p):=ANnp. If H and I1=Amyy H are as in Proposition
3.3, the variety ¥; (resp. ¥"(H)) is a G-stable (resp. K-stable) cone contained in N
(resp. in ¥10p <= N (p)).

LemMa 3.5. (Joseph, cf. [13, Th. 3.1]) For the above H and I, one has the
equality dim ¥;=2dim ¥ (H).

LemMa 3.6. (See e.g., [3, III, §4]) The variety ¥ associated to a primitive
ideal I= Anny, H < U(g) is the closure of a single nilpotent G-orbit O ing: ¥1=0,.

Lemma 3.7. (Kostant-Rallis, cf. [9, Prop. 5]) If O is a nilpotent Kc-orbit in p,
the dimension of Gg-orbit O, :=Gc0 containing O, is equal to 2dim 0.

Proof of Proposition 3.3. The inclusion G.¥ (H)<=¥; in (3.2) is clear from
Lemma 3.4. To show the converse inclusion, take a nilpotent K -orbit ¢ in p such
that dim " (H)=dim ¢. Such an @ actually exists since the number of nilpotent
Kc-orbits in p is finite (see [7, Chap. III, Th. 4.8]). Set O, =G.0(<=Y;). Then it
follows from Lemmas 3.5 and 3.7 that

dim O, =2dim 0 =2dim ¥"(H)=dim 77 .

Hence O, is an open subset of ¥;. By virtue of Lemma 3.6, we conclude that
Vi=0,cG¥(H). QE.D.

REeMARK. The varieties ¥"(H), 77 are closely related to the asymptotic support
and wave front set of the distribution character of H ([1]; see also [16]).

3.3. Theorem 3.2, combined with Lemmas 3.5 and 3.6, gives the following
proposition, which is useful for computing explicitly the Gelfand-Kirillov dimensions
of the discrete series (see [21, §8]).

ProposiTION 3.8. For a A€E, define a subspace p_ < N (p) as in (3.1).

(i) If Q,_ denotes the set of nilpotent G¢-orbits O, in g such that O np_ # I,
there exists a unique orbit O,_€Q,, _ for which O,_> O, holds for any 0,€Q, .

(i) The Gelfand-Kirillov dimension d(H,) of discrete series U(g)-module H ,
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coincides with (1/2)dim O, _.

4. Associated varieties and realization of Harish-Chandra modules on G/K

For a finite-dimensional representation (z, ¥;) of K, let «/(7) be the space of
real analytic functions f: G-V, satisfying

4.1 flgk)=1(k)"'f(9) (9€G,keK).

The group G acts on </(t) by left translation, and .#/(t) turns to be a U(g)-module
through differentiation. We call «#(7) the G- and U(g)-module analytically induced
from 1.

This section develops a general method for describing the associated variety
" (H) of a Harish-Chandra module H in relation with a realization in /(1) of the
K-finite dual module H*. This is a preliminary step for the proof of Theorem 3.1.

4.1. (S(g), K)-module Gr /(1)
At first, we define subspaces 7, (ke Z) of </(7) by

4.2) gy ={feA@|X")1)=0 (VXep,0<Vm<k)}

for k>0, and o/, : =./(1) for k<0, where 1 denotes the identity element of G. Then
(Zg)iez is a decreasing filtration of .2/(r) such that

4.3) each 2/, is a K-stable subspace of /(1) ,
4.4 dim «/(7)/ <o and () L4y=(0),

k
4.5) U,(8) L4y Ay —m for all integers k, m=0.

Correspondingly, one obtains a graded S(g)-module
(4.6) Grﬂ(‘f)3=®%(k)/d(k+1)a
k

which admits by (4.3) a K-module structure, compatible with the S(g)-action.

It is not difficult to analyze this (S(g), K)-module. To do this, let (X;);-; and
(X*)i_, be two bases of the vector space p such that B(X;, X}*) =6} (Kronecker’s 0)
for the Killing form B of g. We put

@) wp= Y

Iv|=k+1 V!
where X :=X}1--- XY, (X*) =X - (XF) and v!=v, - v for multi-
indices v=(v,, - -, v, of length |v|:=v;+ - +v,=k+1. Observe that the as-
signment .o/, € f - 1,(f)€S**(p)® V, is independent of the choice of dual bases
(X,); and (X*);, and 1, naturally gives rise to a K-isomorphism:

(4.8) i'k:&{(k)/&{(k+l)zsk+l(p)® Ve,

XX NMeS T POV, (fedy),
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where S**!(p) is looked upon as a K-module by the adjoint action.

Through the Killing form B, we identify the symmetric algebra S(p) = P a0 S (P)
of p with the ring generated by polynomial functions on g which vanish identically
on f. Let S(g) act on S(p) canonically as the ring of constant coefficient differential
operators on the vector space g. It should be noticed that the action of a Yeg on
X"eS(p) with Xep, m=1,2, - - -, is given by

4.9) Y- X"=mB(X, )X !,

since one has for Zeg,

d
(Y'Xm)(Z)=Et~X"‘(Z+tY)|,=o

d
:EB(X,Z-l-tY)'”L:O

=mB(X, Y)B(X, Z)"~ !
=mB(X, Y)X" " )Z).

Summing up the isomorphisms ,(k € Z) in (4.8), one obtains the following lemma
which visualizes the structure of Gr.«/(1).

Lemma 4.1, The map T:= @, i, gives a graded (S(g), K)-module isomorphism
Jrom Gr .o/(t) onto the tensor product S(p)® V., where S(g) acts on V., trivially.

Proof.  Since each i, is a K-isomorphism, the map 7 commutes with the K-action.
So we only have to prove that

(4.10) D1 (Y (f+ L ) =Y L+ ALyi 1)
for e/, and Yeg. Writing Y by means of the basis (X;); of p as

Y=Y B(XZ Y)X; modf,

i=1

one sees that
4.11) Y.(‘f+d(k+1))=<._zo B(X}¥, Y)Xif>+&¢(k) in oy )/l g(<=Grd(1)),

since the subspace ., is stable under f. With (4.9) in mind, the left hand side of
(4.10) is calculated as

1
-1 (Y (f+ Ayt 1)))=| > F(X*)”@(ZXVB(X{", Y)Xif>(1)

v|=k i

1
=X ZWB(Xi*e VX" @ (X" X;) /)(1)

=k i
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Z 1
M=k1 (v+e)!

Y Bx?, Y)< D in(X*)u@(Xﬂf)(l))

lul=k+1 !

BXF, V)X, - (X*)" @ (X ef)(1)

1 .
= Z - Y-(XHQX*)(1)=Y- ’k(f+v°/(k+1)) 5
lul=k+1 H:
where ¢;:=(5}), < j<» and ((X*X;)f)(1)=(X""*f)(1) holds since f€.o/. We thus get
the lemma. Q.E.D.

4.2. Variety 7"(H) in relation with Gr.(H*)

Now let H be an irreducible (g, K)-module. Then the full dual space H' of H,
consisting of all linear forms on H, has a (g, K)-module structure contragredient to
H. The K-finite part of H', say H*, is an irreducible (g, K)-submodule of H’.

If (z, V) is a finite-dimensional K-module occurring in H*, there exists, by a
reciprocity theorem of Frobenius type, a (g, K)-module embedding ¢ from H* into
the analytically induced module /(7). Setting

4.12) Hy o =&HNNA, — (keZ)

with o, /(1) in (4.2), we get a decreasing filtration (H) ), of {(H*)~H™* with
properties (4.3)—(4.5). Write Gr(H*) for the corresponding (S(g), K)-module:

(4.13) @ H(ﬂi),é/H(?ﬁ 1),.5CGr (1) .
k
On the other hand, the filtration (H).), of H* gives rise to an increasing
filtration (H, ), of H with
4.14) Hk,{:={veH| (w*,vy=0 (Yw*eH )},
by passing to the orthogonal in H. If
(4.15) grc(H)3=@Hk+ 1./ Hi e

denotes the corresponding graded (S(g), K)-module, the dual pairing (-, > on H* x H
naturally induces a non-degenerate (S(g), K)-invariant pairing on Gr.(H*) x gr.(H).
By using the latter pairing, one easily finds that

4.16) Anng, Gr(H*)=Anngggr{H) ,
and that
4.17) gr(H)=gr(H; H, ;) (see (1.1)) .

We have thus obtained the following proposition, which enables us to describe
the associated variety ¥"(H) of Harish-Chandra module H by means of the annihilator
ideal of Gr(H™).
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PROPOSITION 4.2. Under the above notation one has the equality

(4.18) V' (H)={Xeg| f(X)=0 for all feAnngy(Gr(H*)} .

S. Graded modules Gr H, and differential operators &, of gradient-type

Let H 4 be the (g, K)-module of discrete series 7, with Harish-Chandra parameter
AeE. Since the lowest K-type (t,, V), A=A —p_.+ p,, appears in H , with multiplicity
one (see Proposition 2.1), there exists a unique, up to scalar multiples, (g, K)-module
embedding &, from H, into the analytically induced module /(7).

This section interprets after Hotta-Parthasarathy [8], the (S(g), K)-module
Gr H 4 :=Gr, (H 4) defined in 4.2, by means of the gradient-type differential operator
2, whose kernel realizes .. Here we treat H , itself instead of its dual (g, K)-module
H*, by noting that

(5.1 Hf~H_, . as (g, K)-modules,
for the longest element w, of the Weyl group of 4..

5.1. Operator &, and realization of discrete series
Let (X;){= and (X;*)i-, be dual bases of p as in 4.1. We set for fe.2/(z,),

(5.2) Viflg):= ‘_Zl Ry, fl9@XF  (9€0),
where Ry denotes the left G-invariant vector field on G defined by
d
Reflg):=—(flgexpt¥)+/ = 1f(gexp1Z))i-o

for X=Y+ \/-—_12 with Y, Zeg,. It is then easy to see that V, is independent of
the choice of dual bases and that it defines a first order, left G-invariant differential
operator from #/(t;) to ./(t; ® Ad,). Here Ad, denotes the adjoint representation
of K on p.

Notice that the tensor product K-representation 7,® Ad, decomposes into
irreducibles as

(5.3) ri®Adp:ﬂ@A (] T24p,

where the multiplicity m; of 7, , is either 1 or 0 for every fe4,. Let (zf, V¥) be
the subrepresentations of 7,®Ad, such that o ~@, . [m.z] 7,1+, and
P,:V,—V, be the projection along the decomposition V', = V;"G-) V.

We now put

(54 2:/9):=P,(Vif9)  (fed(z).

Then 2, gives a G-invariant differential operator from =/(t;) to /(z;).
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It follows immediately from the lowest K-type property of H, that
(5.5) E(H)<=Ker2;.

Moreover, the following result, due to Hotta-Parthasarathy, Schmid and Wallach,
says that the L2-kernel of 9, realizes the discrete series 7.

ProposITION 5.1. (Cf.[19,1, Th. 1.5]) For any A€ E, the (g, K)-module & ,(H ,),
isomorphic to H 4, consists exactly of all functions fe€XKer @, which are left K-finite
and square-integrable on G.

5.2. Polynomialization Gr[2,] and realization of Gr H

Let (Zy)ez (€5p. (# )k z) be the decreasing filtration of /(1) (resp. (7)),
defined by (4.2). Since 9, sends 7, into 7, _;), the operator &, induces an
(S(g), K)-homomorphism, say Gr[Z,], from Gr.«/(t;) to Gr./(t; ). Through the
isomorphism 7 in Lemma 4.1, we regard this homomorphism as a map

(5.6) Gr[2,]: SV, =SSV, ,

which is called the polynomialization of 2,.
Observe that Gr[2,] is given as

(5.7 (Gr[2,1/)(Y) =P1<Z(X.~f)(Y) ® Xi“) (Yeg)

for feS(p)®V;. Here SV, V=V, or V;, is identified in the canonical way
with the space of V-valued polynomial functions on g which are identically zero on {.
By virtue of (5.5), one can easily deduce the inclusion

(5.8) Gr H,=Gr,,(H,) =Ker(Gr[2,])

for every Harish-Chandra module H, of discrete series. Furthermore, the discussion
in [8, page 160] combined with the Blattner multiplicity formula (cf. [19, I, Prop.
1.2]) immediately gives the following theorem.

THEOREM 5.2. (Hotta-Parthasarathy) The equality Gr H ;=Ker(Gr[2,]) holds
in (5.8) provided that the lowest highest weight A=A—p.+p, of H, is far from the
walls:

(5.9 A— Y, B is A -dominant for any subset Q of A, .
BeQ
Combining this theorem with Proposition 4.2, we make an essential step toward
the proof of Theorem 3.1, as in

THEOREM 5.3. Let H (A€ E) be a Harish-Chandra module of discrete series, and
Hi~H_, . (see (5.1)) be its dual (g, K)-module. If A=A—p.+p, is far from the
walls, the associated variety ¥ (H¥) of discrete series H} is determined by the annihilator
of operator Gr[9,] in (5.6):
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(5.10) V(H$)={Xeg| f(X)=0, Vf € Anng, Ker(Gr[Z,])} .

REMARK. By (5.8) and Proposition 4.2, the inclusion < is always true in (5.10)
without any assumption on the regularity of A.

6. (S(g), K)-modules Ker(Gr[2,]) and the corresponding annihilator ideals

We now go into more detailed structure of graded (S(g), K)-modules
Ker(Gr[2,]) =S(p) ® V, defined in 5.2, and their annihilators Anng,(Ker(Gr[2,])) =
S(g).

6.1. Generating subspaces of Ker(Gr[2,]) as K-modules

Let f=X"®v be an element of S(p) ® V, with Xep, ve ¥, and an integer m>0.
In view of (5.7) one can compute Gr[2,]f eS(p)® V; as

6.1 Gr[Z;1f=mX" '@ P,0®X),

where P, is, as in 5.1, the projection from V,=V; @ V; onto V;. This implies that
[ lies in Ker(Gr[2,]) if and only if v® X e V; . Notice that, if v, is a non-zero highest
weight vector of V), the vector v; ® X, belongs to V; forevery X, ep, =) __ . g,

For any subset 4 of S(p) @ V,, let {4}x denote the K-submodule of S(p)® V,
generated by 4. The above discussion leads us to

ProrosITION 6.1.  The kernel Ker(Gr[2,]) contains the K-submodule {S(p ) ®
Uitk

Conversely, we can prove that {S(p,)®uv,}x exhausts Ker(Gr[Z,]) in the
following sense.

THEOREM 6.2. For each fixed integer m>0, there exists a constant ¢,,>0 such
that

(6.2) Ker™(Gr[2,])={S"(p+) ®v:}x
holds if the lowest highest weight A satisfies the condition
6.3) (A, )>c, forall acd) .

Here Ker™(Gr[2,]) : =Ker(Gr[2,])n(S™(p) ® V,) denotes the homogeneous compo-
nent of Ker(Gr[2,]) of degree m.

This theorem plays a definitive role in proving Theorem 3.1.

To prove Theorem 6.2, we first specify the K-module structure of {S™(p ) ® v, }x.
For a positive integer m, let @, denote the totality of all subsets 0={f,, f,, - -, B}
consisting of m non-compact roots e 4, (1<I<m), and we set

(6.4) X©):=X,, -+ X, €S™(p.)
(6.5) PO):=PBi+  +PBnet*.
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Here X;eg; (e 4,) are fixed non-zero root vectors. Note that X(8) (e ®,,) form
a basis of the linear space S™(p ).

Let {0y, - - -, a,} be the simple system of A.. Define a positive number x,, as
the maximum of coefficients #,(5,0") (1 <k <u) of expansions:

u

?(5)—v(5’)=kz (9, 0" ,

where 6 and 6’ range over the elements of @,, such that y(6)—y(6" )€, L <keu R

LemmAa 6.3. For a positive integer m, one has an isomorphism of K-modules

(6.6) {S™(p +)®UA}K:6€2 (Tary@p Vatne)
if the lowest highest weight A fulfills the condition:

2(4
6.7) Ao

(ot 0t0)

for every simple root o, (1<k<u) of 4.

Proof. We introduce on the real vector space \/—71 tF=> sca RB 2 lexico-
graphic order>for which 4*={fe4|f>0}, and arrange the elements of &, as
80,01, *, 0, so that p(6o)=p(6,)>""+>y(5,). Let b:=t+) _ .g, be a Borel
subalgebra of f. Note that the subspace S™(p ;) ® v, = S"(p) ® V, is b-stable. Setting

(6.8) Aji= Y CX(5)Q@u;=S"(p,)®v,

O<i<j

for 0<j<r, we get a b-stable flag {4;}; of 4,=S"(p,)®v,.

Let {4;}x be the K-submodule of S™(p)® V, generated by subspace 4;. One
sees that {4;}x=Um_)4; with n_:=) _ 4+ 9-q DY bearing in mind the decom-
position f=b+n_. Moreover, if X(J;)®v, is not contained in {4;_,}, this vector
naturally gives rise to a non-zero highest vector of quotient K-module {4;}/{4;_,}x,
and one has

(6.9) {Aj}K/{Aj—l}K:(Tl+y(6,-)a V11+y(a,»))

as K-modules. So, to complete the proof, it is enough to show that
X(aj)®vl¢{Aj—l}K= U(n—)Aj—l
for every j under the assumption (6.7) on A.
Suppose by contraries that X(6;) ® v,€ U(n_)A4;_, for some j. Then there exist
elements D;e U(n_) (i<j) such that
(6.10) X(©0)®v,= ), Di(X(6,)®v,),

i<j

and that
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(6.11) [Z, D;]=((6;)—y@0))Z)D;  (ZeY).
If i, is the smallest number i with D, #0, the right hand side of (6.10) turns out to be

(6.12) X(0;,) ® Dy, mod S™(p) ® { ) Va(ﬂ)} ;
B> A+ 7(35) = 7(8ig)
where V,(u) is the weight space of V, of weight u. We thus find from (6.10) that
Diovl = 0.
It then follows from the celebrated Bernstein-Gelfand-Gelfand resolution of V)
in terms of Verma U(f)-modules (cf. [12, Lemma 2.2.10]) that the weight y(6;) —(d;,)
of D;, must be of the form

2(A
(4, ) oy — 0 (n.=0,€Z)
(o, o) 1<k<u

(6.13) -

for some simple root a; € 4.7 . This contradicts the assumption (6.7). Q.E.D.

Now let K¢ be the complexification of compact group K, and B be the Borel
subgroup of K¢ with Lie algebra b. For a holomorphic B-module F, we write H'(F)
(i=0, 1, - - -) for the i-th cohomology group of K¢/B with coefficients in the sheaf
of germs of holomorphic sections of vector bundle K¢ x F (see e.g., [15, 3.1.2] for
the definition of H'(F)). Then H'(F) admits a natural K°-module structure.

For a T-integral linear form p on t,=Lie(T), let C(u) denote the one-
dimensional B-module with differential u extended to b trivially on the nilradical

n= ZaeA + G-
The following lemma, due to Hotta-Parthasarathy, describes the K-module in

the left hand side of (6.2) by means of cohomology group of K¢/B.

LemMa 6.4. ([8, Lemma 5.2]) The K-module Ker™(Gr[2,]) is isomorphic to
the cohomology group H'(S™(p ) ® C(A+2p.)) (¢ : =dim K/B) for every integer m >0,
provided that the parameter ), is far from the walls in the sense of (5.9).

The above two lemmas enable us to prove Theorem 6.2, as follows

Proof of Theorem 6.2. Fix a non-negative integer m, and set

A;:=Y CX(6)® Cl+2p) =S"(p)® CA+2p)  (0<j<r),

i<j

where {X(6;)}o<;<, is the basis of S™(p.) defined in (6.4). Then one has a flag of
B-modules

(6.14) O)cAycA,ccd;_jcdjc - cA,=S"(p,)® C(A+2p,)
such that
(6.15) 04, > A;-> CA+y(d;)+2p)—>0  as B-modules .

Now assume that A satisfies the regularity condition (6.7) in Lemma 6.3. Then
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one finds that the linear form A+7(J;) is 4,"-dominant for every j. It follows from
the Borel-Weil-Bott theorem (see e.g., [15, Th. 3.1.2.2]) that

V ) =t),
(6.16) H(CO+ (5 j)+2pc))z{ aeroy (P=1)

0 (p#1),
as K€-modules. Hence (6.15) induces an exact sequence of K-modules
(6.17) 0 H(A;_)>H'A) > Vitysy =0,

and consequently we deduce
(6.18) H'(S™(p+)® C(A+2p,)) z,ﬁj (Tr+v0p Vitya) -

This together with Proposition 6.1, Lemmas 6.3 and 6.4 completes the proof of
Theorem 6.2. Q.E.D.

6.2. Annihilator ideal Anng, Ker(Gr[Z,])
For a subset E of g, let #(E) denote the ideal of S(g) determined by E:

6.19) J(E):={feS(@)|f(X)=0 (VXe€E)}.

Two results in 6.1 allow us to establish the following

THEOREM 6.5. Let A=A—p.+p, be the lowest highest weight of discrete series
H ,. Then one has

(6.20) Anng, Ker(Gr[2,]) = F(Kcp+) -

Moreover there exists a positive constant ¢ such that the equality holds in (6.20) provided
that (A, w)>c for all ae A} .

This theorem together with Theorem 5.2 immediately yields

COROLLARY 6.6. If the lowest highest weight 1. is sufficiently A -regular, the
annihilator ideal of graded S(g)-module Gr H , (see 5.1) coincides with its radical.

Proof of Theorem 6.5. The inclusion (6.20) follows immediately from Pro-
position 6.1. To prove the second assertion, note at first that #(Kcp,) is a graded
ideal of S(g) containing ¥S(g). Since S(g) ia a Noetherian ring, there exist a finite
number of homogeneous elements D;e S(p) (1 <j<r) such that

I(Kep)=18(9)+S(@)Dy+ - +S(a)D, .

Let c; be the positive constants in Theorem 6.2 associated to d;: =deg D; (1 <j<r),
and put c:=max;(c;). Then (6.2) tells us that, if (4, ®) >c (Vae4 -, then each D; is
identically zero on Ker%(Gr[2,]). One easily sees from this fact that D; annihilates
all the vectors in Ker(Gr[2,]). We thus conclude #(Kcp ;)= Anngg Ker(Gr[Z,])
as desired. Q.E.D.
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7. Completion of the proof of Theorem 3.1

By virtue of Theorems 5.3 and 6.5, we find that
(7.1 V(HD=Kcp+

if the corresponding lowest highest weight A is sufficiently 4. -regular. Here it should

be noticed that K¢p, is (Zariski) closed in p, because p . is stable under the Borel

subgroup B while the flag variety K /B is complete. A standard argument of

Zuckerman’s translation principle, given below, allows us to show that (7.1) is always

true for any A4 € 2. This together with (5.1) will complete the proof of Theorem 3.1.
To be more precise, we use the following proposition.

ProrosiTioN 7.1. (Cf. [2, Prop. 1.3]) Let H be a finitely generated U
(8)-module, and L be a U(g)-submodule of H. Then L is finitely generated over U(g),
and its associated variety ¥ (L) is contained in ¥ (H).

Proof.  Take a finite-dimensional subspace H, of H such that H= U(g)H,, and
set H,:=UJ(g)Hy, L,:=HnL for each integer k>0. Then (L,);-o ;.. gives an
increasing filtration of U(g)-module L such that U,(g)L, < L,, ., and correspondingly
one has graded S(g)-modules

gr(H; Ho)=@ My (see (1.1)) and gr(L)=® N,
k k

with M, :=H,/H,_, and N,:=L,/L,_, respectively. Note that the latter gr(L) can
be looked upon as an S(g)-submodule of the former gr(H ; H,) in the canonical way.
Since the ring S(g) is Noetherian and since gr(H ; H,) is of finite type over S(g), we
find that gr(L) also is finitely generated as an S(g)-module. Hence there exists an
integer j>0 such that gr(L)=S(g)(Ny+ - - - +N;) and so we obtain L= U(g)L;. This
shows that L is finitely generated over U(g).

The second claim #°(L)<= 7 (H) can be shown just as in the proof of [20, Th.
2.2]. Actually, for the above j we can prove

(7'2) Nk=Sk_j(g)Nj s Lk: Uk—j(Q)Lj (k=j,j+ 1, - ) s
which imply that

(7.3) /Anngg gr(L)=./Anngg gr(L; L;) .

Here gr(L; L;) is the graded S(g)-module defined through the filtration (U,(g)L i of
L, and \/7 denotes the radical of an ideal J of S(g). The inclusion ¥"(L)< ¥ (H)
now follows by taking the varieties associated to the ideals in (7.3), since
JAnng, gr(L) includes the ideal / Anng, gr(H ; H,) which defines the variety 7"(H).
Q.E.D.

We are now in a position to complete the proof of Theorem 3.1.
In view of (5.1) it suffices to show (7.1) for A=A+ p,—p,eZ when the lowest
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highest weight A is not sufficiently 4.7 -regular. For such a A4, we can take an irreducible
finite-dimensional (g, K)-module Y, with 4 -highest weight u for which the linear
form A+ p is sufficiently 4. -regular and so (7.1) holds for A+ u.

By making the use of Zuckerman’s translation functors (see e.g., [19, I, 3.4]),
we deduce that HY , (resp. H}) is isomorphic to a (g, K)-submodule of the tensor
product H}® Y* (resp. H},,® Y,). It then follows from Proposition 7.1 together
with [3, Lemma 4.17 that

VHE )V HI® Y =7 (H))
SV (HE @ Y,) =V (HE,) .

We thus conclude from (7.1) applied to A+ u, that ¥ (H})=Kcp, as desired. Now
Theorem 3.1 is completely proved.
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