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0. Introduction

0.1. Kocher in [Ko] defined and Maass [Ma] studied in full details certain
Dirichlet series corresponding to Siegel’s modular forms which are now called the
Kéchler-Maass Dirichlet series. Maass proved that the Dirichlet series can be con-
tinued to meromorphic functions in the whole plane satisfying certain functional
equations. In [Arl, 2] we proved certain formulas for the Kécher-Maass Dirichlet
series giving us explicit informations on the poles and their residues.

One of our aim of this paper is to form the Kocher-Maass Dirichlet series at-
tached to Jacobi forms and to obtain explicit formulas giving us the exact location
of poles and the exact values of residiues at those poles. Moreover using the corre-
spondence between Jacobi forms and Siegel modular forms of half-integral weights,
we intend to define and study the generalized Cohen Eisenstein series in the Kohnen
plus space of Siegel modular forms of half integral weights. For instance we describe
Siegel’s formula for the Cohen Eisenstein series. Finally we define the Kocher-Maass
Dirichlet series attached to modular forms of half integral weights and obtain ex-
plicit formulas similar to those in the original Siegel modular case. For the proofs
we use some convenient properties of the Cohen Eisenstein series.

0.2. We explain our results more precisely. Denote by J, s(I",) the C-vector
space of Jacobi forms of degree n, weight k, and of index S with respect to the Siegel
modular group I',=Sp,(Z). To each ¢eJ, 5(I',), we associate the Kocher-Maass
Dirichlet series D,(¢, s) based on its Fourier expansion (see (1.15)). The Dirichlet
series D,(¢, s) can be analytically continued to a meromorphic function of s in the
whole s-plane satisfying a certain functional equation (Theorem 8). Moreover under
a maximality condition on the index S we show that D,(¢, s) multiplied by some
gamma factor has a reasonable expression given in Theorem 9 which will give us
explicit information on the residues at the poles of the Dirichlet series. For the proof
of the main theorem (Theorem 9) we employed the structure theorem for J, s(I',)
and certain Eisenstin series which should be called Cohen-Klingen’s Eisenstein series
on the Siegel upper half plane £, of degree n.

Next we consider the special case of the index S being one. In this case the space
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Ji.1(I',) s naturally isomorphic to the Kohnen plus space M, ,(I'$’(4)) (this fact
was observed by Kohnen and Zagier [E-Z] if n=1 and by Ikubiyama [Ib] if n>1).
The natural isomorphism is denoted by 6™ : J, (I')—>M;_, ,(I'§’(4)). Let C¥~'3(x)
denote the image of the Jacobi Eisenstein series of weight k& by this isomorphism
o™. This function C¥~/2(7) may be called the (generalized) Cohen Eisenstein series
of degree n and weight k—1/2. If n=1, Cf~'/*(1) was studied by Cohen [Co] and
has a Fourier expansion
1

k—1/2 _ —
0.1 =60 dezzo,d;0,3mod4H(k L d)eldr),
where H(k—1, d) are rational numbers which are explicitly given with the use of
special values of certain L-functions (for the explicit values of H(k—1, d) see [Co]
and [E-Z]). We obtain certain Siegel’s formula for C¥~/2(7) if k is divisible by 4.
Denote by %5, the set consisting of positive definite integral symmetric matrices
N of size 2k—1 with determinant 4~ satisfying the condition:

N=—"2Amod 4Sym¥,_ (Z) for some AeM, ,,_,(Z).

Let H,, _, denote the number of the GL,, _,(Z)-eqivalence classes in % _,. We have
proved in [Ar5] that H,=1 and H;5=2 (see also Lemma 12). Let S, S,, - - -, Sy
(H=H,,_,) denote a complete set of representatives of the usual GL,,_(Z)-
equivalence classes of %, _ ;. We define a theta series 0¢"(t) for each Se %, _, to be
the sum

0= Y  etr(GSGr)  (teH,),

GeMy - 1,n(Z)

which belongs to M,'_, ,(I'§"(4)). The Eisenstein series Cf~'/*(t) can be written as
a natural linear combination of the above theta series:

1 H g
02) Ch = (Z S(S“)))

where &) for each Se %, _, denotes the order of the unit group of S and M,, _,
is the mass given by (2.1) (Theorem 14). We see from (0.1), (0.2) that H(k—1, d) for
d>0 has the following expression
Hk-1,d) 1 & #{GeMy_,,(D)|S,[Gl=d)
{(3—2k) My j=1 8(Sj)

B

which will give a generalization of the observation given by Eichler-Zagier in [E-Z,
p. 85, (6)]. Moreover the Fourier coefficients of C¥~1/2(t) for positive definite
NeSym,(Z) can be explicitly written in terms of local densities as is the case in the
classical Siegel Eisenstein series (see Theorem 14 and [Si] for the original case).
Finally we attach to each /e M;_, ,(I'{’(4)) the Kocher-Maass Dirichlet series
D,(f, s). As an application of Theorem 9, D,(f; s) can be analytically continued to a
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meromorphic function of s in the whole plane satisfying a certain functional equation
as we shall see in Theorem 15.

Notations

For any commutative ring R we denote by M,, (R), M,(R), and Sym,(R) the
set of m x n matrices, the ring of matrices of size n, and the set of symmetric matrices
of size n with entries in R, respectively. Let 1, denote the identity matrix of size n
in M(R). For XeM,, (R) and YeSym,(R) we write Y[X] in place of ‘XYX, ‘X
denoting the transposed matrix of X. For square matrices 4, B, denote by 4.1 B the
square matrix (:)1 )(5);)' Denote by Sym*(Z), Sym*(Z)*, and Sym,(R)*, the set of all
half integral symmetric matrices of size n, the subset of Sym,*(Z) consisting of positive
definite elements, and the set of all positive definite real symmetric matrices of size
n, respectively. We write, for a real symmetric matrix Y, Y>0 (resp. Y>0), if Y is
positive (resp. semi-positive) definite. For any finite set 4, let #4 denote the cardinality
of the set 4. We use the symbol e(z) (z € C) as an abbreviation for exp(2niz). Moreover
let {(s) be the Riemann zeta function.

1. Kocher-Maass Dirichlet series attached to Jacobi forms

1.1. The space of Jacobi forms

The basic notation is almost the same as in [Arl, 2]. We briefly recall the
definition from them.

Let Sp,(R) denote the real symplectic group of degree » given by

t<0 1,,>_<0 1,,)
N1, 0)27 21, o)

We fix a positive integer /. Let G;/,(R) be the subgroup of Sp,,,(R) consisting of all
elements of the form

1,
(1.1) "

Spu(R)= {g €GL(R)

1, 2 1,
01

_‘
=
o =

n

—

1, 0 1,
1, 1, ¢ d

<M=<“ Z)eSp,,(IR), A, pe M, (R), peSyml(R)> .
C

The element of the above form (1.1) is simply written as ((4, ), p)M. Denote by
H, ,(R) the Heisenberg group, a subgroup of G,(R), consisting of all elements
of the form ((4, w), p)1,,=((4, 1), p). Then, for any elements h=((4, p), p), h'=
(A, u), pHeH, (R), Me Sp,(R), the composition rule is given as follows:

hh'=(A+A", u+u'), p+p + A0 +p"a)
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M™ThM = (A%, p*), p+ 4% 'p* = A'p)
where (A*, u*)=(A, u)M. The group Sp,(R) acts on the Siegel upper half plane $,
of degree » in a usual manner; for M =<a Z)eSp,,(R) and t€$,, set
c

M{ty=(at+b)ct+d)"' and JM,7)=ct+d.

Let 9,,, denote the product space of §, and the set M, ,(C) of all / x n matrices with
entries in C:

9n,l = gn X Ml.n(c) .
Then the group G ,(R) naturally acts on the space Z,,:
g(t, 2):=(M<7), 2J(M, 7)™+ AMCT) +p)

where g=((4, p), p))M € G} (R), M € Sp,(R), and (7, 2)€ D,,.

We take a positive definite half integral symmetric matrix S of size / and fix it.
Now we define a factor of automorphy for the Jacobi group G; (R). Let k be a
non-negative integer. Set, for g=((4, ), p)M e G; (R), (z,2)€ D,,,,

(1.2) Js (9, (z, 2)): =det(J(M, 1))*
x e(—tr(Sp) —tr(S[AJM ) +2'ASzJ(M, ©) = S[z]J(M, ©) " '¢)),

where M =<a Z)eSp,,([Ri). This factor of automorphy has the property:
c
(1.3) s 9192, (T, 2))=J5{915 92(T, 2 s (92> (T, z)) (91,92€ Gr{,l(R)) .

Let I', denote the Siegel modular group Sp,(Z). Let I'] be the usual discrete sub-
group of G} (R) given by

r}=Gl(2):={((4 w), p)M|MeT,, A, pe M, ,(2), p Sym(2)} .
Moreover let H, ;(Z) denote the ordinary discrete subgroup of H, ;(R):
H,,(2)={((4, 1), p)| 4, e M, ,(Z), p€ Sym(2)} .

We introduce as in [Ar1, 2] the subset of Sym,*, ;(Z) which fits very well the framework
of Jacobi forms:

N ‘r/2>
r2 S

(1.4 Sym}k (S Z):= {T:( NeSym¥(2), reM,’,,(Z)} .

Let Sym*, ,(S;Z)* denote the subset of Sym},,(S;Z) consisting of positive definite

N %2

elements. For each T=< o s >eSym,j"+ (S;2), we write
T
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Set
L"=M, (Z).

A holomorphic function ¢(z, z) on 2, is said to be a Jacobi form of weight & and
degree n with respect to I',, if it satisfies the following three conditions:

(i) ¢(t, z+ A1+ p) = e(—tr(‘ASA+'AS2))P(z, z) for all 4, pe L™,

(ii)  ¢(M(z, 2))=e(tr(S[z]J(M, 1)~ 'c)) det J(M, t)*¢(z, z) for all MeT,.

(iii) (Fourier expansion)

(L.5) o(z, z)= Y c(De(tr(Nt+'rz)),
TeSym? , (S;2), T=0

N %2

r2 S

SymX*,,(S;Z). We often write ¢(N, r) instead of the Fourier coefficient ¢(7). If n>2,

this condition is automatically verified.

where T=< ) runs over all semi-positive definite symmetric matrices of

Denote by J, s(I',) the space consisting of Jacobi forms of weight k and degree
n with respect to I',. Moreover the space J;$P(I",) of cusp forms consists of all
¢ €J, s(I',) satisfying the condition that

Csi(t,2)"*| ¢(z, z)| is bounded on H,,
where Cg (7, z)=(detn)* exp(—4n tr(S[y]n ")) for n=Im(r) and y=Im(z). Since
this function satisfies the relation
Csil9(t, 2)=1Jsulg, (0, 2)) | *Csplz,2)  forany geGl(R),

Cs.1(t,2)"?| ¢(z, z)| is invariant under the action of any elements of I';.
Let L™/(2S)L™ be the quotient module of L™ by the submodule (2S)L™. For
each pe L™/(2S)L™, we define the theta series 6,(, z) to be the sum

Y eltr(S[A+(28) 'ult+2'(A+@28) " 'wS2),  ((r.2)€ D)) -

AeLMm

We write 0("(t, z) instead of (1, z), if necessary. For a fixed 7€ §, denote by OF)
the space consisting of holomorphic functions ¢ : M, ,(C)—C satisfying the condition

0(z + At + p) = e(—tr(S[A]t + 2'AS2))0(z) (for all A, peL™).

Then @) is a finite dimensional C-vector space. Moreover it is known and easy to
see that the theta series 0,(t, z) (ue L™/(2S)L™) form a C-basis of ©"). We arrange
0,(t, z) (ue L™/(2S)L™) as a column vector with L"/(2S)L™ being an index set:

O(t, 2): =(0u("5, Z))usL(")/(ZS)L(“> .

The following proposition is known and for instance will follow from Proposition
1.6 of Shintani [Shn].

PropoSITION 1 (Theta transformation formula). Set N=det(2S)". Then for
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each Merl,,
OM(z, 2))=Js5,o(M, (z, 2))js(M, )O(z, 2)

where js(M, T)=(js(M, ©);,) 1, uc Lovj25)Le i an N x N matrix depending only on M and
T satisfying

(M, 2)js(M, 1) =] J(M, 7)|'- 1 .

In another expression,

0,(M(1,2)=Js5oM, (T, 2)x 3 js(M,0)3,0,(1 2),

pe LW /(2S)LM™

where {j(M, 1),,} satisfies

jS(M, T)lujS(M9 ‘c)lu' =5u,u’| J(M’ T) |l s

AeLM/(2S)LM
0, denoting the Kronecker symbol.

We write j{(M, t) instead of jy(M, 7), if the degree n should be specified. It
immediately follows from this transformation formula that

(1.6) Js(M M, ©)=js(M, M,{1))js(M,, T) (M, M,el,).

Each Jacobi form ¢eJg,(I',), which as a function of z belongs to @, has an
expression as a linear combination of the theta series:

(1.7) o= ) K@),

re LM/(2S)L™M

where each #,(7) has the following Fourier expansion:

h(1)= > oT)e(tr(Tr))

NeSym*(Z),N—(1/4)rS~1r>0

N
A7) (T"<r/2
subseries 4*(t) of h,(t) by putting

ré 2 >> being the Fourier coefficients of ¢. Moreover we define the

(1.8) h¥(t)= Y e(Te(tr(Tr)) .

NeSym#(Z),N—(1/4)trS~1r>0
We set
h(t)= (hr(T))reL(")/(ZS)L(") 5

which is viewed as a column vector. Then Proposition 1, (1.6), and the property (ii)
of ¢ imply the transformation formula for k(7).

ProrosiTiON 2. Let Mel',. Then
“(R(M{)))js(M, 1) =det J(M, )" - "(h(z))  (for all MeT,).
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Namely,

hq(M<r>)jS(M, T)qr = det J(M, T)khr(t) .

qe LM/(2S)L™

We need a lemma on the automorphy factor js(M, 7). Set, for Ve GL,(R),

vV o
dn(V)=<0 ,V_1>-

Let j be any integer with 0 <j<n. For any M = <‘: Z)e I'; we define /[(M), an element
of I',, by

a b
1,

Jj
d
1,_;

J

lj(M)=

In particular, [j(M)=1,,.

Let 4 e Sym,(C) with Re(4)>0. If / is odd, we employ the ordinary branch of
(det A)2, a holomorphic function of 4 which takes positive values if 4 is a positive
definite real symmetric matrix.

LemMA 3. (i) For VeGL,(Z), js(@(V), T) =01,y - )a,peLomj2syron. Namely,

. 0---if A#uV 1mod(2S)L™,
]S(dn( V)a T)Au={ f —1
1---if A=uV " 'mod (2S)L™ .

0

(ii) For J,,=<1 —01">, we have

n

12 1
Js(J, T)=det(28)” "2 det <i> <e< ——tr(AS! u))) .
l 2 A,pe LIWJ(2S)LM

(i) Let 1<j<n Let A=(iy, Ay)e LP/2S)L™ and p=(u,, uy)e L™/(2S)L"
with Ay, p, € L9/2S)LY and A,, p,e L™ ?/2S)L""D. For 1€ 9,, put

A

For any MeT;, the (A, p)-matrix component of js(I}(M), t) is given by

0 o if Ay #pp, mod(2S)LY
JOM, )5, - i Ay =p, mod(2S)L" .
Proof. The assertion (i) is due to the transformation formula

Or(dn( V)(T’ Z)) = erV(T’ Z) .

JEHM), ©)3,= {



100 T. ARAKAWA
In virtue of the Poisson summation formula we have

0,(—t71, zz7 Y =det(2S) "2 det <i‘>l/2 e(tr(z~1S[z])
i

' 1
X Y e(—— tr(‘rS~ 1;1))0”(1, ),
pe LOV(2S)LM 2
from which the assertion (ii) follows. Finally assume that 1 <j<n. Let M eTI';. Write

T, Ty .
(T, Z)= 9(21’ 22) Wlth 1165}'9 ZleMl,j(C) .

Ta1 T2

Set p=c1, +d. Since
M) ‘P ly

M)z, z)= (( - _
! T21P ! T,—Typ '€'Tay

it is not difficult to see that

>, (21P_1> 22—21P_10t721)> >

OPBM)T, )= Y, O (M(ey, 2, + (A, +(25) 7 'ry)eay))

AreLn=5
X e(tr(S[A, +(28) 'y J(1a =210 " '€'T21) + 2 (A +(25) T y)S(z, —21p 7 Me'T,0)))
where we put r=(ry,r,) with r;e LY/2S)LY, r,e L™ ?/2S)L"~ 9, By the theta
transformation formula the right hand side of the above identity is equal to

Js.0(M, (T4, Zl))jg)(M’ T1)r1u19,(4];)(7~'1a zi+ (4, +(28)” 1"2)"721)

A2e Ln= 9 py e LW/(2S)LY)

X e(tr(S[A, +(2S) " 'r]t, +2'(A, +(2S) " 1r,)Sz,)) -

Thus after some computation we obtain

0PIMN e, 2))=Ts oM, (t1,20)) >, JPM,11),,,00 (. 2).

1 LOJ2S)LY)
If we note that
Is,0M, (11, 2,)) = J5,0(lj(M), (z, 2)) ,
the above identity completes the proof of the assertion (iii). q.e.d.

Let ¢ eJ, 5(I',) and let A,(7) be the same as in (1.7). If we put
(1.9) ho= Y k),

re L(M/(2S)LM

then h(7) is a modular form of weight k—[/2 with respect to a congruence subgroup
of I',. Then h(r) and hy(t) have the following relation.

PRrOPOSITION 4. We have
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k=12
h(—1t~")=c, . sdet <i> ho(t),  where c,.s=(—1)"*det(2S)">.
1
Proof. 1t is easy to see from Proposition 2 that

hq(Jn<T>)jS(Jm T)qr = z det J(Jm T)khr(‘r) .

re LiW/(25)LM ge Lt /(28)LM reLtW/(25)LM

Since by (ii) of Lemma 3,
T 12
jS(Jm T)qr = det(zs)n/2 det <—‘> : 511.0 s
re LW/2S)L i

the equality
7 \k-u2
ho(—1~ Y =(—1)"™?det(25) " "? det<—.> h(t)
i

holds true. By changing t with —z !, the assertion follows. q.e.d.

Similarly as in the proof of Maass [Ma, p. 205, Lemma] we can prove without
difficulty the estimate for the Fourier coefficients ¢(T) of ¢ € Jy 5(I',). Namely, there
exists a positive constant C; such that

(1.10) |e(T)| < C, det(Ty~? for any TeSym¥ ,(S;Z)* .

1.2. Klingen Eisenstein series

As a typical example of Jacobi forms the Klingen Eisenstein series attached to
cusp forms have to be defined for the later use.

First we define the Siegel @-operator & in the case of Jacobi forms (see [Zi],
[Ar4]). Set, for any ¢peJ, o(I',) and (1,2)€ D, ,,

. 0
S )z 2)= lim ¢<( o i ) G 0)> :

Then, #(¢)eJ, (I, - 1), and moreover, if ¢ has a Fourier expansion (1.5), then,

L(P)(z, 2)= > c<< N0 ) (r, 0))e(tr(Nt +1rz)) .
NeSym¥ _ (Z),re M n- 1(Z) 00

N—(1/4)S-1[r]1=0

For any function ¢: %, ,—C and for ge G, ,(R), we set
(¢ Ik,sg)(ra Z) ‘:JS,k(g’ (T’ Z))_ 1¢(g(1’ Z)) .

Let r be an integer with 0<r<n and let ¢ e J{$P(I',). In case r=0, ¢ is assumed to
be a constant function. For (1, z)€ %, ,, set

(t, 2)*=(z%, Z*)=<T|:< i)' )], z( 1)' >>e@h, .

Let I, , denote the subgroup of I', consisting of elements whose lower left r x (n+r)
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blocks vanish:

r“={<“b>ernc=<“ °)J=<d1d2>chaekmz%.
“~WNe 4 0 0 0 d,

Denote by I';, the subgroup of I'; consisting of all elements of the form
(44, 0), p), )M
with A, e M, (Z), ne M, (Z), pe Sym|(Z), MeT,,. We set, for (1,2)eZ

EF@.a)= 3 (Gl

yernr n

n,ls

where (1, z)=¢(t*, z*) is a function on 2, ,. The well-definedness is immediately
verified and this infinite series is absolutely convergent for k >n+r+1+1, as is shown
in [Zi], Theorem 2.5. Moreover E\ (¢, (t,z)) is a Jacobi form of J, «(T,), if
k>n+r+14+1 ([Zi]). We write E(z, z) for EX3(¢, (z, 2)), if r=0 and ¢ =1, which
is called the Jacobi Eisenstein series of degree n, weight k and index S. Set, for
k>n+r+1+1,

T ={E7($, (1, 2)) | pe Jis™(T)}  (0<r<n).

Then JUNT,) is a C-subspace of J, (I',). In particular, J{%(I",)=CE"(z, z) and
JOI,)=J¢™(I,). To obtain the structure theorem for the space J, s(I',) we impose
the following condition on S.

(1.11) If S[x]eZ for any xe(2S)™'M, ,(Z), then necessarily, xe M, ,(Z) .

It is known by Proposition 4.1 in [Ar4] that, under this condition any ¢ €J, (I',)
is a cusp form, if and only if F¢=0.

We have proved the following proposition in [Ar4] (see Theorem 4.2 of [Ar4]
and its proof).

PROPOSITION 5. Assume that Se Sym*(Z)™" satisfies the condition (1.11). Let k
be an even positive integer with k>2n+1+1. Then the following direct sum de-
composition for the space J, (I',) holds:

Jis(Tn) = E_Do Tes(T,) -

Let peJ{¥°(I',) (0<r<n—1). We have

(Ek S((pa (* *))) Ek Sl r((pa (* *))

Dulinski [Du] independently obtained the structure theorem for the space J, ¢(I',)
without any maximality condition on S.

Each Eisenstein series EX3(¢, (t, z)) for ¢ e JO¥P(I',) can be written as a linear
combination of the theta series:
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(1.12) EES(9, (1, 2)) = Y C"™(¢, )0 (z, 2) .

uweL(M)(2S)L(M

The functions C{’(¢, 7) may be realized as certain types of Eisenstein series shown
in the following Proposition 6. Set

(1.13) C"(¢, 1)= Y C"(, 7).

e LO[(2S)LM

We write, similarly as in (1.7),

2= Y @2  (1,2)€,).

AeLW|(28)LM

For each MeT,, let js(M, 1),, denote the (4, u)-matrix component of js(M, t) which
is the same as in Proposition 1.

PROPOSITION 6. For each pe L™/(2S)L™,

C¢p,v)= Y Y det J(M, 7) " *h,(M{2)*)js(M, 1)z, »

MeTln, A\ AeLD[(2S)LO)

where A=, 0)e L™/(2S)L™. Consequently,

C"¢, )= Y 2 Y detJ(M, ) *hy(MCT)*)js(M, 1), -
MeT, Ty Ae L[(2S)LK) pe LtW/(2S)LM
Proof. We may choose the set
{(((01 12)5 0)’ O)Ml '12 GL(n_r)’ Mern,r\rn}

as a complete set of representatives of I'y,\I'y. Then,

(1.14) EXS(, (1,2)= ),

A2e L= Mely, Iy ve L(/(2S)L")

JS,k((((O’ 22), 0), 0), M(z, 2))~ 1JS,k(M> (t,2))” lhv(M<T>*)9$r)(f1: 21+ A2%21)

where M(x, z)=<< f‘ ff‘ ), (¢4, 22)> with (£1,2,)€9,,. By a straightforward com-
Ta1 T2

putation and from Proposition 1 we see that

A ;ﬂﬂr) Js.1((((0, 22),0), 0), M(z, z))~ 10‘(’r)(,f1, 21+ A2%21)
(v 0)(M(T z))
=JsoM,(,2) Y jPM, 1500, 2),

ue LMW /(2S)LM™

where we put ¥=(v, 0)e L™/(2S)L™. Therefore substituting the last expression into
(1.14), we obtain the assertion of Propositon 6. g.e.d.
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1.3. Kocher-Maass Dirichlet series

First we introduce some notations to define Kocher-Maass Dirichlet series
associated to Jacobi forms. Let B, ;(Z) denote the subgroup of GL,,,(Z) consisting
of all elements of the form

U 0
< ) ) with UeGL(Z), yeL™.
y L

This group B, ;(Z) acts on the set Sym;*,,(S;Z)* by
T—Ty]:=%Ty  (y€B,(2), TeSym}.,(S;2)").
We call T, T'e Sym/*,,(S;Z)* in the same class (resp. the same genus) and write
T~z T (resp. T~g, T), if they are in the same B, ;(Z) orbit (resp. in the same B, ;(Z,,)
orbit for any prime integer p). Then a given genus consists of a finite number of
classes. On this notion of classes and genera we refer to [Ar3, 4]. For each Te
Sym*, (S;Z)*, let O(T; S)(Z) denote the unit group of T given by
O(T; S)(2)={ye B, (D)| T[y]=T} .

Let us define the Kocher-Maass Dirichlet series attached to ¢ € J, i(I',). Let the
Fourier expansion of ¢ be the same as in (1.5). We note that, if T~; T" for T,
T e Sym* (S;Z)", then ¢(T)=c(T") (see Proposition 1.1 of [Ar4]). We set

«T)
Tesymy ,(552)+~, €(T) det(T)°

where the summation indicates that 7 runs over all the B, ;(Z)-equivalence classes
of elements of Sym*_,(S;2)", e(T)=#(O(T; S)(Z)) and T is the same as the previous

(1.15) D(¢,s)=

>

1.1. This Dirichlet series is absolutely convergent for Re(s)>k—%+% in virtue
of the estimate (1.10). We define another Dirichlet series D,(¢, s) by

«(NLS)
NeSym*(Z)*+ |~ 8(N)(det N)s

B

D n(d)’ S) =
where N runs over all the GL,(Z)-equivalence classes of positive definite half integral
symmetric matrices of size n and &N) denotes the order of the unit group
{UeGL,(Z)|N[U]=N}. This series is also absolutely convergent for Re(s) >k — —;— +

";1. We now set, for ¢ eJ, 5(I',),

(1.16) W= Y hX9),

re L0 /(2S)L(™

h¥(t) being the same as in (1.8). Then, 4 *(t) is a subseries of the Fourier expansion
of h(z) (for A(t), see (1.9)).
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Let 2, denote the symmetric space of positive definite real symmetric matrices
of size n on which the general linear group GL,(R) acts via Yi>'gYg (Ye2,
g€ GL,(R)). Denote by dv,(Y) an invariant measure on %, normalized by

dv(Y)=det(Y) "2 [ dy; (Y=(y)eP).

1<i<j<n

We set

£, 9) =f BT )(det YYdu(Y).

GLn(Z)\Pn

Then this function is related with our Dirichlet series D, (¢, s).
PROPOSITION 7. The above integral is absolutely convergent for Re(s) >k—é+

n+1
e and moreover

u(@, 5)=7u)DW(®, 5) 5
where the gamma factor y,(s) is given by
n i—1
y,(5)=2m"" " V4my s [ ] F<S—J—>.
j=1 2
Proof. We define the subgroup By(Z) of B, (Z) by putting

1
B,‘fl(Z)={< " 0> yeL(")}.
y 1

o= Y ) o(T)e(tr(T))
re L(M|(2S)L™ NeSym¥(Z)
N—(1/4)trS~1r>0

= > o(Te(tr(Tr) ,

TeSym, . «(S;2)* |BR(Z)

We first note that

where Sym*,(S;2)"/BX(Z) is a complete set of representatives of elements of
SymX*_,(S;Z)* under the action of B;5(Z). Then it is easy to see that

h*(t)= ) ) «(TTyDe(tr(TT710) »

TeSym?, , (S;Z)* [Bn,((Z) y€ O(T;SNZ)\Bn,(Z)/BL (Z)
where y runs over a complete set of representatives of the double cosets:
O(T; S(Z)\B, ()| B;(Z) .
Since ¢(T[y])=c(T) and «(T)=4%0(T'; S)(Z), we have



106 T. ARAKAWA

oT)
TeSymy, , (S;2)* [Bn(Z) veBn(D)/B22) €(T)

- y y c(g e(tr(TVe'y)) .

TeSym% , (S;Z)* |Bn,i(Z) VeGLn(Z) €

h*(t)= e(tr(?fv/]r))

We note that V(GL,(Z)\%,)'V with V running over all elements of GL,(Z) doubly
cover the space #,. Therefore we easily have

so=2 Y O gt yydnm)
Tesymy , (5:2)* a2 €(T) J 5,
=7S)Du(, 5) .
Thus we have completed the proof. q.e.d.

We moreover define the integral £,(¢, s) by
&, 5):= f hEiY)(det Y)*dv,(Y) ,
GLAZ)\P,

"erl. Then quite similarly

which is also absolutely convergent for Re(s)>k—é+

&b, 9 =74)Du(9, 5) -

THEOREM 8. The zeta functions D,(, s), D,($, s) can be analytically continued
to meromorphic functions in the whole s plane which verify the functional equation

én(q&’ k— 1/2 - S) = Cn,k,SEn((b’ S) >
where c, . s is the constant given in Proposition 4.

The proof is done in a similar manner as in that of [Ma, §15], where invariant
differential operators acting on £, are used in a skillful way. So we omit it.

The above theorem is inadequate since it cannot give us sufficient information
on the residues at poles of D, (¢, s) (and of £,(¢, s)). It will be necessary to obtain a
formula wich will give us some information on the situation of poles. For that purpose
we impose the condition (1.11) on S which is a kind of maximality condition.

Now we formulate our main theorem which gives us an explicit expression for
£,(9, 5). The proof will be postponed to the last paragraph.

Set, for jeZ,
. 1/2 -+ j#0
s(1)={/ 7
1 ---j=0.

THEOREM 9. Assume that k is an even integer larger than 2n+1+ 1 and moreover
that S satisfies the condition (1.11). Let ¢ €J, 5(I',). Then,

Cnis) (S TI0,B) (ST, %))

s—k+++4 s—4

n—1
(L17) &, 5)=1(¢, 5)+ ;0 &(j)ol(n —j)(
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CnsSi (LTI, 5 &I, %))
s—k+5+4 s—4 )7

(L18) & 9=1(6.9+ 3, a(j)v<n~j)<

where we set

L(®.9)= | 1. aye, ((detn)h*(in) + c, s s(det ) ™2 kg (in) }dv,(n) ,

detn>1

1(8.5)= | 1. czy.p, (et ) hECin) + ciits(det ) =12 ¥ (i) (1)
detn>1
Here I(¢,s) and I(¢,s) which are absolutely convergent for any s indicate entire
functions of s.

2. Modular forms of half integral weights and Cohen Eisenstein series

2.1. Kohnen plus space and Cohen Eisenstein series

In this subparagraph we recall the plus space of Siegel modular forms of half
integral weights. The plus space has been invented by Kohnen [Koh] for n=1 and
by Ibukiyama [Ib] for n>1.

Here we restrict ourselves to the case of /=1 and S=1. We note that the index
S=1 obviously satisfies the maximality condition (1.11). Let L=M, (Z)=Z7", Z"
denoting the set of integral row vectors of size n. We may choose the set

{(al’ T, an)lai=0, or 1}

as a complete set of representatives of L/2L. Then, #(L/2L)=2".
The special theta series §™(t) is given by

0"(t):=0P(1,0)= Y. e(At'd)  (1€9,).

A€l

Let I'{"(4) be the congruence subgroup of I', consisting of matrices M = < ¢ Z)el“ R
c

with ¢ =0mod 4. Denote by S,(Z) the set of integral symmetric matrices N of size n
satisfying the condition

= —A'Amod 4 Sym}*(Z) for some AelL.

The following plus space is a very convenient subspace of modular forms of half
integral weights. Let k be an even positive integer. Let M, ,(I'§"(4)) be the space
consisting of holomorphic functions f on $, verifying the conditions (i), (ii):

. 0™ (1) ab
M = k = (n)
(i) SMG)=det(er+d 00 f(s) for any M (C d)ero @),
(ii) f has the Fourier expansion

J= Y, a(N)e(tr(Nv))

NeSym¥(Z),N=0
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with the condition that a(N)=0 unless N ¢ S,(Z).
Any feM_(I'§’(4)) is said to be a cusp form, if the function

(detIm7)* 1272 f(7)|
is bounded on §,. Denote by S, ,(I'§”(4)) the subspace of M,"_, ,I'{"(4)) consisting
of cusp forms. It is remarkable that the space M, ,,,(I'§?(4)) is isomorphic to the
space J, ;(I",) of Jacobi forms of degree n, weight k, and index 1. This isomorphism
was discovered by Kohnen, Eichler-Zagier (see [E-Z]) in case n=1 and by Ibukiyama
[Ib] in case n>1.

THeEOREM 10 (Kohnen, Eichler-Zagier, Ibukiyama). Let k be an even positive
integer. Then the space J, y(I',) is isomorphic to the space M/, ,(I'§"(4)) via the linear
map o™ :(z, 2> f(2):=h(dr) =}, ;. h(41), where we write ¢ as a linear
combination of the theta series: ¢(t,z)=) . 120 1{(0)0,(1, 2). Moreover the space

JES(I,) of cusp forms corresponds bijectively to the space S, ,,(I'$"(4)) via this map.

Let r be an integer with 0<r<n and f'€S,_,,(I'{’(4)). Then f corresponds to
the unique ¢ € J{5P(I',) via 6. Namely, 6 ¢ =f. If r=0, then we understand that
¢© is the identity map of C and that f is a constant. We define a function C¥; Y/2({, 1)
by the image of the Klingen Eisenstein series E}} (¢, (t, z)) via the above 1somorph1sm

c™:
oy VA0 =0"(Es (9, (3, 2) -
If r=0 and f=1, we simply write C}~/*(t) instead of C¥;'/*(1, 1), namely
Gy V() =" (EQ)(1, 2)) .

We may call C¥~'/*(7) the Cohen Eisenstein series of degree n and C, */*(f, t) the
Cohen-Klingen Eisenstein series, since in the case of n=1, C¥~1/%(1) was studied by
Cohen [Co].

Let M;" ), denote the subspace of M, ,,(I'$’(4)) spanned by Cohen-Klingen’s
Eisenstein Series Cy, '/2(f, 1) with f varying in S;_;,(I'§’(4)):

k+(r1)/2 {Ck,r_llz(f’ T)ifesl:r—l/z(rg)(“))} .

We know by Proposition 5 that the space J, ;(I',) is spanned by Klingen’s Eisenstein
series and hence by the above theorem the space M, ,(I'$’(4)) is decomposed in
the following manner.

PROPOSITION 11. Assume that k is an even integer with k >2n+ 2. Then the direct
sum decomposition holds:

M p(F§4) = C_JBOM:?-"{/z :

2.2. Siegel’s formula for the Cohen Eisenstein series
For a positive integer m let Sym;¥, (1;Z) denote the subset of Sym}, (Z)
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M "’”) with MeSym*(Z), qe
q/2 1

M ,(Z) (see (1.4)). Let Symy, (1;Z)* denote the subset of Sym}, (1;Z) consisting
of positive definite elements of Sym,*, ;(1; Z). Note that

consisting of Qe Sym¥, (Z) of the form Q=(

0 .. 1
Sn(2)={40| Qe Symy. (1, 2)}, Q being M_Itqq .

Assume £ is divisible by 4. Denote by %5, _; the set consisting of positive definite
integral symmetric matrices N of size 2k — 1 satisfying the conditions
(1) N=-"AAmod4 Sym},_;(Z) for some Ae M, ,,_(2),
(ii) detN=4*"1,
As is given in [Ar4], 6.1, set

US3,={QeSymi(1;2)" |det2Q)=1} .

Obviously, %t ={40| Qe US3,}. In US3, we consider the B, _, ,(Z)-equivalence
classes as in 1.3, while we consider in %, _, the ordinary classes and genera.

LEMMA 12. The B,,_, (Z)-equivalence class in US3, corresponds one to one
onto the GL,, _ |(Z)-equivalence class in %5, _ , via the map: Q> 4Q. Moreover %5} _ |
consists of a single genus.

Proof. If QeUSS,, then, 40e %, _,. It is easy to see that, if Qe US;,
is B, _1.1(Z2)-equivalent with Q'e US3,, then 40 is GL,, _,(Z)-equivalent with
4Q’. Moreover the correspondence is easily seen to be surjective. Let N and N’
be GL,,_(Z)-equivalent elements in %,;_;, namely N'='"UNU with some Ue
GL,,_,(Z). Choose

M ‘q/2 M 2
Q=< a/ >e US3, <resp. Q'=< a7 >e US§k>
q2 1 q/2 1
with the condition 40 =N (resp. 40'=N’). Then, 4M' —'q'q’ ='U(4M —'qq)U, from
which ¢'—qUe2M, ,,_(Z). Hence if we put r=(q'—qU)/2e M, ,,_(Z) and y=
(U ?)eBZk_“(Z), then T'='yTy.
,

It has been proved in [Ar5] that US5, consists of a single genus in the sense
given in the subparagraph 1.3. Therefore via the above bijective correspondence the
set S, _, consists of a single genus in the ordinary sense. q.e.d.

Let S,S,, ---,Sy be a complete set of representatives of the ordinary
GL,, _ (2)-equivalence classes of S;_ ;. Let M,,_, be the mass of %;_, given by

where &(S;) = #(O(S;)(Z)), O(S;)(Z) denoting the unit group {Ue GL,;_,(Z) | 'US;U=
S;} of S;. The exact value of M,,_, is given in Theorem 0.1 (see also Theorem 2.3)
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of [Ar5] via the above lemma:

k=1 p.
2.1 My, =272 [] -2,
j=1]
where B;’s are the Bernoulli numbers given by
x & x2r
1——+ —1)y*iB,——.
2 r;( ) 2r)!

The theta series 0¢(t) attached to each S of %, _, is defined by

X

e*—1 -

6P(r)= Y. e(tr(GSGr)),

GeMay - 1,n(Z)

which is an element of M, ; ,(I'$’(4)) as we see later. Moreover we have defined in
[Ar3] the theta series 03(t, z) attached to Qe US3, which is an element of J, ;(I,).

Namely for Q=< M tq/z)e US3,
q2 1
(2.2) 09(t,z)= ), e(tr(Q[Glt+'2(4,2)G)  ((1,2)€D,,).
GeM>p,n(Z)

As we have mentioned in [Ar4, 6.2], the theta series 8§"(t) corresponds to 83(z, z)
via the isomorphism ¢™. We exhibit this fact as a lemma.

LemMma 13. Let Qe US;,. Then,

a(”)(B(Q")(*, *))(1) = 9;’%(17) .
Moreover, 0§°(z) for any S€ S5, is an element of M,/_ (I {(4)).
Proof. We may rewrite (2.2) into the form:

1
05 (t, 2= ), > e<tr<<M ——‘qq> [Gl]f>>
G1eMr—1,n(Z) G2eMy u(Z) 4

! 1 1
el (62066 a2 L))

= 2 h(®0f(t,2)

reL/2L

1
h(t)= > e(tr((M ——‘qq) [Gl]‘c>> .
G1eMa— 1 n(Z),qG1 =rmod 2L 4

" OPx, @)= Y h41)=07}1).
reL/2L

with

Thus,
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The latter assertion is a direct consequence of the former one and Theorem 10.
g.e.d.

To describe some significant properties of C¥~1/?(1) we have to recall the notion
of local densities. Assume that m, n are positive integers with m>n. Let M e Sym,(Z)*
and Ne Sym,(Z)". For each prime integer p, let ®,(M, N) denote the ordinary local
density given by

%, (M, N)= lim p=m=n* DI2g{G e M, (Z/p*Z) | M[G]=Nmod p” SymX2)} .

v— 00

Moreover for M e Sym,(R)* and Ne Sym,(R)* the local density a (M, N) at the
infinity is given by

te(M, N)=(det M)~ "?(det N)"m—n=1/2y
with
2
(4n)n(n “1)/4 n:; . F(m:‘iﬂ) .

Let Qe Symy,(1;2)", TeSym}¥.,(1;Z)*. Let o,(Q; T) be the local density defined
in [Ar3]:

ymn—_— aoo(lm’ 1") =

3,(Q; T)= lim p~m =024 (0 T,

V=00
where

x 0

ApQ; T)= #{( ’y“ )eMmH,,,(Z/pVZ) \ Q[( ) ﬂs Tmodp® Symy, 1<Z)} :

It is easily verified that, if p >2, then,
20,(Q; T)=u,(40, 4T) .
Moreover the local density o, (Q; T) is defined by
0(Q; T)=2""a, (0, T)=2""(det ) "*(det T)™ "~ DIy, .
The Cohen Eisenstein series enjoys the following beautiful expressions.

THEOREM 14. Assume that k>2n+2 and that k is divisivle by 4.
(1) The Siegel formula for the Cohen Eisenstein series holds:

k=1/2¢y _ 1 <H 9:(9';)('5)>
“ © My, jgl &(S;) .

(ii) Choose any Se %5_,. The Eisenstein series C¥~1*(1t) has the Fourier
expansion
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Cr’f h 1/2(7) = Z Ce- 1/2,n(N)e(tr(NT)) 5

NeSn(Z),N=20

where the coefficient C,._ 1, (N) for positive definite N € S,(Z) is given by

Ck—1/2,n(N)=o~£(S7 N) = 1_.[ &v(Sa N) .
Here if v=p>2, then a,(S, N) is equal to the ordinary local density oS, N). If v=2,
o0, then G,(S, N) equals a,(Q;T), where Qe US;, and Te Sym¥, (1;2Z)* are chosen
so that 40 =S and 4T =N, respectively.

Proof. Let Q,,0,, -, 0y be a complete set of representatives of the
B, 1.1(Z)-equivalence classes in US;,. Via Lemma 12 we may set
S;=40;, (1<i<H).

Siegel’s formula (Theorem 0.2 in [Ar4]) for the Jacobi Eisenstein series E{"j(t, z)

implies that
e
E"\(t, 2)= ( > %, Z)) .
My \i=1 €(Qj)

By operating the map 6™ on the both sides of the above identity, we have the identity
in the first assertion.

Choose any Q € US . We have proved in [Ar3] that the Jacobi Eisenstein series
E{"\(z, z) has the Fourier expansion:

Ef\(x, 2)= 2 e (T)e(tr(Nt +rz))

TeSym} ,,(1;2), T=0

with the expression

e(T)= 1] «(Q;T) for T>0
pP<©
(see Proposition 4.2, (5.5), Theorem 5.6 and its proof in [Ar3]). From this expression
the assertion (ii) immediately follows. q.e.d.

2.3. Kicher-Maass Dirichlet series corresponding to modular forms of half integral
weights
Finally we define the Kocher-Maass Dirichlet series attached to modular forms
of Mi_,,(T§'(4)). Let e My, »,(I'§(4)) such that ¢™(¢) =/ with ¢ € J; 1(I',), where
o™ is the isomorphism given in Theorem 10. Let

f@= Y alNetr(No) (€9,

NeSu(Z),N=0

be a Fourier expansion of f. We set, similarly as in the original case,
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a(N)
NeSa2)*/~ &IN)(det N)*

where the summation indicates that T runs over all the GL,(Z)-equivalence classes
of integral symmetric matrices of S,(Z)*, S,(Z)* denoting the set consisting of posi-
tive definite elements of S,(Z). Then D,(f; s) is absolutely convergent for Re(s)>
k+n/2. Let the Fourier expansion of ¢ be the same as in (1.5). Since f(1)=
h(47) =ZrE L2 (47), immediately, a(N)=c(T), where Te Sym}, ,(1;Z) is chosen so
that 47=N. At this step note that &(7)=g(N). Similarly as in the proof of
Lemma 12, the B, ;(Z)-equivalence class in Sym}*, ,(1;Z) corresponds one to one
onto the GL,(Z)-equivalence class in S,(Z) via the map: T—47. Thus,

D,(f,5)=4""Dy(,s) .
The operation of Siegel’s @-operator on f is defined in a usual manner:

D,(f,8):=

B

. T 0
(Zf)(r)=1lim f( . > (T€D,-1) -
t— o0 0 it
Obviously, 6"~ (L p)=Ff=F(cPp)e Mi}_, ,(T§ V(4)).
Set
N T\~ k+1/2
f@=(=1)"22n2 det(—.) f(=407™h).
i
Then we have, by Proposition 4,
N T —k+1/2
f@=(=1)227m2 det<~.> h(—1™ 1) =ho(7),
i
from which we see that f(r) has the Fourier expansion of the form

f@= Y b(N)e(tr(N1)).

NeSym¥(Z),N=0
Exactly, b(N) =c<1g ?) We define the zeta function D,(f, s) by putting
b(N)
NeSymn(Z)* |~ S(N)(det N)S '
Immediately, D,(f, s)=D (¢, s). Multiplying some gamma factors, we define
Elfs 5)=4"y(s)D,(f;s) and E(f 5)=7s)D,(] 5).

Moreover we set

D,(f,5)=

fH)=h*@4t) and [H@)=hi([).
The following theorem is an immediate consequence of Theorems 8, 9.

THEOREM 15. The zeta functions D,(f, s), D,(f, s) can be continued to meromorphic
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functions of s in the whole s plane satisfying the functional equation

ELf ) =cnilbif k—1/2—5),

where we put c, ,=(—1)"?2"2. Moreover

n—1 k”, groif (i |
EAL =L 9+ T eljln —j)(c"'s s S )> |
j= - 2772 -2

where

L(f,s)= JGLH(Z,\%{(det nYS*(in/4) + ¢, (detm)* 275 * (i) doy(n) -

detnp>1

3. Proof of Theorem 9

In this paragraph we shall give a proof of our Theorem 9. The proof will be
done in a manner similar to that of Theorem in [Arl].

From now on we assume that the index S satisfies the maximality condition
(1.11). We set, for simplicity,

RO =L"2S)L" =M, (2)/(2S)M, (Z)

for each positive integer r. Let ¢ € J, s(I',) and let its Fourier expansion be the same
asin (1.5). Moreover let A(t) and h*(z) be the same as in (1.9) and (1.16), respectively.
If necessary, we write h(t, ¢) and h*(z, ¢) in place of h(tr) and h*(r), respectively.
For each integer j with 0 <j<n, let h(t)? be the rank j-part of the Fourier expansion
of h(t). Namely,

h@m)P= 3 > o(Te(tr(Tr)) = > o(Te(tr(Tr)) .
reRgn) - NeSym’;(z) Te&\:m:H(S;Z)/B;'I"’,(Z)
T>O0,rank(T)=j T >O0,rank(T)=j
Note that h*(t)=h(t)™. We write, for simplicity,
4,=GL(2)

and for each j with 0<j<n define the subgroup 4;,_; by
V X
Aj,n—j={<0 W)‘VGAJ, WGAn_j, XEMJ‘,,_J(Z)}.

LEMMA 16. We have

ho)P= Y h*({U(’éf')}y"—qu).
Uedn/djn-j

Proof. Take any TeSym}, (Z) with T>0 and rank(7)=j. Then T can be
uniquely written as



Kocher-Maass Dirichlet Series 115

T=<U :5><1(‘)] 3 t’éz><tU 0)
0 L 12 0 S ¢ L

with {e L™, Ue 4,/4;,_;, re RY, Ne Sym;(Z), and N—%‘rS‘1r>0. If j=0, we put

T=0. Since
N 0 /2
0
c(T)=c< 0 0 O >=C<<](\)j 0),(7‘,0))
r2 0 S
and
1 _
- N——%"S % 0
T=U 4 U,
0 0
we have
h@mP= %

Uedn/djn-; reR(sf) NeSym;f(Z)
N—(1/4)trS~1r>0

(3 o peol(e((v—rsv)(wol {]))
“ 3 AT ) )

Set, for 0<r<n,

G;={< : Z)er,,
e {2

Let ¢ eJ{s°(I',). Assume k is an even integer with k>n+r+/+1. Moreover let
C™(¢, 1) and C§(¢, ) be the functions given in (1.12), (1.13). Denote by C™(¢, 1)*
and C§"(¢, 7)* the non-singular part of C"(¢, t) and C{"(¢, 7), respectively (see (1.8)
and (1.16)). The following expressions of C™(¢, 1)* and C{(¢, T)* correspond to
those of C"(¢, t) and C{(¢, 7) in Proposition 6.

q.e.d.

rank((0 1,_)c)=n— r} )

rank((0 1,_,)c)=rank((0 1,_,)d)=n— r} .

ProrosITION 17. We have

COp.0*= Y Y ) detJ(M, 1) *hy(M<y*)EM, v);,

Mel, \Gy, }.ER(S') ueR_(s")
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and

CP(p,D*= Y, Y detJ(M,v) hy(M{D*)j(M, )5 -

Mel, \GY, }.eR(s")
Proof. If r=n, then
C"¢, )=C"p,D)*= ), hy7).
}.eR(s")

In this case the first identity holds true. We prove by induction on #n. If n=1 and
r=0, then, ¢ is a constant function. Let ¢ =1. Then,

CO1,n= Y ) detJM, 1) (M, 1),

Mely 0\l ueR(sl)

from which we easily have the first identity for n=1, r=0. Let ¢ e J{'s*(I",) be fixed.
We assume that the first identity for CY(¢, 1)* is true for any j with r<j<n. Let
C™ (¢, 7)Y denote the rank j-part of C™(¢, 7). Lemma 16 and the induction as-
sumption imply that

C(¢p, )= Y C“')<¢, T[U( 1 >]>*
Uedndjn-; 0

= 2 Y Y X detJ(M, D) M (MCE*)PM, D),
Uedn/Ajn-j Mel';\G% AER(S') ueR(Sf)
where we put f-——r[U(L"):I and A=(1,0)eRY. Thus we have, with the help of

Lemma 3, (iii),

Y Y detJ(M, &) rh(M{EYNIPM, B3,

) (€]
}.eR(S’ ueRSJ

= Y ) det JUHM), ' UrU) “hy(IH(M) UrUD)*)js (M), *UrU) s, 01,

leR(S’) usR(s">

Therefore by a little more computation with (1.6) and Lemma 3, (i),

C(¢p, )= ) Y, detJIM)(U), )7

MsI',-,AG; Uedn/djn-j

x Y Y h(GM)AUXONPGMA(U), Doy

leR(S') ueR(s")

G;’f={<j Z)ern

Then by Lemma 2 of [Arl],

Set

rank((0 1,_,)0)=j— r} .
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‘U 0
l}’(M)<O U‘1> with Mel;,\G; and Ued4,/4;,_;

give rise to a complete set of representatives of the cosets I, , \Gy’. Since
n—1 .
G,’,u< U F,,,,\G,',J) (disjoint union)
j=r

gives a complete set of representatives of the cosets I, ,\I', and

—1

C(g, )= C(P, 1) — 3. CP(, 7),

j=r
we obtain the first identity. The second one is similarly verified. q.e.d.

Let ¢peJisP(I',). Taking the expressions in Proposition 17 into account, we
define the functions P} ,(t, ¢), OF (t, ¢) as follows:

Pi(n, )= Y Y ) detJM, 1) hy(MCDH¥)js(M, 1),

Mel,,\G¥ leR(S") ueRg')

Ok(r, o)=Y Y detJ(M,v) *h(M{T)®)js(M, )7 -

MeTl, \G¥ }.eRg)

If r=n, we have

Pl oz, ) =h(t)=h*(x), Oy.t, d)=ho(r)=hE(7).
Then we have the transformation formula for exchanging t— —t~ .

PROPOSITION 18. Let 0<r<n and ¢ € JJ§™(I",). Then,
7 \k—U2
Pr’;,r( -1 1, ¢) = cn,k,S det <_> QII:,V(T’ ¢) .
i

Proof. 1t follows from the definition that
Pi (=171, p)=detJ(J,, 1)

x Y Y Y detJ(MJ,, 1) *hy(MJ, L) R)s(M, I, )3, -

Mel, \G¥ leRg‘) /,tER(S")
Note that
jS(M’ Jn<1'.>) =jS(MJn, T)jS(Jm T)_ ! .
Since Lemma 3 implies that
T\ V2 1
Js(Ju )~ =det| — det(2S) "2 e[ —tr('AS ~'p) ,
1 2 l,ueR(S")

we have, by a little computation,
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. T\
2, Js(M, J,{1)5,=det(2S)"? det (7) JsMJ,, D)7 -

ueR®
Thus using the fact G¥'J, =G, we have the transformation formula. g.e.d.

Then the functions C™(¢, 1)*, C¥(¢, 1)* can be expressed in terms of the
functions Py,, Of,.

ProrosiTioN 19. Let 0<r<n—1 and ¢ € J{S*(I',). Then,

C(”)(d)a T)* =Pr,:,r(7:7 ¢)
—k+1l/2n—-1 O
I oi(~tuy: 1[ N ] ).

j=r Uedn/dn-j,; j

CeUp, 1)* = 0% (1, )
7\ “kHU2 =1 1.
+Cnis det(—.> > )y P,’f,r<((—f)_1[U])[ }], ¢> .
i J=r Uednf/djn-; 0

Proof. For any subset ® of I',, set ®J,={MJ,| M € G}. On the right hand side
of the first identity in Proposition 17 we replace M with MJ,. Then we have

C"p,1)*= Y Y, ), detJ(MJ,, 1) *hy(MJ,()*)js(M I, )3, -

Mel, \GJ, leRg‘) ueng")

We know from Lemma 3 that

. T\
2, Js(MJ,, 1)7,=det(28)"? det(7> JsM, J,<1))5 -

leR‘S'”

Set, for each j with r<j<n—1,

. ‘U 0
orfon( )

Lemma 4 of [Arl1] asserts that the disjoint union

n—1
ar n,r\G,.*’)U< U Rﬁ)
j=r

gives rise to a complete set of representatives of the cosets I, , \G,J,. Therefore,
C™(¢p, 7)*
= 2 X ) detd(MJ, 1) h(MILD)MEMI,, 1), -

Mel, \G¥" leRg) ueRg,")

T —k+1/2
+c, i sdet (—)
i

n—1
x Y Y Y detJM, —t7 Y K (M{—1T D)R)iM, —1 Y3,

Jj=r Me&r,J }.eR(S’)

Mel'; \G}", UeAn/Aj,n_j} .
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from which the first identity of the proposition follows. The second one is quite
similarly verified. q.e.d.

Let ¢ € J, 5(I',). By the structure theorem (Propositon 5) of the space J, (I',),
¢ is written in a linear combination of the Klingen Eisenstein series:

(3.1 P(z, 2)= ZO Ei¥ (¢ (1, 2))
with some ¢, € J;%P(I',). This expression is uniquely determined by ¢. Set
Pz, 9)= Z,O Pz, ¢,) and Qt, ¢)= ZO O, ¢,) -

In virtue of Proposition 18, 19 these functions satisfy the following properties.

PropoSITION 20. Assume k>2n+1+1 and k is even. Let ¢ J, o(I',). Then,

k—1/2
Pn(_T_ 19 ¢)=Cn,k,5 det <%> Qn(Ta ¢) .

Moreover,

—k+U2 n-1 . ‘
h*(t)=P,(z, ¢)+c-det<r> Y > Qj<((—‘c)_1[U])|: 1)1:|’yn_]¢>’

i J=0 Uedn/djn-;
T —k+1/2 n—-1 0 '
hE(r)=Q,(x, ¢)+c‘1'det<—’> Z Z Pj<—(‘[[U])_l|: :l’yn—J(p),
1 j=0 Uedn/dn-j,; 1;

where hi(t), h*(t) are the functions determined by (1.8), (1.16) respectively from ¢
and we put, for simplicity, c=c,; s.

)

1;4)°

Proof. The first transformation formula is immediately derived from Pro-
position 18. We write ¢ in the form of (3.1). Then

REMARK. We note here that, for any function F on §;.

1.
) F<((—T)"1[U])[ 0’ ]>= ) F(—(T[U])“l[
Uedn/djn-; Uedn/dn-j,j

if the concerned infinite series is absolutely convergent.

n

W)= 3 C¥(g,. 1) and k@)=Y C(g,, 1)* .
r=0

r=0

Note by the property of the operator & (Proposition 5) that
j

&I, D= Y B, (D) (@2)eDy).

r=0

Then by Proposition 19 and the definition of Q;(x, ¥" /¢),



120 T. ARAKAWA

n T —k+1l/2n-1n-1 0
h*(z)= ;)P,’.‘,r(f, ¢r)+6'det< ) 2 ZZQ}Z(—(T[U])”[I.], ¢r>

i r=0 j=r U

—k+1/2n-1 j

=P, ¢)+c-det<%> ;g ;0 Q,’i,<—(r[U])—1[ ?. ] ¢r>
—k+1/2 n—1

=P,(t, §)+c odet<:> -;0§Qj<—(T[U])_1|: :) :|’ yn—j(b) ’

where the summation with respect to U indicates that U runs through all representa-
tives of 4,/4,_; ;. Thus we obtain the formula for #*(r). The last one is similarly
verified. q.e.d.

Finally we reformulate Theorem 9 in a convenient form and give it a proof.

THEOREM 21. Assume that the index S satisfies the maximality condition (1.11)
and that k is an even integer with k>2n+1+1. Let ¢pJ, (I',). Then the functions
EL. s), &,(¢, 5) can be continued analytically to meromorphic functions in the whole s-
n—1,

o

. . . . . n—1 I
plane and have the integral expressions in the vertical strip n_2_ <Re(s)<k —5

S, s) =J (detn)*P,(in, p)dv,(n) ,

An\Pn

9, 9) =J (detn)*Q,(in, d)dv,(n)

A4\ Pn

where the integrals are absolutely convergent in the same strip. Moreover, the expres-
sions (1.17) and (1.18) for & (¢, s) and & (¢, s) are valid for any seC.

Proof. The proof is done by induction on #n. If n=1, then the assertion can be
shown in the same manner as in the original elliptic modular case of Hecke. Assume
that the assertions are valid for any Jacobi forms of degree less than ». In a usual
manner we have

Eb )= .., h*(in)(det nrdvnm)ﬁm h¥(in~*)(det ) ~*dv,(n)
d

detn>1 etn>1

=1,(¢, )+ f ang, n” Y — o s(detn)*~2hg(in)}(det ) ~*dv,(n) .
detn>1

By using Proposition 20, the difference h*(in~*)—c, ,.s(detn)*~/?hi(in) in the last

integral is equal to

n—1 . )
Cops(detm)™2 3y Qj<i(n[U])[ i)l ] yn—up)

Jj=0 Uedn/djn-;j

) P,-(i(n[tﬂ)'l[f ] V"-qu).

Jj=0 Uedn/dn-j,;
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Quite in the same manner as in the proof of Lemma 5 in [Arl], we can evaluate
the explicit values of the concerned integrals under the induction assumption.

LeEMMA 22. Let j be any integer with 0<j<n—1.
(1) If Re(s)>j/2, then

fa,.\g,. (detp)™ ) <’(’7[U]) 1|: ] g ’¢>dvn(n)
detn>1 Uedn/dn-,j J

1 i
—8(J)v(n—1) —n é( b, 2)

and

0
fAn\@,, (detn)™* Z Qj(i(’?[U])_l[ |
detp>1

Uedn/An-j,;

n Jj 1
/2€’< ¢’2>'

fAn\g,, (detp)™ ) Q;(l('?[U])[ ] g ’d))dv,,(n)

detn>1 Uedn/djn-j

1 .
—s(J)v(n—J) /2 ( i, >

[

Jj

=eljoln—j)—

(i) If Re(s)> —j/2, then

and

JWH (detm)™ ) <(f1[U])[ ]y" ’d))dv,,(n)
detn>1 Uedn/Ajn-j

=aljhtn—) ! = ( i, )

Thus using Lemma 22, under the induction assumption we have, for Re(s) >k —1/2,

the identity (1.17) and quite similarly (1.18). On the other hand we see from
I

)<k—7—

n—1
2

>

f (detn)*P,(in, ¢)dv,(n)
4.\ Py,

= L"\gn {(detn)*P(in, )+ c,ps(detn) "2 720, (in, ¢)}dv,(n)
d

etn>1
Cn,k,sfj(y"_j¢3 D L@ Te, %))
s—k+5+4 s—%

n—1
= n(d)’ S) + ~;0 s(j)v(n —J)<
=9, 9).
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Quite similarly we have the integral expression for &,(¢, s) in the strip n—;l<R_e(s) <

1

k—"t_
2

[Arl]
[Ar2]

[Ar3]
[Ar4]

[Ar5]
[Co]

[Du]

[E-Z]
[Ib]

[Ko]

[Koh]
[Ma]

[Shn]
[Si]
[zi]

n—1

. Thus we have completed the proof. g.e.d.
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