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Abstract. The present paper gives a new viewpoint for differential operators
with respect to the coordinates of quantum matrix spaces. Special emphasis is put
on the inductive construction of these differential operators from the g-difference
operators defined on each column (or row). This idea for understanding our operators
provides us with two important applications, (1) a construction of the g-oscillator
representation of the quantized enveloping algebra U,(sp,y) of the symplectic Lie
algebra sp,y, and a construction of the quantum dual pair (sp,y, 0,) through the
tensor power of the g-oscillator representation, and (2) a new definition of a quantum
analogue of hypergeometric equations of many variables. In addition to these, we
give an explanation of the spectral parameter in the quantum Capelli Identity for
GL(n) discussed in [NUW1].

0. Introduction

The aim of the present paper is to make further investigation of the differential
operators with respect to the coordinates of the quantum matrix space introduced
in [HiW] and [NUW1]. Our study meets here two other works on the analysis on
quantum homogeneous spaces, [NUW2, 3] and [N1].

This paper provides a new point of view for these operators. The definition
given in [NUW1] is based on the following idea: focussing on the relations among
three kinds of operators, i.e., polarization-, multiplication- and differential-operators,
in the classical situation, we regard them as linear equations with differential operators
as unknowns, and solved the corresponding equations to get the quantum group
counterparts. We will show that, in contrast to this original definition, our differential
operators can be described inductively by operators defined on quantum matrix
spaces of smaller sizes. In this way we see our operators are woven (see §3 for precise
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statement) from the much better understood g-difference operators (cf. [NUW17],§5).

Applications include a construction of g-oscillator representations of the
quantized enveloping algebra U,(sp,y) of the symplectic Lie algebra on the quantum
matrix space and a formulation of quantum version of the Gelfand hypergeometric
equations associated with Grassmannians. The former is a necessary basic step for
further study of a quantum dual pair (sp,y, $0,), the most important dual pair. This
is a direct continuation of our recent study in [NUW2, 3] on the quantum dual pair
(s1,, s0,), spherical harmonics, and the Capelli identity. To go further to define and
to investigate systematically general quantum dual pairs, it is indispensable to
understand the interrelations among our differential operators on quantum matrix
spaces of different sizes.

The latter application mentioned above is expected to provide another basic
foundation for harmonic analysis on quantum homogeneous spaces (cf. [N1]). Our
operators enable us to give a natural definiton for the g-hypergeometric equations
in the sense of the quantum group version of the generalized hypergeometric equations
treated in [G] and [GZK].

The paper is organized as follows: In §1, we review basic facts concerning
g-difference operators and their connection with the quantum enveloping algebra
U,gal,). In §2, after recalling the definition of differential operators with constant
coeflicients on the quantum square matrix spaces introduced in [NUWI1], we
generalize this definition to the rectangular matrix case. Further, in §3, we show that
these operators can be reconstructed from the g-difference operators defined on each
column (resp., row). §4 is devoted to a natural construction of the g-oscillator
representation and its tensor power. We also discuss a commutant of the n-fold
tensor power of the g-oscillator representation of U,(sp,y) and see tha algebra
U,(0,) (in the sense of [GaK], NUW3, N2]) appearing naturally in it. We formulate
a quantum version of Gelfand’s hypergeometric equations in §5. In the Supplement,
besides the above applications, we explain why the spectral parameter arises in the
quantum Capelli Identity for GL,(n) discussed in [NUW1]. This formula gives a
quantum matrix counterpart of the classical Boole formula in [B],

x'"<i>m=9(9—l)- (§—m+1),
dx

where 3= x(d/dx). The formula in Theorem S.2 suggests the meaning of the spectral
parameter appearing in our differential operator. Its classical limit is intimately related
to the lower order Capelli Identities discussed in [Ca], [HU].

The authors would like to express their thanks to Professor M. Noumi for his
valuable comments.

1. From g-difference operators to the quantized enveloping algebra Udl,)

Throughout the paper the ground field K is fixed as the rational function field
Q(g) of one variable ¢. In this section we make an elementary observation which
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explains how the Hopf algebra structure of Uj(gl,) arises naturally in the framework
of the g-difference operators.

1.1. Partial g-difference operators

Let o =K[ty, - -, t,] denote the g-commutative ring with the relations #;;=qt;;
for i<j. We define the mutually commutative automorphisms y; (i=1, ---, n) as
follows:

(’Yi(p)(tla T, th ' “’tn):(p(tla Y qti’ T, tn) for q)Ed

Using y; we define two types of (partial) g-difference operators as

—y1 oy
dbp=171 g, 0i“<p=<—y' i <p>t,~‘1-

9—q q9—9
In other words, these oﬁerators are taken in the forms
(1.1.1) LoF={n}, 1708 ={y:} .

Here ¢; and ¢ respectively represent the left and right multiplication operators by
the element ¢, and also {y;} represents the difference operator (of symmetric form)
given by
(1.12) {yi}zy—"_y‘%__:.
q9—9

The following commutation relations are easily derived from the definition:

t—qt;t;=0, 0rof—qofol=0  (i<j),

11, —q 517 =0, oRoR—q 'oRoRk=0 (<)),

Lt —174,=0, ofof—oftol=0 Vi, j),

ofti—q ot =y, ot —qT ol =yt (vi),

oft;—q*'t;0F=0, ofy—q*'1;0f=0  (is)).
Also we see for any i (1<i<n)

oft; —q ™' 10f =y Int(t)

ot —q ' of =y Int(t) 7,

where
(1.1.3) Int(t,) =t 40 =107 =y, - iy oyt
Note that if i #j, the corresponding operators commute:

oty —150F=0,  0Ft;—1,0k=0.

It is convenient to write the operators involved in our discussion in the following forms:
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ofte={av:}, o’ ={av:},
,0f =Int(t;) " "{y;}, oft;=Tnt(t;) " {qy:} ,
t20F =Tnt(z;){y;} , oft? =Int(t;){qy;} .

1.2. Realization of the quantized enveloping algebra U (gl,)

Motivated by the classical situation in which the general linear group GL(n) acts
on the polynomial ring with » variables, we introduce the following operators acting
on «/:

e=y1470% 1 (1<i<n),
(1.2) fi=yiittn0f (1<i<n),

yirt=yitt (I<i<n).
A simple calculation then shows that these operators give a representation of U,(gl,)
under the assignment

éi—e, fz‘—fl R T
Here the g-deformed algebra Uj(gl,) is, as usual, defined as an associative algebra
generated by the symbols ¢ ** (1 <i<n), é,, f; (1 <j<n) with the following relations:
q°=1, q*q"=q**",

Ay A=A Agj—Ej 5 A —A__ =L AEj—Ej
q ejq =q< &j 51+1>ej, q qu _q {AsEj 81+1>fj,

q£j~£j+1__q—sj+e,-+1

éifj—fjéi=5ij 1 5

9—q9
éiéj=éjéia f:f;=f]ﬁ (li=jI>1),
éle;—(q+q Neéé+é,68=0 (li—jl=1),
FEfi—a+a Wil i =0 (i—jl=1),

where < , ) represents the canonical symmetric bilinear form such that {g;, &;> =0d;j,
and g*=g“*® . . .q** for an integral linear combination A=a &, + - - - +a,¢,. The last
two cubic equations in the above set of relations are sometimes referred to as the
Serre relations.

The algebra U (gl,) also has a Hopf algebra structure. We take here the following
convention for the comultiplication A:

AghH=q*"®4q*,
A@)=¢®q %" +1®¢; (1<j<n),
AF)=fi®@1+¢ 51 ®f, (1<j<n).

The counit ¢ and antipode S are respectively given for the generators by
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egh)=1, &@)=e(f)=0,

S(gh=q~*, S@)=—é;q%"5, S(f)=—q vtuef,,  for 1<j<n.

Although the above action on &/ is not a faithful representation of U,(gl,), it
gives us some insight into the natural coalgebra structure of Uj(gl,). We will explain
this idea below.

The first point to note is that, with the comultiplication rule above, the
multiplication &/ ® &/ — & is a U,(gl,) homomorphism. Classically, this is called the
Leibniz rule. Conversely if we require this situation to hold under representation of
U,(gl,) by the difference operators above, the natural “Leibniz rule” should be
compatible with the comultiplication rule. Actually, the Leibniz rule suggests the
latter. One is then naturally forced to define the action {y;} on the product of two
functions in &/ in the following way:

M) =1.@ 1) + () @1
=1} ®ri+y '@} -

We note here two possibilities in choosing the action {y;} above. Let us take, for
example, the first of these. For ¢, Y € &/, we observe

(oY) =oyt;=@(t:})
=ot,(t; 1Y) = p)Int(t, ) -
This formula suggests
AR =18 ' =6""@yr - 9 ivr n-
These formulas then give the Leibniz rule A(6F) for the difference operator of 0 as
AR = A7~ HA{y:})
=7 ®@0F+0f @yt vty i T
With these we are finally led to
A(tf110F)
=1 @t @R+ 1 @1 vi¥iv2 ¥ D@ YTyt Wivr W
=9 ® 14108 + 174108 @ Vi1
or
A=A DAE 0D =yt ®fi+ fi® 1.

This is really the comultiplication of f, described above. We obtain the comultiplication
rules for other operators in a similar manner.

ReEMARK. We note that the quantized enveloping algebra U(gl,) is, by definition,
the Hopf algebra generated by the elements k!, ¢; and f; (1<j<n—1), where
k;=q® 1, rather than ¢* in the fundamental relations of Uj(gl,).
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1.3. L-operators
Throughout this paper, we make extensive use of the so-called L-operators
L, L;;€ Ufgl,) as in [RTF], [NUWI1]; these play a role analogous to that of root
vectors of the Lie algebra gl,. As is shown in [J], there exists a unique family of
elements E; j (I1<i#j<n)in Ujgl,) such that
Ejj1=¢;, Ejii;=J;,
Eij=EikEkj_qilEkjEik (isksj).

+

Using these elements, we define the elements L € U(gl,) as follows:

qv (=j) g (=)
Lit'z (q_q_l)qajEji (i<j) Li;= —(Q‘Q_I)Q_SiEji (i>))
0 (i>)) 0 (<j).

Concerning the Hopf algebra structure of Uj(gl,), we should remark that, in
matrix form, the L-operators L* =(LJ), .; ;- satisfy

(1.3.1) | AL*)=L*QL*,
(1.3.2) S(LEL*=L*S(L*)=1 and e(L*)=1.

The square S? of the antipode S, which is an automorphism of the Hopf algebra
U,(gl,), is explicitly given by S*(a)=g~*?ag®* for any ae Ugl,). Here ¢** is the
group-like element of Uygl,) corresponding to the sum of positive roots
2p=)"_ 2n—je;

For later use, we remark that the description of the action of Uj(gl,) on .« above
is given by L-operators in the following matrix form:

1
(1.3.3) ETL(I)WP:(T@{{ 03 - 051ty 1y 1],

Here the matrix form of L-operators with the spectral parameter A is defined by

(1.3.4) L) =(LijM1<ijen, Lifd)=AL5—1"'Li;e Ufgl)® K[Z,27'].

2. Differential operators on quantum rectangular matrix spaces

In this section, we extend the quantum analogue of differential operators 0;; on
the square matrices constructed in [NUW 1], to the case of rectangular matrices cases.

We first recall briefly some facts on quantum R-matrices related to the
L-operators defined in the preceding section. The description of the quantum
matrix space will be given not simply for square matrices, but for the general
rectangular case.

2.1. Quantum matrix spaces
Let (p, V) be the vector representation of U,(gl,). More specifically, ¥ is an
n-dimensional vector space over [ with canonical basis (v,, - - -, v,) and its left U,(gl,)
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module structure is given by
{ P(L =g,  pL5ve=(g—q o, (i<,
pLi)o=q" %, pLijve=—(g—q Vuv;  (>)).

We put R* =" ._ e;;® p(L;), where e;;€ Endy (V) (1<i, j<n) are the matrix units
with respect to the basis (v;), < ;<, and ® is the Kronecker product of matrices. More

precisely these matrices can be written as

.1.1) R* = Z

1

qiaijeii®ejji(q_q_l) Z’eij®eji'

1 isj
It is well known that R* satisfy the Yang-Baxter equation
(2.1.2) Ri,Ri3R33=R5;R{3R}, (e=%)

in Endy(V,®k V,® V3) with V,=V. Here the subscripts a and b of R;, indicate
the pair of components this operator acts on non-trivially. We also recall that
R*— R~ =(q—q~ )P, with the matrix P=), ..;€i; ® ej; representing the flip operator:
v® w— w®v. Further note that (R{,)"'=R;, and 'R{,= R5,, where ' denotes the
transposition of matrix. Using these R-matrices we can rewrite the fundamental
relations of U(gl,) in the following way:

(2.1.3) RYIZI5=I5L:R* (e=+) and R'L{L;=L;L{R".

To specify the size of the matrices R* and L*, we will write them, if necessary,
as R™* and LM+,

Recall the definition of the coordinate ring .o/(Mat,(m x n)) of the quantum
matrix space Mat,(m x n). It is the associative algebra generated by the “canonical
coordinate” t,, (1 <r<m, 1 <s<n) with the following commutation relations:

bt =qlsjty; (I<sr<s<k,1<j<n),
tritrj=qtrjtri (1Srsk, 1Sl<an),
titsi = Lyl (I<r<s<k, I<i<j<nm),

tritsj_tsjtriz(q_q_l)trjtsi (lsr<s-§ka 1Sl<]£”) .

=r=m,l=s=s

written as the Yang-Baxter equation
(2.1.4) R™*T,T,=T,T,R"™M* .
In the case m=n, we will denote o/(Mat,(n x n)) by /(Mat,(n)). This algebra

s/(Mat(n)) has a distinguished central element called the quantum determinant:

def o
detqzdetq(T) = % (_‘I)l( )to'(l)l' *Lamyn -
ceS,

Here S, is the permutation group of the index set {1, 2, - - -, n}, and for each 6€ S,,
I(o) represents the number of inversions in o. Further, the coordinate ring of /(G L (n))
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of the quantum general linear group GL,(n) is then defined to be the localization
</ (Mat,(n)[det,(T)~ '] of .«/(Mat,(n)) with respect to det,(T). This algebra naturally
possesses a Hopf algebra structure such that A(r;)=Y ¢ _, 1, ® t,; and &(t;;) =9, , for
1<i, j<n. Note also that det,(7) is a group-like element. The antipode of ./(GL (n)),
also denoted by S, is a K algebra anti-automorphism satisfying S(T)T=TS(T)=1
and S(detq(T))=detq(T)‘1, where S(T)=(S(t; )1 <i, j<n-

Since «/(GL,(n)) has a natural two-sided comodule structure over itself, the
algebra o/(GL,(n)) becomes a U,(gl,)-bimodule through a pairing ( , ) defined by

(LY, Ty)=R*,  (L*, det(T)=¢*I.
To be more precise, the left and right actions are given by

a.p=(d®a)°Alp)e o (GL,n)),
¢.a=(a®id)Ap)e A (GLn))

for ae U (gl,) and ¢ €.o/(GL(n)), where the symbol id denotes the identity operator
on the algebra /(GL,(n)). It should also be noted that the algebra .«/(Mat(m x n))
has a natural structure of a two-sided comodule over the pair of Hopf algebras
(/(GL(n)), o#(GLym))). Accordingly, it becames a bimodule over the pair of Hopf
algebras (Uj(gl,), Ujgl,)). One can write down these actions of the L-operators on
T'e o/(Mat,(m x n)) in a concrete form:

2.1.5) LM% T, =T,RM* T, [m*_Rm*T,
We note also L*.det,(T)=det(T).L* =g *det(T) for n=m.

2.2. Differential operators on quantum rectangular matrix spaces

We now recall briefly the definition of the (quantized) differential operators on
the coordinate ring .«/(GL,(n)), similar objects to the partial differentiation (differential
operators with constant coefficients) 9/0;; ((NUW1], Theorem 2.1).

THEOREM & DEFINITION. There exists a unique family of linear operators
0:{(A) =205 —A710;; e Endy(A(GL,m)) ® K[ A, A~ '] (1<i, j<n), with the spectral

iy
parameter A, satisfying both of the following equations:

2.21) L =ta=47") ¥ 1500,
222 Lil == ¥ 1040,

where t; and L (1)° represent the actions from the right. We define the operator
0,;=0;1) as the differential operator with respect to the coordinates on Mat (n). [

It should be remarked that the operators 0;; defined above are, in fact, acting
not only on /(GL,(n)) but also on /(Mat,(n)) (see Proposition 5.1 in [NUW1]).
This property is essential to the discussion below.

From this point, we consider the rectangular matrix case. Namely, we have the
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following proposition which is concerned with the existence of “differential operators”
with constant coefficients on the space Mat,(m x n).

PROPOSITION 2.2.  For the natural action of U(gl,) (resp., U,(al,)) from the left
(resp., right) on o/(Mat(m xn)) there exists a unique family of linear operators 0;;
(1<i<m, 1<j<n)eEndy(«(Mat(m x n))) such that (in matrix form)

L".o=(g—q~ )99)T,
@.L™=(g—q "T(d9),
for the matrix (7:(5”)195,,,,159. Here
L =L["](l) = [+ _ -

If m=n this implies the above theorem for A=1.

Furthermore, these definitions are compatible with the embedding of o/(Mat(m x n))
into o/(Mat,(N)) for any N=>max(m,n). More precisely, the restriction of 0;;
(e Endy(#(GL(N)))) to o/ (Mat(m x n)) coincides with 0; it

aijld(Matq(an))=aij . O

ReMARK. If we specialize as m=1 in Proposition 2.2, then the first formula
above reduces to (1.3.3) and the second one reduces to

{y} = '—Zl tlatR 5

which is derived from the very definition of Euler’s degree operator.
For the proof of this proposition, we need some more knowledge on the basic
properties of d;;, and we give the proof in the next subsection.

2.3. Fundamental properties of differential operators on Mat (m x n)

We first write down several commutation relations among the multiplication
operators and the differential operators which are disccussed in [NUWI1] for the
case m=n.

PROPOSITION 2.3.  As linear operators on s/(GL(n)) we have
(1) The operators 0;(4) satisfy the commutation relations

R§162()')61(A)=al(l)62(l)RliZ s sza;al_ =‘31_6;R2-1 .
(2) The commutation relations for 85 with the left and right multiplication
operators are
6f—'T2= Tzai_r“R;_rz > 0;£To =I’RI£27-"2>6;“L >

where YR}, represents the matrices obtained from R, by the transposition in the first

factor. [

Note that the above commutation relations follow directly from the Leibniz
rule for 0;;(4):
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Leibniz rule ((NUW1] Proposition 4.1): For ¢4, ¢, € #/(GL(n)),
AN @192) == (AD@ NL*°. )+ ATHLT . 1) A()ps) -

Moreover, if we write down the commutation relations for the d;; themselves
(which act on .«/(Mat,(n))) and for these opperators together with the multiplication
operators ¢;;, we have the componentwise relations

0,105j=40;0,; (I<sr<s<n 1<j<n),
0,:0,j=9710,;0,, (1<r<m1<i<j<n),
0,:05; = 050, (I<sr<s<n l<i<j<n),

arjasi_asiarj=(q~'q_1)ariasj (1 Sr<s£n, 1Sl<]$7l) s

and

(2.3.1) Bitu—q 29ty0;;+(q—q~1)d,; agj tea0ia =01, L "
(23.2) 0ijtu—q"ta0;;—(q—q~ "3 a;j lka0ia =015 L °

(2.3.3) Oijtai—q %130, +(q—q " )y ; 120,j=04 L ,
(2.3.4) 8: it —q°*t30;,—(q—q "~ ")ou ; 1004j=0yLj .

REMARK. The above commutation relations for the d;; among themselves are
the same as those for the #,; if we reverse the order of the numbering of columns of
the matrix 0=(0;;).

Proof of Proposition 2.2. Tt is clear that the embedding of .«/(Mat,(m x n)) into
a larger algebra .o/(Mat,(NV)) can be described by a pair of an m-tuple I and an n-tuple
J given by

for any fixed N satisfying N >max(m, n). We denote such an embedding by p;;. Then
it is also clear that the restriction of L-operators for this embedding is compatible
with the actions on ./(Mat,(m x n)),

e, _{Lﬁz"ﬁ (il jeJ),
7 NP aMatam) T (o therwise)
for the left action. A similar formula holds for the right action. On the other hand,
using the commutation relations for d;; with the multiplication operators, we can
show by a simple inductive argument that 0;; defines the zero operator on the space
pr/(/(Mat (m x n))), except when i€ I and jeJ. Thus, recalling the defining relations
of 9;; on H(GL,(N)), we find for i€/, jeJ, that
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(2.3.5) LE'{" =(@q—q ") kZI 1ki0ji |p1J(.szl(Matq(m xn)) >
(2.3.6) LE’{]" =(q—q7 " kZJ L0 |p1J(d(Matq(m xn))) *

These relations guarantee the operators 0, ; are well-defined.

The uniqueness of the operators can also be shown by induction. In fact, by
Proposition 5.2 in [NUW1], we know that the restriction of our operator 0;; (and
hence 9, ;) defines the g-difference operator on each column (resp., row). The
uniqueness of the operator on each column (resp., row) follows immediately from
this fact. The Leibniz rule

(2.3.7) aji(§01‘P2) =zk:(aki(pl)(Lkijo @3+ %(Li '(pl)(ajk(pz)

guarantees the uniqueness of the operator 0, ; in the general case. This proves the
assertion of Proposition 2.2. [J

REMARK. In the proof above, we note that the uniqueness of the operators J;;
follows simply from two facts: (1) The restriction of 0, ; either on each column or
row gives a g-difference operator, and (2) the relations (2.3.5) and (2.3.6) hold (in
fact only one of these is needed).

3. Weaving g-difference operators into differential
operators on quantum matrix spaces

In [NUW1] we showed that the restriction of our differential operators to each
column (resp., row) gave g-difference operators. In this section we will conversely
show that these differential operators are obtained from g-difference operators as a
kind of normal product of operators.

We consider the following situation. We regard .o/(Mat(m x n)) as the m-fold
tensor product of o/ =K[¢,, - - -, £,] via the multiplication of .o/(Mat,(m x n)):

A=A @ - Q@A =~ o (Mat(mxn)).

In this paragraph, for simplicity, we denote by 9% and 62 the g-difference operators
with respect to the variable 7,

-1 -1

L —1 Vs Vrs Ves— Vr -

ars(p=trsl—_1(p’ a;ﬁq):(si_sl(p)trsl'
q9—4q q9—4q

Here y,, represents the automorphism defined by the g-shift operator t;;— g°rt,.

We now give the weaving formula.

THeorREM 3.1. Via the natural enjbedding A= AR - Q A) s
o/ (Mat(m x n)), the differential operators 0;; and the right multiplication operators
17 on o/ ®™ are given by the following formulas:
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= Z (q_q—l)l Z yl}® ®y11 1]®t1111 i1J

120 1<ig<iz<-<i<i
J<ii<j2<-<ji<i

®’)’i1+1j1 ®--- ®yi1—11'1 ®ti212 i2j1 ®yu+112® ®y13 1j2
®ti313 1312®Yl3+113® ®yn - 1®tlux iji- l®yll+1jl®
®7i-1;,905 1R - ®1,

—_—

m—i)-times ,
and m—=1)

(i—1)-times
5=1® - ®1® Y {-(g—q9 ) 15, ® Vv,

1>0 i<ij<ipz<:-<ij<m
J<h<ji-1<-<ji1<n

® - ®'}"“ 1}1®ti0112 i1 j1 ®yh+ln® ®')),2 112®l,“3 iaja
®ylz+l]3® ®')’13 113®Ig“3£13®y,3+1“® ®'y” i
®tluatlfh®'yn+11® ®’V . O

This theorem is proved by induction using the following key proposition in
a step-by-step discussion. We introduce an ad-hoc notation on the operators
for the proof as follows. According to the division of an m x n matrix into two n-
column parts each consisting of consecutive rows, say (Top) and (Bottom), we
have in o/ = ./(Mat,(m x n)) two subalgebras o/ and &/ which are respectively gen-
erated by the coordinates for the (Top)- and (Bottom)-indices. If an operator ae
Endy(«/ (Mat,(m x n))) also stabilizes o or o/, then we write the operator @ whose
action is restricted to ./ or .o/ respectively as a or a to distinguish where it acts.
When a acts on the whole of o/, we denote it by @ to emphasize this point. We
are concerned with a description of operators on ./ which can be reduced
to the form a=Y,b; ® ¢;€ Endy(/) ® Endy( ).

ProroSITION 3.2. Using the convention for the notation given above, we have
an expression for the right multiplication operator t;; as

=187 =@=4" DY j<ureouomite® L3020 Sor 1€(Top)
,=1®1;; for le(Bottom),

and for the differential operator 0,; as
0,=0,®1 for le(Top)
Fu=T:®u+@—0" )Y i< peroningOni® 0y for 1€ (Bottom).

Proof. For the right multiplication operators, it is clear that the above formula
for le(Bottom) is equivalent to the following:
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i?j=t—?j®2;1_(q_q_1) Z E?a@Laj

Jj<a
=Y L®L,.
jLa

We will first show this form. Using the natural graded structure of o/(Mat,(m x n)),
we prove this assertion by induction on the degree of the polynomials.
Let Y € o/(Mat (m x n)) and ¢ € o/(Bottom). Then it suffices to prove that

G.1 )=o)t =2 W)l ¢,  (for Ie(Top)).

j<a

Suppose that ¢ =t,, for ke (Bottom). Then, if p<j, a simple commutation relation
between ¢,; and 7, implies

(3.2) it )= q = Yt =Wty Yotk
For p>j, the relation

tpktljztljtpk—(q_q—l)tlktpj
implies
Wt ) =Wt )t —(q— g~ Wiyt,; .

Since Lj;=v;"' and Lj.t,,=—(q—q" 1)t,:0;, (j>1i), those formulas respectively
amount to the desired relation for polynomials of degree 1. For general ¢ € o/(Bottom),
it then suffices to show that if the formula (3.2) holds for two elements
@, @, € s/(Bottom), it also holds the product @¢,:

b 0,)= Z (Yot )L, ;- 0,)

j<a

= < Y (‘//tl[})(l‘ﬂ_a'(pl)>(l‘a_j'(p2)

j<a \a<p

Z,Z Wt Y, Lpa-0:1)Lyj-92)

j<a<p
Z W)Ly (0195) -

The last equality here follows immediately from the comultiplication formula of
L-operators {L;;}: A(L;))=) ;. ,<5Lp® Ly This completes the proof of the
assertion for right multiplication operators.

Next we prove the assertion for differential operators. It of course suffices to
show that for /e (Bottom)

(3.3) 8= L;®2
i<p
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For the moment, we denote by p,; the right-hand side of (3.3) with /e(Bottom) and
put p,;=0,; for le(Top). Then we see

(g—q~ 1) Zl:ztojpli

=(g—q7" Z Z_fjpti+(q_q_1) Z f_lojpzi

le(Top) le (Bottom)

=(q_q_l){ Z (Zfli®za_j>(gli®1)+ Z (1®£§’s)<zﬁz$®ém>}

le(Top) \j<a le(Bottom)

=(q—q_1){ Z Zflougli®La_j+ Z Zl_’i_;i@zloj(—alﬁ}

le(Top) j<a le(Bottom) i<p

= Z Eia@L;j+ Z EJ{ ® Lyg; .
j<a i<p
This implies that the right-hand side coincides with the comultiplication of L, j» that
is, the action of L, ; on End(#/(Top)) ® End(/(Bottom)). Hence by simple induction
we obtain

(q_q_l)zl:Zlepli=Lij~

By the uniqueness of operators, which is guaranteed by Proposition 2.2 (see also the
Remark at the end of §2.2), we have p;;=0,; This completes the proof of the
proposition. [

REMARK. As we have various combinations of multiplications (left and right),
of difference operators (left and right) and the direction of weaving, i.e., the manner
of dividing tensor space (e.g., horizontally or vertically), we can discuss a number
of weaving formulas similar to those presented above. We do not need to consider
each of them individually.

4. U,(sp,y) and its oscillator representation

From this point, we use simply a symbol 0;; in place of 0; ; for differential
operators on Mat,(m X n).

In this section we construct the quantized oscillator representation of U(sp,y)
and its tensor product representation explicitly by using the differential operators
0;j. Moreover, as the rank one case discussed in [NUW3], we will see that the
quantized algebra Uj(o,) in the sense of Gavrilik and Klimyk [GaKl] appears
naturally in the commutant of the tensor power.

4.1. Hopf algebra U (sp,y)
First, let us recall the definition of a quantized enveloping algebra U,(sp,y) of
the symplectic Lie algebra sp,y. The algebra U/(sp,y) is a Hopf algebra generated
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by the elements é, f;, k¥ (1<i<N) with k;=¢% %+ (1<i<N-—1) and ky=¢>",
subject to the following three types of relations:

(1) é, fu k1 (1<i<N—1) generate Ugsly),
knéwky'=q%y, kyéy_iky'=q ‘éx_1, ky_1éykyli=q 'éy,
kaNkI; ! =q_2fN > kaN— ky ! =qu—1 > kN—lkaI;il =qu 5

5 oo ky—ky!
eNfN'_fNeN‘_‘—"_—l )

2 éRen_1—(q+q Denéy_18y+éy_185=0,
én_1bn—(q*+1+q 2)éy_16néy_ 1 —8y_16néR 1) —énéy-1=0,
Ffv-1—q+q YVify- v+ Fn-1fi =0,

[ 7@+ 1 sl s =Fae i FuR ) =Fuia =0,
and for 1<j<N-2

3) €N€j=e:jéN, fAjAéN=AéNAéj’
fojzfij P fij:foj .
The comultiplication, which we also denote by A, is given by
AE)=6,@k; ' +1R¢;, Af)=f,®1+k;®f;,

AkEY=kt'®@kt!, for 1<j<N.

{ kjéN=éNkj s kij=kaj s

The counit ¢ is given by
e@)=¢(f})=0, eki)=1, for 1<j<N.

'

4.2. The g-oscillator representation of U:(sp,y)

Let us consider the g-commutative polynomial ring & =K[¢,, - - -, ty], where
the relations #;t;=gt;t; (i<j) hold among the variables ¢;. Then the (g-)oscillator
representation of U(sp,y) is realized on </.

THEOREM 4.1.  The action w on the generators of U,(sp,y) defined below gives
a left module structure on of =WK[ty, -, ty]:

w(éi)=yi+1tioaiR+1 > w(fi)=?i_+11 tio+laiR >
olk)=yyh (1<i<N-1)
. | . 4 1 2
w(ezv)=[7] 13, olfy)= —ﬁ N, wlky)=qy5,
ql =1

where [I] stands for the g-integer: [l]=——l_l. O
a—q
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Proof. The first three actions w(é;), o(f;), w(k;) (1 <i< N—1)just correspond to
the actions of the subalgebra U,(sly) of U,.(sp,y). Moreover, as in the case of Ua(sly)
(cf. [NUW3]), we easily find that

2 -1,,—2
LIS ayn—4q Y
0%, t3*1=[2] —N*_I—N
q9—q
Also it is easy to see that the relations among the operators of the commuting family
are maintained. It therefore suffices to show the Serre relations (with respect to the
base ¢?), ’

A2 A 2 —2\a a4 A A A2
énéy-1—(q°+q "énéy_1éy+éy_1é5=0,
A3 A 4 —4\( 42 A A A A A2 A A3 _
en-16n—(q"+1+q ) éxN-16nén—1—Cn—1€néN—1)—Enén_1=0

between the operators éy_,; and éy, and those of fy_, and fy, respectively. The

proof'is done by direct calculation. In fact, by the basic commutation relations among
partial g-difference operators and multiplication operators in 1.1. of §1, we see

A ~ l o o o o [}
[én, én—1],2 =E:T It - 1808 — 20K IN") = —qty_ VRN ,
where [4, B],= AB—tBA. Hence we have
A A A 1 (o} o (e} —_ o o
[én, [én, én- 1]q2]q-2 =—q9—= (thtN— 1?1%%1—9 ZtN— 1)’1%1’1\13):0 .

(2]

This implies the first relation in question. As the remaining relations can be checked
in the same way, we omit their explicit proofs. []

We call the representation w on & = K[ ¢, - - -, ty] the (g-)oscillator representation
of Up(sp,y). This is not irreducible but breaks into two irreducible components
which consist of the polynomials of even and odd degrees respectively. Since the
quantized enveloping algebra U,(sl,) is isomorphic to U(sp,) as a Hopf algebra, the
oscillator representation of U,(sl,) constructed in [NUW2] and [NUW3] is a special
(rank 1) case of the above.

ReMARK. In the paper [Ha], Hayashi constructed explicitly the oscillator
representations of Uy(sp,y) on a “commutative” polynomial ring. Our description
of the operators utilizes the natural ring structure of representation spaces. This has
an advantage when considering their tensor power representations (see Theorem 4.2
below).

Recall the identification via the natural multiplication of .«/(Mat,(m x N)):
A=A R QA /(Mat,(m x N)) .

Through this identification we naturally obtain the m-fold tensor product rep-
resentation w®™ of the oscillator representation w of U,:(sp,y) by the comultiplica-
tion A:
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THEOREM 4.2. The actions o®™ of U,(sp,y) on o/ (Mat,(m x N)) are given by
the following formulas:

w®'”(L,~i)=(q—q‘1)kZ 120, (1<i,j<N),
=1

k—mgo02
LN »

1 m
0®M(éy)=—
) [2] kgl q
4 1] &
w@m - _ k— 102 ,
(/v) —[2] kz,l q kN
w®m(kN)=qm+2sN .
The first formula here indicates the sly-part of sp,y.

Proof. The sly-part is easily seen from the comultiplication rule (1.3.1). Also

the last formula for @®™(ky) is clear.
We prove the remaining of the assertions by induction on m. For fx, we utilize

the identification

A O @~ A(Mat(m—1) X N)® .o .
We first recall its comultiplication:

A=y ®@1+ky® Jy -

Then we have from this and our induction assumption that

@®"(f)=0®" H(f) ® 1+0 %" (ky) @ o(fy)

= —[17]:';1 ¢ o ®1 —q'"“ﬁ@(é%) -
On the other hand, from Proposition 3.2 we have
0,=0,®1 for I<m, and 8,;=7;® i,

so that

m m—1 _
2 ¢ o= " ON®I+q" TR ®DaN -
k=1 k=1
Combining this with the above expression for w®™( fx), we reach the desired

conclusion.
For éy, utilize the identification

SO~ f @ AP, of @ of/(Mat,(m—1)x N)),

in place of that given above for </ ®™. Then the proof parallels that for the case of
fv. O
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By the realization of the tensor power of the g-oscillator representation above,
we naturally come to an important observation on the operators which commute
with the actions of U,(sp,y). To describe such operators, we recall the g-deformed
algebra U(o,,), which was introduced in [GaK1] and treated in detail in [NUW3].
Let Uy(o,) be an associative algebra with m—1 generators II; (j=1,2, - - -, m—1)
subject to the relations

{[ni, O1=0 if |i—j|>1,
720;—(q+q YL+ I, = =I; if |i—j|=1.
Put
‘Pj=(q_q_l)-I{S_I(LJ'J;'+1)_‘]L,'_+ lj}qaj >
or in other words,
Y= _(q_q_l)—l{q_ll'fjﬂq_ejﬂ+qL;+1jq8j} .
In the notation used in [NUW3], this ¥; has an expression ¥,=5"0,). Since S~*

is an anti-automorphism of U(gl,), it is clear from Theorem 7.4 in [NUW3] that
the map

Y. Uq(Dm) 9Hj — T]O € Uq(glm)

can be extended to an algebra homomorphism of U,(v,,) to U/(gl,,). Thus we have a
U,(0,,) action on .&/(Mat(m x N)) which is expected to commute with U,(sp,p).

The following is a generalization of a result in [NUW3] that the quantized pair
(sp,ns 0,,) for arbitrary N forms a dual pair.

THEOREM 4.3.  The action of U,(v,,) through the map ¥ commutes with actions
under the representation w®™ of U2(sp ).

Proof. Since the ¥} are given by the right action of U(gl,), it is clear that
they commute with the sly-part of sp,y in Theorem 4.2 and with w®™(ky). Hence
we have only to show that

[w®m(éN)s q’})] =0 s [w®m(fN)a 'Pjo] =0 .

To prove the first expression we introduce
m

On= ) ¢ ™idy.

k=1

Note that w®’”(éN)=[%]— Ox. Then since

[¥], O%1. 0 =¥} (900 —(¥;.0)0x  for ges/(MatymxN)),

the comultiplication rule of ¥; (that is, A(¥;)=P;® 1+¢% %*'° ® ¥;) implies
[¥;, On]l.0=(q""*1°.@)¥;. Qy). Hence it is enough to show that ¥;.Qy=0.This
is easily checked by a simple calculation as follows. Since 0;,(tZy) = [2]6;40,51,y We have
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N N m
¥Y;.Ony= —{q_lq_gj+lolzl 170+ 11— 99° IZ tj+llajl}'< > qk_mszw>
= =1 k=1

=—q g7 {tn0 0 n@ T M N a9t {t WO’ MR}
=[21{—q’"q 7 (tintjs W) +Ha g (L - tw)} =0

Next we prove the second commutativity of operators by induction on the degree
of elements in /(Maty(mxN)). For this points we write fv and ky for
@®"(fy), ©®™(ky). Suppose that ¢, ¢,€/(Mat(mx N)) are of degree 1 and n
respectively. It is obvious that fxn-9=0. Assume [Y;, /x].9,=0. Noting that the
operators ¥, g%° keep the degree of ¢e./(Mat,(mx N)) invariant, we see by
successive use of the comultiplication rules for ¥ and fy that

[¥5, /3] (@102)
=7 {(Fy- 0002+ ky. 00y 02} = In- {(F] .0 )02 +(q7 .0, )(¥ . 0)}
=(P5ky. 0 ) fy-02)+(q" ™ k. 0 ¥} - 02)
—{(kn¥5 .0 )y @2)+kng ™. 0 ) W¥} - 02)}
=g ky. )L Y5, fn].92=0.
This completes the proof. [

5. Quantum grassmannians and g-hypergeometric series

As another application of our construction of the g-differential operators, we
briefly give a formulation of g-hypergeometric equations. Using our differential
operators, we can give a more direct analogue of Gelfand’s hypergeometric equation
than that given in [N1]. The difference between the formulation in [N1] and ours
is implicit as long as the 2 x n case is treated.

We review the main features of Gelfand’s generalized hypergeometric equations
introduced in [G] (see also [GZ] and [GZK]) associated with the Grassmannian
G,... Let us consider the matrix space Mat(m x n), on which GL,, and GL, act from
the left and the right, respectively. The system of equations (the Gelfand Hy-
pergeometric Equation) consists of three parts, (1) the relative invariance under
GL,, from the left, (2) the homogeneity under the diagonal subgroup of GL, from
the right, and (3) the second order differential equations defined by a family of
(pseudo-) Laplacians which bears a finite-dimensional representation of GL,.

With the same spirit, a quantum version of hypergeometric equations was
introduced in [N1]. The most difficult point there was part (3) above. In that paper,
instead of considering the operators AjS=02/0t,.0t,;—07/0t,;0t,;, Noumi used the
oprators Y. L<r<s<mBilsj—tqt, JAT; as the classical counterparts. For m=2, the
difference between the two is just the multiplication of f,t,;— t,;¢;;. The reason
why Noumi adopted these operators is that the latter operators are written in terms
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of the infinitesimal generators of the right action of GL,, so that these operators
can have quantum counterparts in the action of Uy(gl,). Along this line, Nakatani
studied the case m=3, n=6 in [Na]. More general cases are discussed in [NaN]
with a slightly different formulation by using affinized coordinates. But these
transitions are seemingly different from Gelfand’s definition, and the relation be-
tween these two is not clear even in the classical case.

In the remainder of this paper, we propose a direct quantum analogue of the
hypergeometric equations in terms of our differential operators.

5.1. The operators [1;":

As explained above, our concern is to consider a direct analogue of the operators
0%/ot,,0t,;— 0*/01,0t, ;. Two points are to be checked here, (1) the compatibility of
this family of operators and the other actions of GL,, and the diagonal subgroup
of GL,, and (2) the way in which the infinitesimal action of GL, gives the shift of
the parameters. The second of these points gives the so-called contiguity relations.
To see these points for our quantum case, we first calculate the commutation relations
between our operators and left and right actions of U,(gl,) and U,(gl,,), respectively.
From the representation theoretic point of view, this should be given by the behavior
of the differential operators d;; under sultable adjoint actions of U,(gl,) and Uj(gl,,).
Let us define two adjoint actlons ad and ad as follows: for ae U,al,) (resp., ae Ugl,,))
and ¢ € Endy(«/(Mat,(m x n))),

ada)p=Y aPpS@a®),  ad@p=Y a®°pSa)y,

where the comultiplication is given in the form A(a):ziai‘ D®af?. Here we
distinguish the left and the right actions of Uj(gl,) and U,(gl,) by the superscript °
for elements ae U(gl,,). It is 1mmed1ately seen that the former adjoint action ad gives
a left action, but the latter, ad defines a right action. Note that under these two
adjoint actions, the algebra End(«/(Mat (m x n))) becomes an algebra with both
U,(al,)- and U (gl,,)-symmetries. This means that the unit I — Endy(/(Mat,(m x n)))
and the composition of endomorphisms Endy(«/(Mat,(m x n))) ® Endy (o (Mat(m x n)))
— Endy(«/(Mat,(m x n))) are Uygl,)- and U,(gl,)-homomorphisms. Explicitly, these
adjoint actions of L-operators are respectively given by

(5.1.1) ad(K)p = ZL PS(LE), a?z’(Li’—})(pzzk:L,fjo(pS(Lﬁ,:)".

It is often convenient to write these actions in matrix form as follows:
ad(L*)p=L*@S(L*),  ad(L*)p="L*@'S(L*) .

ProrosiTION 5.1.  The differential operators 0;; bear the contragredient of vector
representation under the adjoint actions of U (gl,) and U,(gl,,) both from the right and
the left. The explicit form of the actions are:
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{ad(L;_L)taz =(sz)— 1taz s
ad (LEYd,="0,(RE) ™" .

Proof. Since the definition of the differential operators is compatible with the
restriction to smaller matrix spaces, we may assume m=n by embedding them into

a square matrix of larger size if necessary. Thus the proof is obtained from the
Yang-Baxter equation for L-operators: for ¢ € «/(Mat,(m xn)) and = +,

ad(L{ Y030 =L{'05S(L7)e
=(g—g ") 'LT (S(TLE (S(LT)e))
=(g—q ") LY (S(TONLF LY .(SLT)p))
=(g—¢ ) 'RE)S(TILY e
=(Ri,) 1050 .
Since d=0" —0~, this calculation clearly gives our first assertion. The proof of the

second assertion is similar. []
For 1 <r<s<m, 1 <i<j<n, we put

(5.1.2) 1=0,0,;—q 0,0 .

~ Then under the adjoint actions of Uy(gl,) and U,(gl,,), any operator of the form 17}
generates a finite-dimensional representation. This is clearly seen from Proposition
5.1 and the fact that 075 is the square tensor of the d;;. We will give a more explicit
formula for this representation below.

PROPOSITION 5.2. Let W be the linear space spanned by the (17 (1<r<s<m,
1<i<j<n), Then W is closed under the joint adjoint actions of U,(gl,) and U(gl,,).
More precisely, W is equivalent to 2¥® ®'A*® as a Uygl,)® U(gl,)-module. Here
252 and 3% respectively stand for the exterior square of the contragredient of vector
representation of U,(gl,) and U,(gl,,).

Proof. Considering the g-exterior algebra and Proposition 5.1 above, we can
prove the assertion using the same technique as in §3 of [NUW1]. In fact, since ad
(resp., a?i) gives a structure of Uy (gl,)-symmetry (resp., U,(gl,)-symmetry), from
Proposition 5.1 we see

ad(Lg)tafaz:(R(;_rl)—I(R(J)Lz)_“altaz s ay(tL(J)ﬁ)tafaz=t61taz(R§1)—l(R§2)_l .

Thus, rather than showing the detailed calculations, we simply present the explicit
results:

(5.1.3)  ad(Lp)O55=q %" %i6,,005
(@4 ){0u<i0pi 05— @00 <i0p; 00+ 8i << j05;005}
(514) ad(La_ﬁ) ;:~}=q6ai+5uj5aﬁ :‘.;

+(@—q” 1){5a>j5ﬂj|:|€:_q_l5a>j5ﬁiD;i+5j>a>i5ﬂi ;sj ,
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(5.1.5)  ad(L)O=q %06,
_(q_q_1){5[3>55as|:|;g_q6[3>séarD?§+5s>ﬂ>r5arDl'p;} ’
(5.1.6)  ad (L) 5= *2858,,017
+(q_q_1){6/3<r5arD?;_q_15ﬁ<r5asD?;+5s>ﬂ>r6asD::g s
where we put

5 _{1 for a>p,
=>h 0 otherwise

etc. The proposition follows immediately. []

REMARK. Since (05=—¢~(0,;0,;—qd,;0,:), the correspondence between left
and right actions are given by the replacement

ae—f; qeoql, +eo—; ieor, jeos,

and of roles of super- and sub-scripts of [J; coming from indices of columns and
rows, respectively.

To define a quantum version of the Gelfand hypergeometric system of equations
in Subsection 5.2 we will need the following commutation relations.

ProposiTiON 5.3.  The following commutation relations hold between L-operators
{L35} and pseudo Laplacians {17}

(LD Oy =g L5005
:(q_q_ l){5i>aLi-;—i ;s]_l_ 6j>a>iL;[—} :'.i_q_ 15i>aij;|:|z}
(L2) OfLap—q =L, O7

=(g—q” 1){ —5a>jLﬂ)D$_5j>a>iLi71r__|;sj+q5a>jLi;f D;;} s
for the left actions of L* € Ujgl,),

(RI) Of5Lag” —q%* % L 7
=(@g—q" 1){5s<ﬂL;;OD€I; + 5r<ﬁ<sL;OD€; —-q" 15s<ﬂLa+rOD§I}
(R2) O5Lay™ =g Loy’ O

=(@—q" N =05 L0 05— 05 4>, Lo O + 46,5 4L Of
Jfor the right actions of L* € Ugl,). O

The proofs of the above commutation relations are performed with short
calculations by using the following commutation relations:

LemMMa 5.4. The commutation relations between the L-operators and the
differential operators are given as follows:
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+Litt62=t62Lil N L+Ota Ri 6 1_ .

Proof. These are proved by direct calculation from the definition. Since their
proofs are similar to that of Proposition 4.3 in [NUW1], we leave them to the
reader. [

ReEMARKS. (1) When we apply this lemma to the proof of the formulas (L1),
(L2), (R1) and (R2), the following paraphrased formulas are used:

0pi L =q**L;.0p+(q—q )0;5:Liz0p; »
aﬂtLﬁ =q* “pLji;zoa/iii(q_q_l)éﬁgaL,;

(2) For the proof of Proposition 5.3, the first formula is for the size n (left
action), and the latter for m (right action), respectively.

(3) LetA(@)=Y,a" ® a® be the comultiplication formula for ae U, (gI ). Then
for an operator w e End(o/(Mat,(m x n))), we have

w<>a=Zai(2)oad(S_ YaM)w) .

From this formula, we can prove Proposition 5.3 by using formulas of two adjoint
actions of L-operators given in the proof of Proposition 5.2. Actually, the
commutation relations (L1), (L2), (R1) and (R2) can be seen from the explicit
descriptions of the adjoint actions of another L-operator L* defined by L =S(L}))
(cf. [NUW1], Appendix B). That is, (L1) and (L2) (resp., (R1) and (R2)) are directly
reduced from the explicit formulas of the [J7; under the two actions ad(L*) (resp.,
a?i(‘f *)). However, comparing the explicit forms, it will soon be found that the latter
formulas (L1), (L2), (R1) and (R2) are more convenient than the formulas of the

adjoint actions of the L, at least in proving the theorem.

5.2. Quantum hypergeometric equation

As Proposition 5.3 implies both the compatibility and the contiguity relations,
we propose the following equations as quantum version of the (generalized)
hypergeometric equations.

DerINITION.  (QHGE)

(1) L. 0=0,g7® (I1<r,s<m),
©) L. 0=q*"¢ (I<i<n),
3) O5e=0 (I1<r,s<m,1<i,j<n),

where the parameters A; satisfy Y |_, A, =m. O

Remark. The relations (R1) and (R2) in Proposition 5.3 guarantee the
compatibility of the equations (1) and (3). The relations (L1) and (L2) in Proposition
5.3 show that the algebra Ujgl,) stabilizes the set of the solutions to the equations
(1) and (3). The commutation relations of L and L} in U,(gl,) imply the contiguity
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relations, i.e., the manner in which the parameters A; become shifted under the action
of Uy gl,). The last remark is the same as that clarified in [N1]. In a similar way,
we may also formulate the contiguity relations of a quantum version of the generalized
hypergeometric system of “the confluent type” using the other maximal abelian
subalgebra of U(gl,) in place of the equation (2), as discussed for the classical case
in [KHT].

REMARK. The relations among the [} and L-operators reduce the numbers of
equations in (3). In fact, we can verify the following assertions:

LemMA 5.5. Suppose m<n. For fixed i, j, the following implications hold:
O t'e=0 for r=1,2,---,m—1 = O3@=0 forany 1<r,s<m.
Also for fixed r, we have
T1®@=0 for j=m+1, -, n—1 = [O7®=0 forany 1<i, j<n. O
Moreover, if we consider the actions from the right and left, we obtain a version
of second order Capelli identities:

PROPOSITION 5.6. Suppose that 1<r<s<m, 1<i<j<n Let L(J)=AL"—

A~YL~ denote the L-operator with spectral parameter A. Then we have

_ — tar tas ° a
Li(@L;(1)—q 'L(q)L;()=q(g—q~")* ). detq[ ]Dif,

1<a<B<m tﬁr tps

- by & .
Li(q)°Li(1)° —qLif@)’Ly(1)° =qlg—q~ " X detq[ g ] o >
1<a<f<n tja: jB

where ° indicates the action from the right.

Proof. The second identity is easily obtained by the same method using the
g-exterior algebra, as in the proof of the Capelli identity (see [NUW1], §3). In
contrast with this, the first identity can still be proven in a similar way, but we
use the ¢ !-exterior algebra instead. The detailed calculations are left to the
reader. [J

REMARKS. (1) Put
C™(A)=L,(qA)L(A)—q ' L,(qA)L(4)
Cij(l) = Lii(ql)oij(/l)o - qui(q"{)oLij(A)o s

where A is a spectral parameter. Then, in particular, the above proposition asserts:

t t.[°
C()=qlg—q~"* ) detq[” ] 02,

1<a<f<m tﬁr tﬁs

- P P
Ci)=qlg—q™ " X detq[ ”] 0,

l<a<f<n tja tjﬂ
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respectively. From these formulas, we see that solution to our equations also satisfy
the equations defined in [N1] and [Na], because there, the equations C;;(1)®=0
(1 <i<j<n) are employed instead of (3) in QHGE.

(2) Higher order variants of Capelli-like identities, similar to those in
Proposition 5.6, for the shifted quantum determinant of L-operators can be obtained
in the same way as shown above.

Supplement

In this supplement we derive another expression of the right hand side of the
quantum Capelli Identity for GL(n) discussed in [NUWI]. In particular, Lemma S.1
below provides in part a relevant meaning of the spectral parameter appearing in
the differential operators 0;;(4).

Recall the defining relation of 0

+
ijo

Lﬁ":(q—q_l)kzl tjkai% .

Now apply both sides of this formula to det(7)". Then, since we have
Li°.det(T)=q**det(T)3,;, by the comultiplication rules of Lj° it is easy to see
that L5 °.det,(T)"=q* " det,(T)"d;;. Hence we obtain

(q"—q~™6,; det(TY"=(g—q~ l)é £, 0l det (T,

where we put 8;;=0, (1)=0,; —9;;. By this it is immediately seen that
(S.1) 0; (det(T)™)=[m]S(t;;) det (T)",

where [m] =M.
q9—9q
Using this simple relation, one can obtain the following lemma, which asserts
that the spectral parameter A appearing in the differential operators 9;;(4) simply

plays the role of a shift operation.
Lemma S.1.  If we put A=q", then 0,;(A) is given by
(8.2) 0;;(g")=det(T)™"0;;(1)det(T)".

Proof. For simplicity we put D=det/(T). Then for any ¢ € .«/(Mat,(n)), by the

Leibniz rule of 0;; and the definition of 0;;, we observe

aij(Dm(p) = kzl {5kj(Dm)L1:£i o+ L}TI; -Dmaik(p}

=[mID" Y, Sl -¢+q""D"00

=(g—q "[mID"050+4""D"0; ;¢ .
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Thus we have

D™"0;;D"=(q"— "”)31,+q_'”3~

This completes the proof of the lemma. [J

REMARK. Letting ¢ tend to 1 in (S.2), we have

O yust, )=(det T)™

ij ij

(S.3) (detT)*,

in the classical situation (see (2.6) in [NUW1]). We may rewrite this in the following
equivalent form:

(S.4) (sz, . >+u5k, (det T)~ <Ztk, e >(det ).

ij

This is a matrix analogue of the simple relation ¢~ *3¢*=39 +u, where $=t¢ E

Let us now recall the quantum Capelli Identity for GL (n), which is a complete
expression of the quantum analogue of invariant differential operators by the central
elements of Uj(gl,) explicitly (see the Theorem in [NUW1], p. 580):

2(Ag" 1) =q(2) det (T) det,-.(d(3)) ,

where

Z(i)=(q—q_1)_" Z (—q)l(U)L(lq—""-l)a(n)n' : 'L('Da(l)l s

geS,

and

det, ()= X (=4~ V0 Dacry1 - - O Aouyn -

eSS,

If we put A=¢™, then by Lemma S.1 we have

det,-i(0(g™)=D" Y, (¢~ AD"Gg o1y D) - -(D" G gD "D

eSS,

=p™" % (_q—l)l(cr)aa(l)1 .. .6a(n)an=D—mdetq_l(ta)Dm )

This implies that the quantum Capelli Identity for GL,(n) may be rewritten in the
following form (cf. [He, p. 339]).

THEOREM S.2. Put A=q" Then
(S.5) 2g"* ") =¢(2) det(T)' ~*det, (‘) det(T). O
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RemARks. (1) From the identity (S.5) above it is easy to see that
(S.6) 2g" MaAg" Y- 2" ) = g™(2) det (T)" det, - o(‘0)"

This formula actually may be seen as a quantum matrix analogue of the classical
Boole formula in the Introduction (see [B]).
(2) Letting ¢ tend to 1 in the above theorem we see that

0
(S7) det(E,,_j+ 1n—i+1 +(]— 1 + u)5,1) =det([,1)1 T det (7) det(tu)“ .
Ji
(see also, Remark (1) in [NUWI1], p. 581.) From this expression one might derive
the lower order Capelli Identities discussed in [Ca], [HU].
(3) Using the comultiplication rule for L* and the action of L* on (det,(T)™,
ie., L* (det(T)"=g*™(det,(T))", we have the relation of operators

(dety(T))""L(g")(dety(T))"=L(g""™).

From this we obtain alternative direct proofs of Lemma S.1 and Theorem S.2, because
det,(T) is central in .o/(Mat(n)).
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