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1. Introduction

Let p be a prime and F, the finite field with p elements. An elliptic curve over
F, is said to be anomalous if the number of F, rational point is exactly p. In this
paper, we give an O((logp)®) algorithm for discrete logarithm problem for an
anomalous elliptic curve over a prime field. Our method may be considered as an
elliptic curve version of Fermat quotient. For an integer a prime to p, the Fermat

ab -1

quotient L (a) is defined to be

mod p e F,,. If integers a, b are prime to p, then

L,(ab)=L,(a)+ L,b) in F,. Since L, is not well defined as a function over F,, we
cannot solve discrete logarithm over F, (note also *F » =p— 1is prime to char(F,) =p).
However, it is not so strange to expect its elliptic curve analogue is applicable to
discrete log problem for an anomalous elliptic curves. We do this actually. In Sect.
2, we make a review on the Fermat quotient which illustrates our idea and historical
background. We also discuss its relation to the discrete log problem on (Z/p'Z)*
with p>3 and r>2. This is not new, but does not seem to be stated explicitly. Let
E be an anomalous curve over F » and E its lifting to Z. In Sect. 3, we construct an
F -valued group homomorphism 4 on the group E(F ,) of F, rational points of E
for p>7. Let ac E(F »)—{0}. Roughly speaking, we obtain Agz(ax) by viewing pu(a) in
the formal group of E, where u is any lifting E(F,)—E(Q,). Corollary 3.6 describes
the detailed algorithm to compute 4. Our algorithm uses only arithmetic operations
in Z/p>Z and F,. This makes implementation and running time analysis simple. Then
we study how to choose E so that Ay is non-zero. Summing up, we can solve the
discrete log problem of E. We discuss the cryptographic implication of our result in
Sect. 4.

After the works on the discrete log problem for anomalous elliptic curves over
prime fields were completed, the authors were informed that Dr. N. Smart has
independently obtained same results [21] at the similar time.

The result of this paper was announced at the symposium on “‘algebraic number
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theory and its related topics” held at RIMS, Kyoto University on Oct. 27-31, 1997.
Later (precisely, on Nov. 3, 1997), the authors learned that Semaev [17] obtained
(in 1995) an polynomial time discrete log algorithm of p-torsion points of an
elliptic curves over F, and that Riick [16] generalized it for curves of arbitrary
genus. However, the method of Semaev and Riick which is algebraic geometric is
quite different to ours and that of Smart. For the comparison of these two algorithms,
see Voloch [22].

ACKNOWLEDGMENT. The first author appreciates Prof. Yasutaka Ihara at
RIMS, Kyoto University for his suggestion.

Notation

Rings are always assumed to be commutative and unitary. Let R be a ring. We
denote the unit group (the set of invertible elements) by R*. For a prime p, the finite
field with p elements is denoted by F,. For ae Q, we put

r <a=p’i, u,veZ—pZ),
ord,a:= u

0 (a=0).

We denote the p-adic number field and the ring of p-adic integers by Q, and Z,,
respectively. By definition, Q, is the completion of Q with respect to the metric
induced from ord,. The function ord, uniquely extends to a continuous function
0,—Zu{w}. The following formulas are well known.

ord,(xy)=ord,x+ord,y (x,ye@,)
ord,(x +y)>min(ord, x, ord,, y)
ord,(x+y)=min(ord, x, ord, y) for ord,x#ord,y
Z,={xeQ,:ord, x>0}
Z,={xeQ,:ord,x=0}

For introductory explanation of p-adic numbers, see e.g. Cassels [2], Serre [18].

2. Fermat quotient

Let p be a prime. In 1828, Abel [1] proposed the following problem: Can a
number a? ! —1 be divisible by p?, where p is a prime and « is an integer, 1 <a<p?
Note we always have n? "' —1=0modp for ne Z—pZ due to the Fermat’s little
theorem. Dickson [3, p. 105] states that G. Eisenstein noted the following formulas
in 1850:

{ L ,(ab)=L,(a)+ L,(b) 2.1

La+pc)=Lya)—ca™!
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for a, be Z—pZ, ce Z where

-1

a? -1
L,(a):=————modpeF, 2.2)
p

and a”' is the inverse of a in F,. We call L, the Fermat quotient. Lerch [9, (27)]
noticed generalization of the Fermat quotient to a composite modulus me N. For a,

aw(m)__ 1
modme Z/mZ. Then,

me Z with ged(a, m)=1, put L, (a):=
L,(ab)=L,(a)+Ly(b) 23
L,(a+mc)=L,(a)+ p(m)ca! 23

where ged(a, m)=ged(b, m)=1 and ce Z. For more details, see Dickson [3, Chap.
4]. Concerning Abel’s original problem, Jacobi [7] observed a”~'=1modp? has
only four solutions (a, p)=(3, 11), (9, 11), (14,29), (18, 37) for p<37. As far as the
authors know, it is open whether there are infinitely many primes satisfying
a?~'=1mod p? for a fixed a. Thara [5] considers this problem from modern number
theoretic point of view. Ribenboim [15, Chap. 5.III] states that Crandall, Dilcher
and Pomerance verified only p=1093 and 3511 satisfy 27 '=1modp? for p<
4 %1012,

The phenomena concerning (2.2) may be paraphrased as follows: Let G be a
finite group of order n consisting of mod p objects. For ge G, consider g" in mod p?
(via some “lifting’’), which should be p-adically “close” to the identity of G. The
difference between them may involve interesting information on #. We do this for
an anomalous elliptic curve defined over F, in the next section.

In order to observe relation between Fermat quotient and discrete logarithm,
let us consider the discrete log problem modp” for p>3 and r>2. Let weZ be a
primitive element of Z/p>Z. Then, as is well known, w is a primitive element of
Z/p"Z for all r>1. For ae(Z/p"Z)*, we want ne Z/p"~*(p—1)Z satisfying

a=w"modp”. 2.4)

For ae Z—pZ, note L,(a+p")=L,(a)—p"~'a~' by (2.3). Hence L, induces a well
defined map (Z/p'Z)*—>Z/p"''Z, which is again denoted by L,. By (2.3),
L,(@)=nL,(w)ymodp"~'. On the other hand, w? '=1+pL,(w)modp?. Then
w?P '#1modp? implies L (w)eF), while o? V7 '=(1+pL,(w))” 'modp™*'.
Since p>3, wesee 0?7 " =1+ p"L (w)mod p"** (cf. Ireland and Rosen [6, Chap.
4, Sect. 1, Lemma 3 and Corollary 17). Therefore, L (@)=L, (w)modp, i.e., L,{(w)e
(Z/p"Z) ™. Consequently, we obtain

_ L,(0)
- L(w)

modp"~1t. (2.5)

On the other hand, mod p of (2.4) yields a=w"mod p. Any discrete log algorithm
for F, gives ke Z/(p—1)Z such that
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n=kmodp—1. (2.6)

Using Chinese remainder theorem, we obtain # from (2.5) and (2.6). Let T(p) be a
time complexity for discrete logarithm in F,. The time complexity of above method
is O(T(p)+(logp")*logr), which runs faster than Pohlig-Hellman algorithm [14].
We note that we only need a” 7" 'modp? ™! to compute L,(a)modp"~*.

3. Discrete log problems on anomalous elliptic curves
Let p be a prime. Let
E:y24axy+asy=x3+ax*+dx+ds
be an elliptic curve defined over F,. We say E is anomalous if *E(F ») (including the
point at infinity) is exactly p. Mazur [10] studied such curves in extensively

sophisticated setting. Let E be an lifting of £ to Z. In other words, choose a;€ Z
satisfying ¢;mod p=4d; for i=1~4, 6 and define E by

E:y*4axy+a,y=x>+a,x>+a,x+as .

We denote the reduction map E(Qp)—»E‘(F ») by 7. The identity element of an elliptic
curve with respect to its group structure is denoted by 0. For any Z-algebra R, we put

ER):={(x:y:DeP*R): y*+a;xy+azy=x>+a,x*+a,x+aghu{(0:1:0)} .

We note E(R) is not necessarily a group if R is not a field. We identify (X:Y:1)e
P%(R) with (X, Y)e A%(R). By abuse of notation, we write (0:1:0) as ¢. Let & be
the Formal group associated to E. (See Silverman [20, Chap. 4] for its definition
and its basic properties.) We have a following isomorphism #:

1
2 Kern Vs 6(p2,) % pz, G.1)

where Y(x:y:z)=x/y and

at+a, ts_af’+2a1a2+a3 4
3 4

N at +3ala,+6a,a;+ai+2a, PERE

5

log(f):= t—%t2 +

(3.2)

is a formal logarithm of &. In what follows, we always assume £ is anomalous.
Lemma 3.1. pE(Q,)<Kerm.

Proof. Let A€ E(Q,). Since 7 is a group homomorphism by Silverman [20,
Chap. 7, proof of Prop. 2.1], anomality of E implies n(pA4)=pn(4d)=0. [

THEOREM 3.2. Let u be any lifting from E(Fp) to E(Q,), i.e. mou=idgy . Let
Ag be a composition of the following maps
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~ mod
Ag: E(F )—»E(Qp)—>Kern—>pZ modr® 7z Z,/p*Z,=F,. (3.3)

Here h,, is multiplication by p. Then Ag is a group homomorphism which is independent
of choice of u. Moreover, Ag is either a zero map or an isomorphism.

Proof. Let a, feE(F ) and put 4:=u(a)+u(f)—u(e+ ). Since m is a group
homomorphism and u is a lifting, we see n(4)=0, i.e. 4eKern. By (3.1) there is
to€ Z,, satisfying #(4) = pt,. Therefore ZL(h,(4))= =p3tyep 2Z We consequently have
F(4)=0, where F:=(modp?)o ¥ h,. Since Fis a homomorphlsm F(u(oc))+P(u(/3))-—
F(u(o+ p)), i.e., g is a homomorphlsm Let v be an another lifting E(F D= E(Q)).
Then m(u(x) — v(e)) = n(u(er)) — m(v(a))= O for any aeE(F ). Hence we have u(o)—
v(x) e Ker m. By the same argument as above we see that Flu(x))=F (v(oc)) and that Ag
is independent of choice of u. To show the last statement, simply note 203 ») has no
nontrivial proper subgroup. Therefore either Ker A is EF ), which implies A is a
zero map, or Ker Ay is trivial, which implies A is injective. In the latter case, g is
also surjective since *E(F,)=p="F,. Hence A is an isomorphism. []

REMARK 3.3. Although A, is independent of choice of u, it depends on the
choice of E. Cf. Theorem 3.7.

COROLLARY 3.4. Let E be an anomalous elliptic curve defined over F, and E its
lifting to Z. Then, the following conditions on E are equivalent:

(i) The map Ag is a zero map.

(i) There exists ae E(FF ) — {0} satisfying Ag()=0.

(iii)y There exists a p-torsion point belonging to E(Z,)—{0}.

Proof The implication (i)—(@i) is trivial. (i)—@{): Let Ag(ax)=0 with
ae F(F »)— {0} and let Be E(F ,) be arbitrary. Since EF ») is a cyclic group of order
p, o is its generator. Hence there exists ne N satisfying f=na. Therefore Ag(B)=
nig(e)=0.

(i) —(iii): Let oceE(Fp)—{(Q} with Ag(x)=0. Then there is ¢, € Z, satisfying
P(pu())=p3t,. Put B:=%""(pt;)eKern. Since & is an isomorphism, pB = pu().
Letting A:=u(x)— B, we see A is a p-torsion point belonging to E(Z,)— {0}.

(iii)—(ii): Assume 4 € E(Z,)—{0} and pA= 0. Put a:=n(A4). Then

Ap(@)=((mod p?)> L)(pA)=0 .
On the other hand, a#0 by A€ E(Z,)—{0}. O

In what follows let p>5 for simplicity. Then without loss of generality, we may
assume d, =d,=d;=0 (in F,) and a, =a,=a;=0 (in Z).

THEOREM 3.5. Let p>5 be a prime. Let o€ E(F,)—{0}. Assume A:=(x,,y,)€
E(Z,) satisfies t(A)=a. For those ne N such that nA+0, put (x,, y,):=n4. If Jgisa
non-zero map, we have the following:

(i) nAeE(Z,)—{0} for 1<n<p,
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(ii) x,#Zx,modp for | <n<m<p with n+m#p,
(i) y,-y—y1€Zy, "N e 7% and Ap(a)=—2""""" modp.
p P(Yp-1—1)

Proof. (i) First of all, we note nd#@ for 1<n<p. Indeed, nd =0 implies
na=n(nd)= 0. Since E is anomalous, we obtain = (), which is a contradiction. So
we have only to prove nd € E(Z,). For n=1, this is a part of assumptions. For n=2,
we note

y1#0modp. 3.4)

Otherwise, we obtain 2a =2n(4)=2(x,; mod p, 0) = ¢/, which contradicts to o s O since
E is anomalous. Therefore, we have y1€Z, . Addition formula of E yields

Xp=c3—2%;, Ya=—Cxy—d,,
where
oo 3xf+ay, A —x7+agx; +2a
oy 0 2y, '

Since y, € Z,, we see x,, y, € Z, and (i) holds for n=2. For 3 <n < p, we use induction
on n. Suppose 4, (n—1)A€ E(Z,)—{0}. Especially,

m(4)=(x, mod p, y, mod p)
n((n—1)A)=(x,-;modp, y, ;modp) .

Assuming x; =x,_; mod p, we obtain n(4)= +n((n—1)A), i.e., na=0 or (n—2)a=0.
By the anomality of £, we have a= 0, which is again a contradiction. Therefore we
obtain x; #x,_, modp and, a fortiori, x; #x,_,. Then,

Xn=Cn2—X1—-Xn_1, yn=_c1?+cn(x1+xn—1)_dn9 (35)
where

= Xp—1—Vn—1X
c=)’n1)’1’ dn:J’1 1J/11'

n
Xn—1—X1 Xn—1—Xy

(3.6)

By x,_ 1 #x, modp, we see x,_; —x, € Z, and hence c,, d, € Z,. Therefore x,, y,€ Z,.

The proof of (ii) is similar. Assume x,=x, modp. Then n(nd)= +n(mA), i.c.,
(m+nja= 0O, which yields a contradiction as in (i).

(ii): Since 15 #0, we see pA#0 (cf. Corollary 3.4). Note (3.5) and (3.6) hold
for n=p. Let (x,,y,):=pA. Then n((x,:y,:1))=0=(0:1:0) implies ord,y,<0 and
ord,x,>ord, y,. By (ii), we have 4, (p—1)A€E(Z,). Let s:= ord,c,. Assume s>0,
ie. c,€Z,. Using

dp=y1—X1Cp, (37)

we have d,e Z,, and hence Y,€Z,, a contradiction. So, s must be negative. Then,
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by (3.5), we see

ord,x,=2s. 3.8)
By (3.7), we also obtain

ord,d,>min(ord, y,, ord,x, +ord,c,)
>ord,c,=s.

Moreover ord,(c,(x; +x,_))=s, while ord, ¢y =3s<s. Hence

ord,y,=3s. 3.9)
Therefore, ord, Y(pA4)=ord,(x,/y,)= —s>0. Using (3.2), we see ord, Z(pA4)= —s.

By assumption Ag(A)#0. So ord, #(pA)=1. Summing up, we obtain s= —1, e
PYp

Z, and lE(A)=imod p. By the anomality of E, we see n((p—1)4)= —n(A) and
PYp
hence y,_; = —y,; mod p. Therefore, y,_ —y; = —2y, #0mod p. So, we have proved
V,-1—Y1€Z, . Since ord,c,= —1, we obtain
Xpm1 TN g (3.10)
P
Let£:=p?x,and j:=p3y, Bys=—1,(3.8) and (3.9), we see %, j € Z,;. Hence Ag(A) =

i:modpz )medp. Note pc,e Z, since s= — 1. Therefore,
b ymodp
fmodp=(p*c;—p*(x;+x,-,))modp
=(pc,)*modp
and
ymodp=—p3c}+(pc,)p*(x, +x,-,)—p>d,modp
=—(pc,)’modp .
Consequently,

(pc,)*mod p _<_1 X,o1—X

= —— modp . (3.11)
—(pc,)*modp P yp-l—y1>

Ag(0)=

This completes the proof. []
COROLLARY 3.6. Let p>5. Let
E:y?=x3+d,x+ds

be an anomalous elliptic curve defined over F, Choose integers a,, ae satisfying
a,mod p=ad, and agmod p=ds. Define an elliptic curve E by

E:y*=x3+a,x+ag.
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Let Ay be a homomorphism defined by (3.3). Then, the following procedure computes
Ag(®) for a:=(s, t)eE(Fp)—{(O} with O((log p)®) time complexity.

(i) Find A:=(Xy, Y,)e E(Z/p*Z) satisfying X, modp=s and Y, modp=t.

(ii) Compute (X,_,,Y,_,):=(p—1)A€E(Z/p*Z) by using elliptic curve
addition.

(i) If X,_,#X,, then

X

1p(3) = <—_)i modp)« Y, 1~ Y)modp) !
p

Otherwise Ag(a)=0.
Proof. Note, under the same notation as in Theorem 3.5, we have only to
compute y,_;—y;modp and l(xp_l—xl)modp. For (i), simply take any X,
P

y€ Z/p*Z satisfying X; mod p=s and ymod p=1. Then solve the following equation
on w:

(y+pw)*=X; +a, X, +agmodp?,
_ Xi+a X +ag—y?
p

Note the right hand side is well defined. By (3.4), we obtain weF,. Then put
Y,:=y+pw. See Serre [18, Chap. 2, §2.2]. Then Theorem 3.5 (ii) guarantees
computation of (p—1)4 mod p? involves only operations over Z/p2Z. By (3.10), we
see X,_ ; # X, under the condition A #0. In this case Theorem 3.5 (iii) ensures validity
of Step (iii). Otherwise Az must be a zero map. So, Ag(e) =0.

The number of arithmetic operations over Z/p?Z involved in steps (i) and (iii)
are indifferent to p or E. Step (i) requires at most 2log, p elliptic curve addition.
Summing up, O((logp)?) is enough to compute Ay(x). [

TueOREM 3.7. Let E and E be as in Corollary 3.6, A:=(x,, y,) e E(Z,)—{0}.
Assume

ie. 2tw

modp .

3x}{# —a,modp. (3.12)
Define an elliptic curve E' by
E:y?’=x3+a,x+a,,

where ay:=a,+p and ag:=ag—px,. (Note A€ E(Z,).) Let (x,-1,y,-1):=(p—1)A
in Eand (x,_,y,-1):=(p—1)A in E". Then, we have the following:

(i) Either x,_,#x,_;modp? or y,_,#y,_,modp?.

(i) Either Ag or Ag. is non-zero.

Proof. (i): Assume x,_;=x,_;modp? and Vp-1=y,—;modp? For 1<n<
p—1, let (x,,y,):=nA in E and (x,, y,):=nd in E’. Writing elliptic curve addition
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formula for (n—1)A=nA+(—A) in E explicitly, we have

—AZ _ A3 A T
Xp-1=Cp —X1— Xy, Yn—1=—Cy +cn(x1+xn)—dn
where
A _yn+y1 a‘ _ ylxn+ynx1
cn_ b n_ -
Xp—X1 Xp— X4

for n>3. The similar formulas hold for (x,_;, y,_). But these formulas do not
contain coefficients of the Weierstrass equation. By Theorem 3.5 (ii), x,=x, mod p?>
and y, =y, mod p? implies x,_,=x,_; modp? and y,_; =y,_;mod p>. On the other
hand, the duplication formula on E and E’ yield

2 r\2 2 2
XIZ—X2=<3XI +a4> _2x1_<<3x1 +a4> —2x1>
2y, 2y,

6x2+2a,+p
4y}
#0mod p?

by (3.12), which is a contradiction.
(ii): Assume both Ay and A are zero maps. By (3.11), ord,(x,_; —x;)>2 and
ord,(x}_;—x;)>2. Hence x,_; =x,_;modp>. Then,

/ i 3 3 1t ’
Vp-1=Vp-1=Xp—1" —Xp—1 FA4Xp_ 1 —AsXp— 1 +d6—dg
— ’ ’ 2
=x,(a;—a,) +(ag—as)modp

=0modp?
which contradicts to (). O

COROLLARY 3.8. Let p>7. Let E be an anomalous elliptic curve defined over
F,. Then we can solve discrete logarithm for EF ») with O((log p)?) time complexity.

Proof. Leta, peE(F, ) —{0}. Since E'is anomalous, there exists n € F, satisfying
B=no. Define E as in Corollary 3.6. Since g is a homomorphism by Theorem 3.2,
A5(B)

£
zero map by Corollary 3.4. By Theorem 3.5 (ii), at least one of u(a), u(2x), or u(3o)
has an x-coordinate satisfying (3.12). (Note p>7.) Therefore we can form a non-

zero Ag by Theorem 3.7 in O((logp)?) time complexity. Thus, n= i”w )

we have Ag(B)=nig(e). In case of Agz(a)#0, we obtain n= . Otherwise, A is a

. The total

g%
running time of above procedure is clearly O((log 3. O
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4. Concluding remarks’

4.1. Non-prime field case

Let p be a prime, g:=p" with r>1, and K be an unramified extension of 0,
whose residue field is F,. See Serre [19, Chap. I, Sect. 6] for explicit construction of
K. Let E be an elliptic curve defined over F,. Let A€ E(F,) and N its order, i.e., the
cardinality of the cyclic group (A) generated by 4. We write N=p°m where m is
prime to p. We consider the discrete log problem for {4} in case of e>1. Let B=nA
with ne Z/NZ. Even if m>1, we obtain nmodp® in polynomial time as follows.
There exist integers n,, * * -, n,_ satisfying n=Y ¢ n;p'mod p¢ and 0<n;<p. We
put Ay:=mp® "4 and B,:=mp° 'B. Then pA,=0 and B,=n,A,. In case of a
small p, we obtain n, by checking whether By=ny4, for n,=0,1, -, p—1.
Otherwise (at least p >7), we use the elliptic Fermat quotient. Recall that the essential
points of Sect. 3 are the following:

(i) The order of the base point A4 is p.

(ii) The formal logarithm log, is defined over y(Ker r).

Since K/Q, is unramified, (i) also holds for an elliptic curve over K. Choos-
ing a lifting E of £ to the valuation ring of K, we obtain n, by Ag(Bo)/Ap(4p). In
order to obtain #; for i>1, we use Pohlig-Hellman algorithm [14]. Assume we have
obtained ng, -+, n,_,. Then B,:=mp° * 1 (B—(Y.*_ ! n;p')4) satisfies B =n,A,,
which yields n, by the same method as above. Repeating this process, we obtain
nmod p°®.

4.2. Density of vulnerable curves
It is natural to ask how often an elliptic curve is anomalous. By McKee [11,

Theorem 2], the density of anomalous curves over F, is at most O(% logploglog p>.
p
In case of a large p, this is fairly small. For g=p’, the probability of p|"E(Fq)

converges to 1/(p—1) as r—oo by Howe [4, Theorem 1.1]7.

4.3. Cryptographic implication

Since Miller [13] and Koblitz [8] independently proposed the elliptic curve
cryptosystem, many works are done about this cryptosystem and a number of
cryptographic apparatuses using elliptic curve discrete log problem are now
commercially available. Among them, Menezes-Okamoto-Vanstone [12] showed that
the discrete logarithm problem of supersingular curves is reduced to that of
multiplicative group of some extensions of the base field. Since the discrete loga-
rithm of finite filed is still considered to be difficult (sub-exponential time), the el-
liptic curve cryptosystem is believed to be no less secure than cryptosystem based
on the discrete log problem of a finite field. However, our result indicates that we
should choose the elliptic curve and its base point carefully. At least we should

T After the release of the first version of this paper, the authors received several comments and
questions on it. Some of them fit better in the previous section. However, to be fair, we describe them here.
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choose a base point whose order is divisible by a large prime other than the char-
acteristic of a base field. This automatically excludes anomalous curves. Of course,
this condition is one of necessary conditions for unvulnerability, not a sufficient
condition.
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