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Introduction

Let m>1 be a natural number and K= Q({,,) the m-th cyclotomic field. Let p
be a prime number which does not divide m, and p a prime ideal in K lying above
p. We denote by f the order of p in (Z/mZ)* and put g=p”. Following Weil [14],
for each integer n>0 and for each (n+2)-tuple a=(aq, * - -, a,+ ) €(Z/mZ)"*? such
that ay+ - - - +a,, =0, we define the Jacobi sum by

1
Ja(p)=ﬁ Z . Xp(xo)ao' : 'Xp(xn+ 1)‘1"+1 5

q— 1 xo, %+ 1eFg
Xot o+ Xn+1=0

where y, denotes the m-th power residue symbol. Obviously J,(p) is an element of
K. If a;=0 for some (but not all) i, then one can easily see that J,(p)=0. In view of
this fact, let us consider the following set

QI'L:{(QO, Ay, "0, an+1)e(Z/mZ\{O})”+2|a0+a1 +- +an+1=0}

(see [13]). Then it is known that J(p)#0 for any ae},.

In some cases we can compute the Jacobi sum explicitly. For example, if « is of
the form (ay, —ay, - - *, a,, —a,), then J(p)= + q"(see Proposition 2.5). More generally
Hasse-Davenport’s relations of Gauss sums enable us to get explicit formulae of J (p)
for “standard elements” a (see Proposition 4.2). However, it seems rather difficult
to determine the exact value of J (p) in general, so we consider an easier problem
instead:

(0.1)  Determine the field Q(/,(p)) generated over Q by the Jacobi sum J,(p) .

In a series of papers [7], [4], [10], Ono, Kida and Gyoja treated this problem. Their
principal idea is to bound the Galois group G(J(p)):=Gal(K/Q(J(p))) from both
above and below:

0.2) G SGUp)SG*(UP))

where G(p) is the decomposition group of p and G *(J(p)) is the stabilizer in Gal(K/Q)
of the ideal (J(p)) in K. Therefore, if G(p)=G*(J,(p)), then O (p)) coincides with
the decomposition field of p. They showed that this equality holds for the elements
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of the form a=(1, ---, 1, —n)e A" ! under certain conditions on m, n and p.

The purpose of this paper is to generalize their results in several directions. For
that purpose we improve (0.2). To state our main results, we fix some notation.
In what follows we identify Gal(K/Q) with G: —(Z/mZ)* in the standard man-
ner; t€ G o,:=((,,—{)eGal(K/Q). Then G(p)={1,p, ---,p/ "'} =G under this
identification. We let G act on %, by setting ¢+ (aq, ** *, 8,4 1)=(tay, * - *, ta, ) for
teG. For any two elements «, f e U, we write o~ f if « equals f up to permutation
of the components. If n=2r is even, we denote by D” the set of elements e A7,
such that a~(ay, —aq, " *, a,, —a,) for some q;. Let

: +2)f-2
if vaeDGrA2,

0.3
©-3) Glp)= {{teG|t va~v,a}  otherwise,

where v,ae AL 2/ ~2 denotes the iteration of f elements o, p- o, - -+, p/ "1 - . (See
Section 1 for the precise definition of the “product” v,«.) It is then easy to see that

G(p)= G,(p). Moreover let
n+1 f—1 tp’a n+1 f—1 pjai
£ (L) (el
i=0 j i=0 j=0 m

where, for each ae Z/mZ\0, < > denotes the rational number such that 0 < < > <1
m

0.4) GXp)= {teG

and m<;>za (mod.m). Clearly G,(p) is a subgroup of G}(p). The following
theorem then gives a refinement of (0.2).
THEOREM 0.1 (cf. Theorem 5.1). Notation being as above, we have
(0.5) GP)SGUp)=GX(p) -
In particular, if G,(p)=GX(p), then Q(J(p))=KP,

We shall see that G ¥( p) coincides with G *(J,(p)) (see Remark 5.6). So, comparing
(0.5) with (0.2), the new point is the left incusion. Using a result of [1], we can give
a sufficient condition for the equality G,(p)=GX(p).

THEOREM 0.2 (cf. Theorem 5.2). Suppose that one of the following two conditions
holds:

(i) m is either 4 or a prime number; or

(ii) every prime factor of m is greater than 2(n+2)f.
Then G p)=G*(p) (hence Q(J(p))=KP) for any a e A",

For a=(ay, - -, a,,,) €N, we say that a is non-degenerate if

5 () o

for all odd Dirichlet characters y of G. We will show that G¥(p) coincides with G(p)
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if o is non-degenerate (Lemma 6.2). This fact leads to the following theorem,
which has been proved by H. Yanai when m is a prime number.

THEOREM 0.3 (cf. Theorem 6.1). If —1¢G(p) and o is non-degenerate, then
OJ (p)) is the decomposition field of p.

For example, if m is a prime number and » is prime to m, then a=
1, -, 1, =n)e A"~ 1 is always non-degenerate ([10]). (See also Remark 6.6.) Thus
this theorem may be regarded as a generalization of [4], Theorem 2, and the proof
is essentially the same as the argument in [10].

When m is a power of an odd prime, we can give a complete answer to (0.2)

THEOREM 0.4 (cf. Theorem 7.1). Let m=1° be a power of an odd prime. Then
O () =L(), where L= K% and { is an 1°~*-th root of unity which can be computed
explicitly.

When n=1 and p=1 (mod. m), we can also give an almost complete answer to
(0.2). To state it we define a finite set of natural numbers by

{12, 15, 20, 21, 24, 26, 28, 30, 36, 39, 40, 42,

(0.6)
48, 54, 60, 66, 72, 78, 84, 90, 120, 156, 180} .

Anelement a=(aq, - -, a,+ 1) € Ak is said to be primitive if GCD(m, dy, - - -, d,+1)=1,
where d;’s are any integers such that d;=q; (mod.m). For any divisor d of m we
denote by K| the d-th cyclotomic field Q((7/4).

THEOREM 0.5 (cf. Theorem 8.1). Suppose m¢ & and p=1 (mod. m). Let o€ A},
be a primitive element. Then the following statements hold.
(i) Suppose 4 | m and o.=(a, a, —2a). Then

Km/2 if Xp(z)z =1,
K, otherwise .

AJ,(p)= {

(ii) Suppose 8|m and a=<a,%+a,%—2a>. Then

Km/4 if Xp(2)4 =1,
K2 otherwise .

oJ.(p)= {

(ili) In the other cases, we have Q(J (p))= K%P,

The contents of this paper is as follows. In Section 1 we define some basic
notations, and is Section 2 we recall fundamental results about Gauss sums and
Jacobi sums. Section 3 concerns with Stickelberger’s theorem and some related results.
In Section 4, after defining standard elements, we state a theorem of Yamamoto on
the “gap group” in a different style from the original one. In Section 5 we give more
precise definition of G(p) and G¥(p), and prove Theorem 0.1 and 0.2. In Section 6
we define non-degenerate elements, p-simple elements and simple elements, and discuss
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their interrelations. The proof of Theorem 0.3 is given there. Section 7 and 8 are
devoted to the proof of Theorem 0.4 and 0.5 respectively.

I would like to express my thanks to Professor Takashi Ono for his fascinating
lectures in Japan which led me to this topic. I would also like to thank Professor
Hiromichi Yanai whoe suggestion was very useful in writing Section 6.

1. Preliminaries

Let R,, be the free abelian group generated by the elements of Z/mZ\{0}. An
element of R,, will be written as

Yela)  (c.eZ),
where a runs over Z/mZ\{0}. For any a, be Z/mZ\{0}, we define the product of (a)
and (b) in R, by the rule:

(ab) if ab#0,

(a)(b)={0 if ab=0.

We can naturally extend this definition to the whole R,, to get a multiplication law
in R,,. Thus R,, becomes a commutative ring with the unit (1). If we put G = (Z/mZ)*,
then R,, admits a G-module structure by letting

t-Y.cla)=} c,ta)
for teG. For n>0, we write (ao, - - -, @, ,) for nf (@;)e R, and denote by R" the
set of such elements. Let -

Ri=1J Ry,
n>0
Now we consider the ring homomorphism ¢ : R,,—Z/mZ defined by
(1.1 P cda)=) ca,
which is obviously a G-homomorphism. Let 4,,=ker ¢ be the kernel of ¢:
A,={Y cla)eR,|Y c,a=0}.
Furthermore we consider the following subsets of A4,
An=A4, "R, Af=A4,0R} .

Note that there is a natural identification 47%,=9"/~, where A" and ~ are as in
the introduction. Let D, =(1, —1)R,, be the ideal of R,, generated by (1, —1) and put

D"=D, N A"

for any n>0. Thus, if n=2r is even, then D7, consists of elements of the form
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(ag, —ag, * * *, a,, —a,) (hence D}, =D%/~). On the other hand, if » is odd, then Dy,
is empty.

2. Gauss sums and Jacobi sums

In this section we recall some basic results on Gauss sums and Jacobi sums
which will be needed later. For details we refer to [6] or [9]. Let m, p, p and g be
as in the introduction. Let yu,, be the group of m-th roots of unity in K. Then the
m-th power residue symbol is the homomorphism

Xp: F§ = phn
characterized by the relation
xp(x)=x@" V™ (mod. p) .

Here we have identified F, with the residue field of p. Let y,: F,—pu, be the
additive character defined by ¥ ,(x) =exp *®7®?, where T denotes the trace map from
F,to F,. For ae Z/mZ\{0}, we define the Gauss sum by

gulp)= ZF 1) p(x) (€K,

which is known to be non-zero. The following properties are fundamental.

2.1 9uP)g-P)=1(—1)’¢ and |g,p)|=¢"">.

Davenport and Hasse discovered a beautiful relation (Davenport-Hasse’s relation)
between Gauss sums.

THEOREM 2.1. Let | and d be divisors of m such that m=1d. Then
-1 I-1
22) T gaid®) =17 - 9ulw) I giw).

Proof. See [9], Chap. 2, Theorem 10.1. O
Following Weil [14], for a=(ag, * * *, a,4 1) € W}, we define the Jacobi sum by

1
J(p)=— z ) Xp(xo)ao. . 'Xp(xn+1)an“ .

q_l X0, "y Xn+1€F
xo+~~+x,.+1=00

Obviously J,(p) is an element of K. Gauss sums and Jacobi sums are related by the
formula (2.3) below.

THEOREM 2.2. Ifa=(ag, " *, ap+1)E UL, then

1
2.3) Jup) = aoP)" " Ga,.(P) -

Proof. See [6], Chap. 8, §5, Theorem 3. O
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It is clear from the definition that J,(p) depends only on the class of o in 4.
In other words, if a~f, then J,(p)=Jy(p). From now on we suppose that J,(p) is
defined for ae 4,}.

For any ae Z/mZ\{0}, let

gd(p)
V(=D

where the sign of the square root in the denominator is chosen so that its imaginary
part is positive if y,(—1)*<0. Furthermore, for a=Y c(a)e R,, let

em)=] T e.p) .

&p)=

Then, for ae 4}, Theorem 2.2 is equivalent to the following formula.

24 £p)=J,(p)g " .

Note that ¢,(p)e K(u,) if p>3 and ¢,(p)e K(;/2 ) if p=2. Since p is prime to m, we
can make Gal(K/Q) act on g,(p) through the canonical isomorphism Gal(K/Q)=

Gal(K(u,)/Q(pp)) if p=>3 and Gal(K/Q)=Gal(K(\/2 )/Q(/2)) if p=2. This action is
given by

(2.5) &p)*=¢.p) (teG).

Since g,,(p)=9g.(p) (see [9]), &,p)°» =¢,(p) for any ae R,,. This fact will be useful in
later sections.
Using (2.1) and (2.5) we can easily see that

(2.6) eP)=e1),(P) and |e(p)|=1.

Therefore, if ¢,(p) is a unit in K, then ¢,(p) is a root of unity in K.

3. Stickelberger’s theorem

For a=(ay, a4, - -, a,,,)€ AL, we put

n+1 R
laf =Y, <ﬁ>—1‘
i=0 m

Then ||| € Z and 0< ¢+ «f| <n for any 1€ G. Moreover we have a symmetry
(3.1 ol + | —elf =n.

Let us define a Stickelberger element as an element of the group ring Z[Gal(K/Q)]
defined by

w(e)=, llt-alo=} € Z[Gal(K/Q)] .

teG
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The following theorem is due to Stickelberger.

THEOREM 3.1. The prime ideal decomposition in K of the ideal (J (p)) generated
by the Jacobi sum J (p) is given by

() =p°@.
Proof. See [6] or [9]. [l

Let f be the order of p in G. Then the decomposition group of p is the cyclic
group generated by o, and it corresponds, under the identification Gal(K/Q)=G in
the introduction, to the group

(32) G(p:={Lp, -, p'"1}=GC.
Letv,=(1, p, p?, - -, p’ ~')e R}, >. Then Stickelberger’s theorem may be rewritten as
(3:3) )= [I plevwelle=d,

ue G/G(p)

where the product is taken over the representatives of G/G(p). As an example, let us
consider the case o€ D},. Then from (3.1) we have ||z -« =% for all 1€ G. Therefore
Stickelberger’s theorem implies that

() =p"? Luco 7= (NP)"? =(¢"?) .

Actually we have J(p)= +¢"* (see Proposition 4.2).
Now, it is useful to consider the additive homomorphism

6: R, — O[Gal(K/Q)]
defined by

(3.4) 0<§ca(a)>=t§6§ca<<%’>—%>a =y

Then 6 is a G-module homomorphism in the sense that we have
0((t)) = o,6(c)

for all teG. For a€ A%, two elements w(x) and 6(x) are related as

0(a)=a)(oc)—% Y o,.

teG

Let B,,=ker 0 be the kernel of 6, and put

B"=B,nA" and B, =) B",.

n=0
We easily find that Bj, is empty if # is odd, and that for n=2r
B ={acAk||t-a|=rVieG)}.
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Furthermore we put
Bi(p)={aecdl|v,auecBEtDI 2}
It is then clear from the definition that the following inclusions hold:
DLCBLS B (P A,

For any ae 4}, (3.3) shows that (J,(p))=(¢"?) (i.e., &,(p) is a unit of K) if and only
if a € Bj( p). But the following stronger result is well known.

PROPOSITION 3.2. Let u(K) be the set of roots of unity in K. Then, for o€ A",
we have ¢,(p) € w(K) if and only if o€ B%(p).

Proof. This can be proved by combining Theorem 3.1 and (2.6) with
Kronecker’s theorem on units in algebraic number fields. For more details, see [13],
Lemma 3.1. O

If —1eG(p), then we can easily see that Bj(p)=A%, and so this proposition
implies that ¢,(p) is a root of unity in K for any a € 4,,. But we can say more in this case.

ProposITION 3.3. If —1€G(p), then ep)==+1, hence QJ(p)=Q for any
aeAd}.

Proof. 'This follows from (2.4), (2.5) and (2.6). For details see [13]. O

REMARK 3.4. The subsets B}, and B(p) of A, defined in [13] correspond to
our By, and B;(p) respectively, namely B =B!/~ and B"(p)=B"(p)/~.

4. Standard elements

Let / be a divisor of m and put d =%L For each ae Z/mZ with la+#0, we define
the standard element by

(@atd, -, a+(—1)d, —la) if 7 isodd,
a”“={<a,a+d, < a+(I—-Nd, —la, %) if [ iseven.

Note that o, ,=(a, —a)e D).
PRrOPOSITION 4.1.  Letn=1[—1orlaccording aslis odd or even. Then o, ,€ BY,.

Proof. 1t is clear that o, , belongs to 4%,. We consider only the case / is odd.
(The proof for even /is quite similar.) Since ¢ - 0, ,= 0, ,, for any te(Z/mZ)*, we have

only to prove that |g, | =% for all ae Z with 0 <a<d. But in this case, we have

Il a+id m—la -1 n
loLall= > + —1=

i=o m m 2 2
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Hence the proposition holds for odd /. O

Thanks to Hasse-Davenport’s relation (2.2) we can calculate Jacobi sums
explicitly for standard elements.

PROPOSITION 4.2. Let a=a0,, be a standard element defined above, and let n be
[—1 or [ according as | is odd or even. Then

To)=1(—=D) """ .
In particular, Q(J(p)) = Q(xp(—1)").

Proof. Forl=1wemust show that J, _,(p)= x,(—1)*. But this is an immediate
consequence of (2.1) and (2.3). Next suppose /> 1 is an odd divisor of m. (We prove
the proposition only for odd / since the proof for even / is quite similar.) By
Davenport-Hasse’s relation and (2.3), we have

1 -1 -1
)= ( l:[0 ga+ia(v)>g—za(p) = (= D777 l:[1 gidp) -

Since g;4(P)g —ia(P) = 1»(— 1) by (2.1), the last formula equals y,(—1)""*¢“~ V2. The
proposition now follows. O

Let S,, be the submodule of B,, generated by standard elements. It is not hard
to see that S, is a G-submodule of R,, generated by g, ,’s, where [ is either 1 or a
prime factor of m and d is a divisor of m such that /d#m. Proposition 4.2 then

enables us to compute g(p) for any aeS,; if a=Yp; 01.4€S,, Wwith some
1,d
B.a€ ZIG]= R, then

(41) 8a(p)=gxp(_[)—¢(ﬂl,d)l .

It is clear that 4% = B% = D%. The following theorem shows how B, differs from S,
when m> 2. The quotient group B,,/S,, is called the gap group.

THEOREM 4.3. Suppose that m>?2. Let r be the number of prime factors of m.
Then B,/S,~Z]2Z®, where s=2""'—1 (resp. 2"72—1) if ord,m#1 (resp.
ord,m=1). In particular, if m is a power of a prime, then B,=S,, that is, every
element of B,, is generated by standard elements.

Proof. Thisisessentially equivalent to Theorem 3 of [15], although his notation
differs from ours. (See also [11].) In this formulation this is implicitly proved in
[11. O

This theorem, together with Proposition 4.2, enable us to compute ¢,(p)* for
any a€B,, so we get the value of &,(p) up to sign.
Let us illustrate the theorem above in the case where m=1,1, is a product of two
odd prime /; and [, both of which are congruent to 3 modulo 4. We may (and do)
b

suppose <I_>=l without loss of generality. In this case we have B,/S, ~Z/2Z by

1
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the above theorem. Therefore, if we take an element o€ B,,\S,,, then B, is generated
by S,, and «. Let g,, g, be any generators of (Z//,Z)* and (Z/1,Z)* respectively, and
let a,, a, be elements of (Z/mZ)* such that

{gf (mod. 1,) { 1 (mod.l,)

a = a,=

1 (mod.l,), g3 (mod.l,).

Then the element defined by

(42)  a=(Lay, a2 )L ay, -, ale I e gl 0222

gives the generator of B,/S,,. In order to see that 2z€S,,, let ¢,, &, be elements of
(Z/mZ)* such that

. ={—1 (mod. ;) ={ 1 (mod.l,)
L1 (modh), T l—=1 (mod.l,).
Then &;6,=—1, and so

4.3) 2()=(1, &)+ (—&)1, &) (mod.D,).

Moreover we have
_ . (2-3)2
(1> 81)0‘=(19 02, T, a(22 i )O-ll, 1

and (L e)a=(l,ay, -+, al*"3%g, ; (mod.D,).
Therefore the formula (4.2) implies that 2a€ S,,.
ExAMmPLE 4.4. If m=21 (I, =3, [,=7), then the element defined by 4.2)is
a=(1, —3)1,4,16)=(1, 4,9, 15, 16, 18) e 45, .
In this case we have
20=0,,+(1,4,16)05; (mod.D,,).
It follows from Proposition 4.2 and (4.1) that
£P)* =22,(P) =17~ p3 ™) H4H 10 = 1 (777),
and 50 &,(p)= £ x(7)". Therefore J (p)= +x,(7)7¢>.

5. The groups G,(p) and GX(p)

For each a€ R,, we consider two subsets G, and G¥* of G defined by
G,={teG|t-a=a (mod.D,)},
G¥={teG|t-a=a (mod. B,)} .

Note that both G, and G¥ are subgroups of G since both D,, and B,, are G-modules.
Moreover, since D,, is a submodule of B,, G, is a subgroup of G¥. Letting
v,=(1,p, -+, p/ 1) be as in Section 3, we define
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Gp)=G,,., GHpP=C,.
It is not hard to see that
G, if v,xeD,,,
{teG|t-va=v,a},  otherwise.

(.1 Ga(p)={

In particular, G,(p) coincides with G whenever G(p) contains —1. The following
inclusions are clear from the definition:

(5.2) G(p)=G,,.SGAP)SG3(D) -

We say that o is weakly p-simple (resp. weakly simple) if the equality G (p)=G¥(p) -
(resp. G,=G¥) holds. '
Following [10], we define two subgroups G(J,(p)) and G*(J,(p)) of G by
GUp) ={teG|LHp) =]/},
GH*Jp)={teG|(Jp) =(T(p))} -

Then we can state one of our main results as follows.

THEOREM 5.1. Let the notation be as above. Then

GAP)SGUAP) =G (D).
In particular, if o is weakly p-simple, then Q(J (p))=K%®.

The following theorem provides a sufficient condition for every element of A4},
to be weakly p-simple.

THEOREM 5.2. Suppose that one of the following two conditions holds:
(i) m is either 4 or a prime number; or
(ii) every prime factor of m is greater than 2(n+2)f.
Then every element A" is weakly p-simple, hence Q(J (p))=K® for any ae A},

Proof. Let ac A". Then, by definition, G (p) (resp. G¥(p)) consists of elements
teG such that (¢, —1)v,0e DZ** 2/ "2 (resp. (t, —1)v,ae BX"*?/~2). Now we have
the following result.

LemMa 5.3 ([1], Theorem A). In order that Bl,=D?%, it is necessary and suffi-
cient that one of the following conditions holds:

(i) m is either 4 or a prime number; or

(ii) every prime factor of m is greater than n+2.

If one of the condition (i) or (ii) of Theorem 5.2 holds, then this lemma implies
that B2"+2/-2= p2m+2/ -2 Therefore G,(p)=G¥(p) as required. ]

To prove Theorem 5.1 we need two lemmas.

LeEmMMA 5.4. Ifac A}, then
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(5.3) G ) ={te G¥(D)|&¢ - 1aP)=1} .
Proof. The proof proceeds as follows: Let te G. Then
1e G(J,(p))
< &.4(p)=2,(p) (by (2.4) and (2.5))
<&, —1aP)=1 : (by (2.6))
< (t, —DaeB2*(p) and ¢, _;,p)=1 (by Proposition 3.2)
<1eG¥(p) and g, _;,(p)=1 (by the definition of G*(P)).
Thus (5.3) holds. O

Lemma 5.5. HYG(p), R,)=0.

Proof. Wefirst note that R,, is isomorphic to a direct sum of some G( p)-modules
of the from Z[G(p)/H] with some subgroups H of G(p). But, using the inflation-
restriction exact sequence, we can easily see that H(G(p), Z[G(p)/H])=0 for any
subgroup H of G(p). This shows that H(G(p), R,)=0 as required. O

Proof of Theorem 5.1. 1If v,aeD,, then the assertion holds since G,p)=
G;(p)=G by (5.1). So we may assume that v,a¢D,. By Lemma 5.4 it suffices to
show that the inclusion G,(p)=G(J,(p)) holds. Let te G(p). Then t-v,a=v,a by
(5.1) again, and so ¢-a—a belongs to , R,, the kernel of the multiplication by v,
in R,. Since G(p) is a cyclic group generated by p. Lemma 5.5 shows that
A, =((p)—(1))4,,. Therefore we can choose an element Be 4,, such that

tra=a+((p)—(1)B,

Vp

or equivalently
(t, —Da=(1, —Da+(p)—(1)B.
Since &,(p)°* =¢,(p) and g _),(p)=1 by (4.1), this shows that
&¢,-1dP)=1.
Hence G,(p)< G(Jy(p)). O

REMARK 5.6. As we have mentioned in the introduction, the new point of
Theorem 5.1 is the first inclusion. Indeed, the second inclusion follows from (0.2)
since the equality

(54) G*(Jp)=GX(p)

holds. This can be proved as follows. Let teG. It then follows from (3.3) that
te G*(J (p)) if and only if the equality

llew = vyol = Jlue = vyl

holds for all ue G. But this is equivalent to the condition that ||u - (t, — 1)v,«| should
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be independent of ue G. Therefore, te G*(J,(p)) if and only if (t, — 1)ae BZ"* (p),
which proves (5.4).

6. p-simple elements and non-degenerate elements

For any a€ 4,, we say that o is p-simple if G¥(p)=G,,. By definition, we have
G,, =G p), or more precisely

_{G, if —1eG(p),

(6.1) .
G(p), otherwise .

It is clear from (5.2) that a p-simple element is always weakly p-simple.

Let 0 be the homomorphism defined in (3.4). An element a€ 4,, is said to be
non-degenerate if y(6(x))#0 for any odd character y of G, and degenerate otherwise
(see [8], [16]). Here y is called odd if y(o_,)=—1.

THEOREM 6.1. If —1¢ G(p) and o is non-degenerate, then Q(J (p)) coincides with
the decomposition field of p.

Note that the condition of G(p) is necessary. Indeed, as we have seen in
Proposition 3.3, we have Q(J,(p))=0 if —1eG(p).

LEMMA 6.2. Every non-degenerate element is p-simple.

Proof. It follows from the definition that the necessary and sufficient condition
for 1€ G to belong to G¥(p) is O((t, —1)v,®)=0. It is easy to see that this is equivalent
to (o,—1)v,0(0)=0, where v, is identified with the element Y. o,e Z[Gal(K/Q)]. If

teG(p)
o is non-degenerate, then x((g,— 1)v,)=0 for all odd character y of G. It then follows
that
(o,— 1), e Z[Gal(K/Q)]" :=(0_,+ 1)Z[Gal(K/Q)] .
But it is not hard to see that this occurs only when t€ G, . Therefore 1€ G¥(p) if and
only if te G, . Thus G§(p)=G,, as required. O

Proof of Theorem 6.1. Theorem 6.1 is immediately follows from (6.1) and

Lemma 6.2. O

In what follows we discuss the interrelations of non-degenerate elements, p-simple
elements and weakly p-simple elements. Note that we have proved the following
implications:

(6.2) non-degenerate = p-simple = weakly p-simple .
But the converse implications do not always hold. First we give an example of a
weakly p-simple element which is not p-simple. Suppose m(>3) is a prime and f is

odd (hence —1¢G(p)). Then every element of A, is weakly p-simple by Theorem
5.2, and « is p-simple if and only if G(p)=G(p). Take an element ae(Z/mZ)* whose
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order s is greater than 2. Then 1 +a+a*+ - - - +a* ' =0, so we can define an element
a€ A5 2 by

6.3) a=(1,a,a? -, a"Y).

In this case G, is the cyclic group generated by a and G,(p)=G(p)G,. Thus « is not
p-simple if s does not divide f.

Next we give an example of degenerate, p-simple elements. We continue to
assume that m>3 is a prime. Consider the following congruence relation:

(6.4) PiHpI+p¥=3 (mod.m),
with (i, j, k)€ ;. (For the definition of A}, see the introduction.)

PROPOSITION 6.3.  Suppose m (>3) is a prime. Let (i, j, k)e W} be a solution of
(6.4) and put

o‘=(pi_1’pi+j_pi9 l—pi+j)EArln .

Then G,={1}. Moreover the element ue G such that (p'— 1)u=p’— 1 (mod. m) belongs
to G(p). Therefore, if u¢ G(p), then o is not p-simple (hence degenerate).

Proof. First we note that a=(p'—1)1, up’, —1—up’). A simple calculation
shows that

(6.5 wp?=—~1+upp’, u3=p’ (mod.m).

If G, # {1}, then (up’)* = —(1 + up®) (mod. m). It follows from the first formula of (6.5)
that p'=1 (mod. m). But this contradicts the assumption that i%0 (mod. f). Thus
G,={1}, which proves the first statement. Note that the second formula of (6.5)
shows that ue G,(p), hence « is not a p-simple if u¢ G(p). This proves the second
statement. O

ExAMPLE 6.4. Let us consider the case where m=67 and p=9 (mod. 67) (see
[3]). In this case we have f=11 and the equation (6.3) has essentially the unique
solution

92+9%+9%=3 (mod.67).

If we take (i, j, k)=(2,6,3)e A1, in Proposition 6.3, then a=(13)(1, 6, 60). In this case
we have | G,(p)| =33 and Q(J,(p))=K%® =Q(,/—67).

Recall that o€ 4,, is called weakly simple if G} =G,. We say that a € 4,, is simple
if G¥={1}. Note that the following implications hold:

(6.6) non-degenerate = simple = weakly simple

The proof of the first implication is essentially the same as that of Lemma 6.2, and
the second one is clear from the definition. If m is a prime, then « is simple if and
only if G,= {1} by Theorem 5.2. If p=1 (mod. m), then there is no difference between
two notions, p-simple elements and simple elements. However, if p# 1 (mod. m), then
this is not the case in general. For example the element (6.3) is p-simple but not
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simple whenever 1<s| f. Thus Proposition 6.3 provides an example of a simple
element which is not p-simple.

REMARK 6.5. Let m be a prime number. For a=(a, b, )€ A}, let
H,={teG| || =0} .

Then H, is the CM type of the jacobian variety J, of the curve y™=x“%1—x)* defined
over the complex number field. It is known that J, is simple if and only if « is simple
in the above sense (for example see [12] or [2]). Moreover, one can easily see that
o is non-degenerate if and only if the CM-type H, is non-degenerate in the sense of

(81, [51, [16].

REMARK 6.6. When m is a prime number, a=(ay, -, a,+,)€ A}, is non-
degenerate if and only if

n+1

2o): = ;0 a;)#0

for all odd Dirichlet character y of Z/mZ. Indeed, we have

- ({22 o)

= —X(a)Bl,ia

where B, , denotes the generalized Bernoulli number. Since B, ,#0 for all odd
character y of Z/mZ, the above formula shows that y(6(«))#0 if and only if y(x)#0.
Thus « is non-degenerate if and only if y(x)#0 for all odd character y of Z/mZ. For
example, if n>2 is prime to m and a=(1, ---, 1, —n)e A%"*, then y(a®)=n—y(n)
cannot be zero for any y, hence o is non-degenerate. This example is intensively

studied in [7], [4], [10]. We remark that, if m is not a prime and # is not prime to
m, then o is not always non-degenerate. For example, if ord,m>2, then (1, 1, —2)e AL,

is degenerate. Indded, we can shown that %~1 belongs to G¥(p) (see Lemma 8.2).

Therefore G*(p) does not coincide with G(p) whenever «';-— 1¢ G(p).

7. The case of prime powers

Throughout this section we assume that m=1[° is a power of an odd prime /.
Then every element a € R,, has the following unique expansion:

(7.1) =Y (s,
i=0

with o;€ R,,\(/)R,,. Let ¢ : R,—Z/mZ be the G-homomorphism defined by (1.1). If
o€ R, is expressed as (7.1), then
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o)=Y, o).

We define another ring homomorphism v : R,,—Z/mZ by the formula

W)=Y o).

i=1

which is also a G-homomorphism. By definition y takes values in [Z/mZ, and y(5)=0
for any de D,,. Then the precise statement of Theorem 0.4 is given as follows.

THEOREM 7.1. Let m=1° be a power of an odd prime I. For ac A}, let L= KS®)
and { = yo(1)"® € 1. Then Q(J(p))=L(().

LEMMA 7.2. If a€B,, then &,(p)=y,()V® .

Proof. As a G-module, B,, is generated by standard elements by Theorem 4.3,
so we can choose f3, ye R, such that

a=PBo, +y(1, —1).
It then follows from (4.1) that
&(P)=2p(= 1) TPy (— 1) 720
:Xp(l)—lw(ﬂ) .

The second equality holds since we are assuming that m is odd. Therefore in order
to prove the lemma it suffices to show the formula

(7.2) Y(o)=—Ilop(B) .
Note that () =y(fo, ;) since Y(y(1, —1))=0, hence (7.2) is equivalent to
(7.3) ¥(Boy,1)=—1lp(B) .

Since both ¢ and ¥ are G-homomorphisms, it suffices to show (7.3) for f=(I') with
i=0, - -+, e—1. But, if f=(/%), then

(P(ﬁam):(P((li)kgo (1 +kle_1)+(_[i+1)>

il kleT ) —(i4 1)1

=k=0
— lll +1
=—lp(p).
Thus (7.3) holds. O
If H is a subgroup of G, we let
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vg= Y, (1)eR,} .

teH
In this notation vg,) is nothing but v,.
LeMMA 7.3. If H is contained in the I-Sylow subgroup of G, then
(7.4) vg=(*) (mod.B,),
where I°=| H|.

Proof. We prove this by induction on s. If s=0, then (7.4) is trivial. Let s>0
and suppose (7.4) holds for the subgroup H' of H with | H'|=[*"", that is,

(7.5) vgp=(F"") (mod.B,).
Since H (resp. H') is generated by 1+/°7% (resp. 1+7°75*1), we have

-1

Vg=Vg kZO(l + kI

By the inductive hypothesis (7.5) this shows that
e—1
vg= Y, (F"1 4kl  (mod. B,)
k=0

=0ps-1—(=1)
=(l% (mod. B,,)
Thus the lemma holds true for H. O
Proof of Theorem 7.1. Let I be the I-Sylow subgroup of G(p) and let
A={teG(p)|t'"'=1}.

Then the order d of 4 is not divisible by /, and G(p)=I"x 4, hence v,=vpv,. If d is
even, then — 1 € G(p). In this case the assertion follows from Proposition 3.3. Indeed,
we have L=Q since G¥(p)=G, and {=1 since y,(/)=1.

In the following we assume that d is odd. Let 1€ G¥(p). By definition this says
that (¢, —1)v,a€ B, which is equivalent to requiring that the class of (¢, —1)a in
A,,/B,, should be killed by the multiplication by v,. But Lemma 7.3 shows that v, =
() (mod. B,), where [*=|TI'|. Therefore (I*{t, —1)v,a€B,,. Since (([)4,)N B, =
((I)B;}) N B,,, we conclude that there exists an element fe(/*)B,, such that

)t =y o= .
We claim that there exists an element ye R,, such that
(7.6) (t, —yvo—p={w)—D)}y,

where u is a generator of I'. To see this let (t, —1)v,a=(ay, - - -, a,). Then f may be
written as (b, - - -, b,) with b;’s such that /°a;=1°b; for all i=1, - - -, r. Therefore a;=b;
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(mod. I°™°). Consequently we have a;=u‘b; with some integers c;, and so

= Drja—p= 3 {wr—()6)

= (0=} 3 66 w106,

This proves (7.6).
Now, since G(p) acts trivially on ¢,(p), we have &(p)'=¢, ,(p). Therefore

(Ea(p)at N l)d = 8(t, - 1)vAa(p) .

The right hand side equals g4(p) by (7.6) since &,(p)°=¢,(p) (see Section 2). On the
other hand, it follows from Lemma 7.2 and (7.6) that

£y(p) =2,V )
=Gl =y
Consequently we find that
(&) =LY,

where we have put {=y,(/)*®. Since (d, 2m)=1, there is no d-th root of unity in K
other than 1, hence

an elp) =
It then follows from Lemma 5.4 that
GUp)={teGXp) (=L},
or equivalently
O/ p)=L(() .
This is what we wanted to prove. O

As a corollary to the proof of Theorem 7.1, we obtain the following result which
is a generalization of Lemma 7.2.

PROPOSITION 7.4.  Suppose m is a power of an odd prime | and o.€ B"(p). Then
J(p)=xx(1)" " .

Proof. If ae By(p), then G¥(p)=G. Furthermore both ¢,(p) and y,(—)*® in
the formula (7.7) are roots of unity in K. Therefore, putting = —1 in the formula
and taking the square root of the both sides, we find that

(7.8) &P)= £ (="

Let A be the prime ideal in K lying above /. Then the congruence relation
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Jm)=1 (mod.1)

shows that ¢,(p)=1 (mod. A), hence the sign of the right hand side of (7.8) is +1.
Thus the proposition holds. O

8. The case of n=1 and p=1 (mod. m)

In this section we prove Theorem 0.3 after giving the precise statement. To do
this we classify primitive elements of 4., into five types as follows. A primitives

element ae 42, is called
of type II-1 if a=(a,aw, —a(1+w)) with w?=1, w# +1, and, in addition,

w;é%-H if ord,m>3,
of type II-2 if a=(a, a, —2a) and ord,m>2,
of type I1I-3 ifa=<a,%+a,%—2a> and ord,m>3,
of type III if a=(a, aw, aw?) with 1 +w+w?=0
and of type I otherwise.

Let & be the finite set of natural numbers defined by (0.6). Then the precise
statement of Theorem 0.3 is as follows.

THEOREM 8.1. Suppose m¢ & and p=1 (mod.m). Let o be a primitive element
of Ay

(i) Ifois of type I, then Q(J (p))=K.

(ii) If a=(a, aw, —a(l+w)) is of type II-1, then

. m

oKL+L™ otherwise .
(iii) If a=(a, a, —2a) is of type II-2, then

K2 if Xp(2)2 =1,
K, otherwise .

QU (p) = {

(iv) Ifoc=<a,%+a,%—2a> is of type II-3, then

K,o i 12r=1,
Q(Ja(v))={ v VB
K. otherwise .
(v) If a=(a, aw, aw?) is of type III, then
m
K, if ordym>1, and w=1| mod.— |,
Q(Ja(P))={ " . ords ( 3 >

O+ +0™) otherwise .



20 N. Aoki

In order to prove this theorem we need the following result which is proved in
[2], Theorem 0.2, where the group G, is written as W,. (The corresponding result
for the group G} is not stated explicitly there, but easy to prove.)

LEMMA 8.2. Suppose m¢ &. Let a be a primitive element of AL,

(i) Ifaisof type I, then G¥=G,={1}.

(ii) Ifa=(a, aw, —a(14+w)) is of type II-1, then G¥=G,={1, w}.
(i) If a=(a, a, —2a) is of type II-2, then G;‘={1,%—1} and G,={1}.

m

iv) Ifa=(a2+a" 2a)iso type II-3, then G} = L2,
2 2 4 2

Ga={l,ﬁ+l}.
2

(v) If a=(a, aw, aw?) is of type I, then G*=G,={1, w, w?}.
In particular, o is weakly simple except for the case where o is of type II-2 or II-3.

3
+1,Tm—1} and

ReMARK 8.3. The finite set & of the excluded integers is smaller than that of
[2]. As for the missing integers one can directly check the above lemma.

Proof of Theorem 8.1. Since we are assuming that p=1 (mod.m), we have
G(p)=G, and G¥(p)=G¥*. If ais of type L, II-1 or III, then o is weakly p-simple by
Lemma 8.2. Therefore it follows from Theorem 5.1 that Q(J,(p))=K%=. To deduce
the statements (i), (i) and (v) from (i), (ii) and (v) of Lemma 8.2 respectively is an
easy exercise of Galois theory.

Ifa=(a, a, —2a)is of type I1-2, then G*(J (p)) = { 1, %— 1} by Lemma 8.2. Since

m m m m m m m
(1,-+1>a+<~,—>= a,a, —+a,-~+a, —2a, —2a, -, —
2 272 2 2 272

=202,a s
we have
&1, m/2)+ 1)a(P) = Xp(z_za)2 =1p(2)” 2
Therefore, by (5.3), %— 1e G(J,(p)) if and only if y,(2)*=1. This proves (iii). The
proof of (iv) is quite similar and we omit it. O

ExaMmpLE 8.4. For meé&, the assertion of the theorem does not always hold.
For example, let us consider the case where m=21 and p=1 (mod.21). Let
a=(1, 8, 12)€ 4,,. Then « is of type II-1. Direct calculations show that G,={1} and
G¥={1,2,4,8,11, 16}. Note that

(1, —2)a+(6, —6)=(1, 5, 6,8,12,15,18, 19) =04 , +05 5,
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and
(1, =2)=(1, —2X1,2, ---,2""1) (mod.D,,).
Therefore, by Proposition 4.2, we can easily see that
&a, —Zi)a(p)=Xp(3)3.(2i_1) (i=0,1,---,5).
This shows that G(J,(p)) contains 2% if and only if 3~ /72'~D =1 (mod. p), and so

(1,2,4,8,11,16}  if 3¢~Y7=1 (mod.p),

G(Jp) = { (1,8} otherwise .

Thus we have

Q(J(p))z{Q(«/—n if 30-Y7=1 (mod.p),

K, otherwise .
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